
Lecture Recording

❖ Note: These lectures will be recorded and posted onto the IMPRS website 

❖ Dear participants, 

❖ We will record all lectures on “Making sense of data: introduction to statistics for 
gravitational wave astronomy”, including possible Q&A after the presentation, 
and we will make the recordings publicly available on the IMPRS lecture 
website at: 

- https://imprs-gw-lectures.aei.mpg.de/2023-making-sense-of-data/

❖ By participating in this Zoom meeting, you are giving your explicit consent to 
the recording of the lecture and the publication of the recording on the course 
website. 
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Thanks to Stephen Green for 
producing much of the material for 
this course in 2021!

Introduction to deep learningCHAPTER 1. INTRODUCTION
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Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).
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Machine learning algorithms

❖ A machine learning algorithm requires the following:

1. dataset     —   (supervised) or  (unsupervised)

2. model    —  E.g., linear regression 

3. loss function   —  E.g.,  

4. optimization algorithm   —  E.g., stochastic gradient descent

{x(i), y(i)} {x(i)}

pmodel(y |x) = 𝒩(θ⊤x, 1)(y)

J(θ) = − 𝔼pdata(x) log pmodel(x)



Introduction to deep learning

❖ For many machine learning algorithms, the input  is not the raw data. 
Rather, one must choose a small number of high-level features that are 
useful for predicting the output.

• E.g., the color of a car rather than the image of a car.

❖ This representation is often specified by hand, but it can also be learned 
from lower-level features, or raw data.

❖ Deep learning seeks to learn higher level representations in terms of 
lower level ones by composing functions.

x
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Feedforward neural networks
❖ Feedforward neural networks or multilayer perceptrons (MLPs) are the 

classic deep learning model.

❖ Defines a mapping    as a composition of simpler mappings: 
 
 
 
 
 
 

❖ “Feed-forward” because there is no feedback of later layers on earlier ones.

y = f(x; θ)

first (hidden) layer

second (hidden) layer

depth of network

output layer

f = f (d) ∘ f (d−1) ∘ ⋯ ∘ f (2) ∘ f (1)



Feedforward neural networks

❖ Each layer is of the form 
 
 
 
 
 
 
 

❖ Weights and biases are the parameters defining the model  . These 
are tuned during training.

θ ≡ {Wj, bj}d
j=1

f = f (d) ∘ f (d−1) ∘ ⋯ ∘ f (2) ∘ f (1)

weight matrix bias vector

linear mapping zj = W⊤
j h + bjactivation function

• often nonlinear

f ( j)(h) = σj (W⊤
j h + bj)



Feedforward neural networks

❖ The MLP is therefore defined by

• depth (number of layers)

• widths (dimensions of hidden layers)

• choice of activation functions

❖ Training uses stochastic gradient descent with gradients calculated using back-
propagation (the chain rule).

f ( j)(h) = σj (W⊤
j h + bj)

f = f (d) ∘ f (d−1) ∘ ⋯ ∘ f (2) ∘ f (1)



Output layer
❖ The activation function for the output layer is determined by the nature 

of the output and the distribution we are modeling.

❖ Example 1:  For regression, typically take the output to be the mean of a 
Gaussian distribution 
 

• Since the mean is unconstrained, use a linear output layer 
 

• Maximum likelihood gives the mean squared error loss (as before).

p(y |x) = 𝒩 (f(x), I)(y)

σlinear(z) = z



Output layer
❖ Example 2:  For binary classification, use a Bernoulli distribution.

• Take a 1-dimensional output, which gives the probability that .

• Needs to lie between 0 and 1. Use a logistic sigmoid activation, 
 

• The probability of  is then given by [check this!] 
 

• Finally, the maximum likelihood loss involves the softplus function 
 
 

y = 1

y

σsigmoid(z) =
1

1 + e−z

p(y |x) = σsigmoid ((2y − 1)z)

<latexit sha1_base64="McX/ExFbRTA2ykosbjFNmO9FDJE="></latexit>

J(✓) = � log p(y|x)
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CHAPTER 3. PROBABILITY AND INFORMATION THEORY

Figure 3.3: The logistic sigmoid function.
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Figure 3.4: The softplus function.
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Output layer
❖ Example 3:  For general classification (with possible outputs ) use 

a Multinoulli distribution.

• Take a -dimensional output layer, where each output  is the probability 
that .

• Use a softmax activation function 
 
 
Then 

• Maximum likelihood loss is 

y ∈ {1,…, k}

k i
y = i

p(y = i |x) = σsoftmax(z)i

σsoftmax(z)i =
exp(zi)

∑j exp(zj)
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Output layer
❖ Remarks:

• These examples show how specifying a model as a probability distribution and 
using maximum likelihood estimation automatically yields the correct loss 
function for training.

• All loss functions constructed are more-or-less “linear” (not exponential) in 
 from the previous layer:   

 
 
 
 
 
This is part of the construction, so that that gradients do not vanish or blow up 
during training.

z = W⊤h + b

MSE loss

CHAPTER 3. PROBABILITY AND INFORMATION THEORY
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Output layer
❖ We can also construct more complicated distributions.

❖ Example:  Gaussian distribution where we also fit for the covariance matrix 

• For diagonal covariance, better to use the precision matrix, and enforce 
positivity using, e.g., softplus activation.

❖ Example:  Mixture density networks

❖ Several Gaussian distributions and a multinouilli distribution

❖ Example:  Normalizing flow can model much more complicated distributions.

❖ In all cases, maximum likelihood loss gives an appropriate loss function.

p(y |x) = 𝒩 (μ(x), Σ(x))



Hidden layers

❖ Activation functions needed to introduce nonlinearity.

❖ Most common activation:  Rectified Linear Unit (ReLU) 
 
 
 
 

• Linear part good for gradients. Runs the risk of not activating for some inputs.

❖ Other possibilities:  leaky ReLU, ELU, logistic sigmoid, tanh, sin, …

f = f (d) ∘ f (d−1) ∘ ⋯ ∘ f (2) ∘ f (1)

<latexit sha1_base64="6kMNbX0sySY4pzACkfWs2nt0haE="></latexit>
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Hidden layers
❖ In addition to activations, it is necessary to choose hyperparameters for depth 

and width of network. Deeper and wider will give more representational 
capacity, although it may be harder to train. Choice comes from experimentation.

❖ Universal approximation theorem: 
 
A feedforward network with a linear output layer and at least one hidden layer 
can—given a wide enough hidden layer—approximate any reasonable function 
to arbitrary accuracy.

• May not learn or generalize very well, and may require a huge hidden layer.

❖ Deeper networks will usually require fewer total parameters than one very wide 
network.



Effect of depthCHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Goodfellow
et al. (2014d). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not yield the same effect.

Another key consideration of architecture design is exactly how to connect a
pair of layers to each other. In the default neural network layer described by a linear
transformation via a matrix W , every input unit is connected to every output
unit. Many specialized networks in the chapters ahead have fewer connections, so
that each unit in the input layer is connected to only a small subset of units in
the output layer. These strategies for reducing the number of connections reduce
the number of parameters and the amount of computation required to evaluate
the network, but are often highly problem-dependent. For example, convolutional
networks, described in chapter 9, use specialized patterns of sparse connections
that are very effective for computer vision problems. In this chapter, it is difficult
to give much more specific advice concerning the architecture of a generic neural
network. Subsequent chapters develop the particular architectural strategies that
have been found to work well for different application domains.
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Back-propagation

❖ To train the network using some form of gradient descent, it is necessary to be 
able to efficiently compute gradients with respect to all of the network 
parameters (weights and biases).

❖ This is accomplished using a form of automatic differentiation call back-
propagation.

❖ Relies on compositional nature of neural networks  
 
 
 
plus the chain rule of calculus and differentiability of all operations.

f = f (d) ∘ f (d−1) ∘ ⋯ ∘ f (2) ∘ f (1)



Back-propagation
❖ It is important to organize the calculation in an efficient way, and not 

carry out the same calculation multiple times.

Goodfellow et al (2016)
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Figure 6.9: A computational graph that results in repeated subexpressions when computing
the gradient. Let w 2 R be the input to the graph. We use the same function f : R ! R
as the operation that we apply at every step of a chain: x = f(w), y = f(x), z = f(y).
To compute @z

@w , we apply equation 6.44 and obtain:

@z

@w
(6.50)

=
@z

@y

@y

@x

@x

@w
(6.51)

=f 0(y)f 0(x)f 0(w) (6.52)
=f 0(f(f(w)))f 0(f(w))f 0(w) (6.53)

Equation 6.52 suggests an implementation in which we compute the value of f(w) only
once and store it in the variable x. This is the approach taken by the back-propagation
algorithm. An alternative approach is suggested by equation 6.53, where the subexpression
f(w) appears more than once. In the alternative approach, f(w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low, the
back-propagation approach of equation 6.52 is clearly preferable because of its reduced
runtime. However, equation 6.53 is also a valid implementation of the chain rule, and is
useful when memory is limited.
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Figure 6.10: An example of the symbol-to-symbol approach to computing derivatives. In
this approach, the back-propagation algorithm does not need to ever access any actual
specific numeric values. Instead, it adds nodes to a computational graph describing how
to compute these derivatives. A generic graph evaluation engine can later compute the
derivatives for any specific numeric values. (Left)In this example, we begin with a graph
representing z = f(f(f(w))). (Right)We run the back-propagation algorithm, instructing
it to construct the graph for the expression corresponding to dz

dw . In this example, we do
not explain how the back-propagation algorithm works. The purpose is only to illustrate
what the desired result is: a computational graph with a symbolic description of the
derivative.

Some approaches to back-propagation take a computational graph and a set
of numerical values for the inputs to the graph, then return a set of numerical
values describing the gradient at those input values. We call this approach “symbol-
to-number” differentiation. This is the approach used by libraries such as Torch
(Collobert et al., 2011b) and Caffe (Jia, 2013).

Another approach is to take a computational graph and add additional nodes
to the graph that provide a symbolic description of the desired derivatives. This
is the approach taken by Theano (Bergstra et al., 2010; Bastien et al., 2012)
and TensorFlow (Abadi et al., 2015). An example of how this approach works
is illustrated in figure 6.10. The primary advantage of this approach is that
the derivatives are described in the same language as the original expression.
Because the derivatives are just another computational graph, it is possible to run
back-propagation again, differentiating the derivatives in order to obtain higher
derivatives. Computation of higher-order derivatives is described in section 6.5.10.

We will use the latter approach and describe the back-propagation algorithm in
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Training
❖ Stochastic gradient descent is well suited to training on GPU hardware.

❖ Challenges:

• Local minima, plateaus, saddle points in the loss landscape

• Exploding gradients

• Very deep networks

❖ Various approaches to deal with these, including other architectural choices, choice 
of initial parameter values, and improvements upon stochastic gradient descent.

❖ Improved optimizers include momentum — a moving average of the gradient.

❖ Best bet is to use the Adam optimizer.



Architectural choices
❖ So far we have described the most basic of neural network architectures, 

the fully-connected feed-forward network.

❖ Possible modifications:

• Sparse connectivity (sparse weight matrices)

• Shared weights

• Connections between non-adjacent layers

• Recursive or recurrent connections

❖ Usage will depend on characteristics of the data, amount of computer 
resources, 



Convolutional networks
❖ Convolutional networks are well suited to data that has translation invariance

• 2d images, 1d audio, 3d medical scans, …

❖ Use local convolutions instead of general matrix multiplication. 
 
 
 
 

• Weight matrix uses parameter sharing and sparsity (kernel is local)

• Typically also add an additional dimension: channel

❖ Can also handle inputs of variable size

output kernel input
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Convolutional networks

❖ Network constructed by combining various types of layers

• Layers for convolving in 1D, 2D, … (choices for stride, kernel size, number 
of channels, padding, …)

• Layers for changing dimension (pooling, reshape)

• Convolutional arithmetic needed to fit layers together

Image: Aphex34



Residual networks
❖ Beyond a small number of layers, training deep 

neural networks becomes very difficult.

❖ One very successful architecture is the residual 
network (He et al, 2016)

• Preserves an identity mapping all the way 
through the network.

• Learns the residual 

• Enables successful training with over 1000 
layers.



Summary
❖ Things we discussed:

• Feedforward networks:

• Output layers, hidden layers, architecture considerations

• Loss functions

• Back-propagation

• Convolutional and residual networks

❖ Many other topics were not discussed, e.g., recurrent architectures

❖ Next lecture:  GW applications 


