Lecture Recording

Note: These lectures will be recorded and posted onto the IMPRS website

Dear participants,

We will record all lectures on “Making sense of data: introduction to statistics for
gravitational wave astronomy”, including possible Q&A after the presentation,
and we will make the recordings publicly available on the IMPRS lecture
website at:

- https:/ /imprs-gw-lectures.aei.mpg.de /2023-making-sense-of-data /

By participating in this Zoom meeting, you are giving your explicit consent to
the recording of the lecture and the publication of the recording on the course
website.

Making sense of data: introduction to
statistics for gravitational wave astronomy

Part I11: Machine Learning
Lecture 2: Neural networks and deep learning

AEI IMPRS Lecture Course
Jonathan Gair jgair@aei.mpg.de

3rd hidden layer
(object parts)

Thanks to Stephen Green for
producing much of the material for
this course in 2021!

Machine learning algorithms

* A machine learning algorithm requires the following;:

I

2

dataset — {x© y®) (supervised) or {x} (unsupervised)
model — E.g., linear regression p_ 4.V |X) = A @ 'x, 1))
loss function — E.g, J(0) = — [, ()108Ppoqel(X)

optimization algorithm — E.g., stochastic gradient descent

Introduction to deep learning

» For many machine learning algorithms, the input x is not the raw data.
Rather, one must choose a small number of high-level features that are
useful for predicting the output.

» E.g., the color of a car rather than the image of a car.

« This representation is often specified by hand, but it can also be learned
from lower-level features, or raw data.

+ Deep learning seeks to learn higher level representations in terms of
lower level ones by composing functions.

Introduction to deep learning

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Goodfellow et al (2016)

Feedforward neural networks

* Feedforward neural networks or multilayer perceptrons (MLPs) are the
classic deep learning model.

Defines a mapping y = f(x;0) as a composition of simpler mappings:

depth of network

‘
_Al, -0, ... 0
f=08°S] °

7 \

output layer first (hidden) layer

second (hidden) layer

* “Feed-forward” because there is no feedback of later layers on earlier ones.

Feedforward neural networks

f :f(d) of(d_l) O e of(z) of(l)

+ Each layer is of the form
weight matrix bias vector

il

) = o (WjTh . bj)

i

activation function linear mapping z; = VVjTh + b,
 often nonlinear

+ Weights and biases are the parameters defining the model 6 = {W,, b, }Jc.lzl. These

are tuned during training.

Feedforward neural networks

f :f(d) of(d_l) O e of(z) of(l)

Fkh) = o <WJ.Th + bj)

The MLP is therefore defined by
 depth (number of layers)

» widths (dimensions of hidden layers)
* choice of activation functions

Training uses stochastic gradient descent with gradients calculated using back-
propagation (the chain rule).

Output layer

* The activation function for the output layer is determined by the nature
of the output and the distribution we are modeling.

+ Example 1: For regression, typically take the output to be the mean of a
Gaussian distribution

p(y|x) =N (f(x).I)(y)

e Since the mean is unconstrained, use a linear output layer
Glinear(z) =<

* Maximum likelihood gives the mean squared error loss (as before).

Output layer

+ Example 2: For binary classification, use a Bernoulli distribution.

« Take a 1-dimensional output, which gives the probability that y = 1.

» Needs to lie between 0 and 1. Use a logistic sigmoid activation,

1
Il +e=

Gsigmoid(z) =
 The probability of y is then given by [check this!]
POIX) = Girnoid ((2y —)z)

* Finally, the maximum likelihood loss involves the softplus function

J(0) = —logp(y|z) |
= ¢ ((1 — 2y)z) 2|

Figure 3.4: The softplus function.

Output layer

» Example 3: For general classification (with possible outputs y € {1,...,k}) use
a Multinoulli distribution.

 Take a k-dimensional output layer, where each output i is the probability
thaty =i
exp(z;)
ZJ- eXP(Zj)

* Use a softmax activation function o, ¢,.<(2); =

Then p(y = llJC) = softmax(z)i

e Maximum likelihood lossis J(0) = —z; + log Z exp(z;)

J

Output layer

+ Remarks:

* These examples show how specifying a model as a probability distribution and
using maximum likelihood estimation automatically yields the correct loss
function for training.

* All loss functions constructed are more-or-less “linear” (not exponential) in
z = W'h + b from the previous layer:

MSE loss T / J(0) = —z; + logZexp(zj)
< of - J

This is part of the construction, so that that gradients do not vanish or blow up
during training.

Output layer

» We can also construct more complicated distributions.

» Example: Gaussian distribution where we also fit for the covariance matrix

p(y|x) = N (px), Z(x))

 For diagonal covariance, better to use the precision matrix, and enforce
positivity using, e.g., softplus activation.

» Example: Mixture density networks

+ Several Gaussian distributions and a multinouilli distribution

+ Example: Normalizing flow can model much more complicated distributions.

In all cases, maximum likelihood loss gives an appropriate loss function.

Hidden layers

7= 1) [

» Activation functions needed to introduce nonlinearity.

+ Most common activation: Rectified Linear Unit (ReLU)

Zt el

Lo

* Linear part good for gradients. Runs the risk of not activating for some inputs.

Other possibilities: leaky ReLU, ELU, logistic sigmoid, tanh, sin, ...

Hidden layers

* In addition to activations, it is necessary to choose hyperparameters for depth
and width of network. Deeper and wider will give more representational
capacity, although it may be harder to train. Choice comes from experimentation.

+ Universal approximation theorem:

A feedforward network with a linear output layer and at least one hidden layer
can—given a wide enough hidden layer—approximate any reasonable function

to arbitrary accuracy.

* May not learn or generalize very well, and may require a huge hidden layer.

* Deeper networks will usually require fewer total parameters than one very wide
network.

Test accuracy (percent)

96.5
96.0
95.95
95.0
94.5
94.0
93.5
93.0
92.5
92.0

Effect of depth

5! 6 7 3 9

Number of layers

10 11

Goodfellow et al (2016)

Back-propagation

» To train the network using some form of gradient descent, it is necessary to be
able to efficiently compute gradients with respect to all of the network
parameters (weights and biases).

This is accomplished using a form of automatic differentiation call back-

propagation.

+ Relies on compositional nature of neural networks

f:f(d) of(d—l) = O]0(2) o]f(l)

plus the chain rule of calculus and differentiability of all operations.

Back-propagation

« It is important to organize the calculation in an efficient way, and not
carry out the same calculation multiple times.

0z 020y dz
8_w_0y0338w f
= (W) f' (=) f (2)
= f/(f(fw) f'(f(w)) f (w)
/ >

Efficient implementations in every

deep-learning framework
(PyTorch, TensorFlow, JAX, ...)

Goodfellow et al (2016)

Training

Stochastic gradient descent is well suited to training on GPU hardware.

+ Challenges:

* Local minima, plateaus, saddle points in the loss landscape
* Exploding gradients
* Very deep networks

+ Various approaches to deal with these, including other architectural choices, choice
of initial parameter values, and improvements upon stochastic gradient descent.

» Improved optimizers include momentum — a moving average of the gradient.

+ Best bet is to use the Adam optimizer.

Architectural choices

+ So far we have described the most basic of neural network architectures,

the fully-connected feed-forward network.

+ Possible modifications:

« Sparse connectivity (sparse weight matrices)
 Shared weights

» Connections between non-adjacent layers

* Recursive or recurrent connections

+ Usage will depend on characteristics of the data, amount of computer
resources,

Convolutional networks

+ Convolutional networks are well suited to data that has translation invariance

* 2d images, 1d audio, 3d medical scans, ...

+ Use local convolutions instead of general matrix multiplication.

(K * I);; Z . L L

output kernel input

» Weight matrix uses parameter sharing and sparsity (kernel is local)
* Typically also add an additional dimension: channel

Can also handle inputs of variable size

Convolutional networks

@§ 00000

4

» Network constructed by combining various types of layers

Image: Aphex34

 Layers for convolving in 1D, 2D, ... (choices for stride, kernel size, number
of channels, padding, ...)

 Layers for changing dimension (pooling, reshape)

* Convolutional arithmetic needed to fit layers together

Residual networks

* Beyond a small number of layers, training deep
neural networks becomes very difficult.

* One very successful architecture is the residual
network (He et al, 2016)

* Preserves an identity mapping all the way
through the network.

e Learns the residual x;11 = x; + F(x;, W;)

 Enables successful training with over 1000
layers.

X]

~.

BN

|

RelLU

!

weight

!

BN

|

RelLU

!

weight

addition

v
X/+1

v o

Summary

+ Things we discussed:
* Feedforward networks:
e Qutput layers, hidden layers, architecture considerations
* Loss functions
* Back-propagation
* Convolutional and residual networks
* Many other topics were not discussed, e.g., recurrent architectures

+ Next lecture: GW applications

