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Course outline

❖ Lecture 1: introduction to machine learning

❖ Lecture 2: neural networks and deep learning

❖ Lecture 3: machine learning for gravitational wave astronomy

❖ Practical: GW search and parameter estimation using machine learning



References

❖ Textbook: “Deep Learning” by Goodfellow, Bengio, and Courville

• Free online at https://www.deeplearningbook.org

• Course covers parts of Chapters 5, 6, 9, 20

❖ pyTorch

• machine learning framework for practical part 

• many tutorials at https://pytorch.org

https://www.deeplearningbook.org
https://pytorch.org


Introduction to machine learning

❖ Computers are designed to complete repetitive tasks. A task typically involves 
taking an input and mapping it to an output.

❖ A computer programme is a set of instructions that teach the computer how to 
perform a task.

❖ Machine learning is the development of approaches that allow computers to learn 
how to perform a task, typically by seeing a large set of examples.

❖ Machine learning algorithms typically consist of function approximators that have a 
large number of free parameters. These are designed in a way that allow the choice 
of parameters to be automatically optimised to minimise a specified objective 
function (the loss function).



Introduction to machine learning
❖ Example

❖ Classification: learn a function that maps input data into a category

❖ e.g., recognise handwriting digits

8, 8, 1, 5, 1
4, 4, 7, 4, 9

Introduction to Machine Learning
❖ Machine learning uses computers to learn patterns from data.

• Typically used to solve problems that are hard to program in conventional 
ways.  Instead, train by example.

❖ Examples:

• Classification:  Learn a function mapping data into a particular category 
 
 
    E.g., recognize handwritten digits

f : ℝn → {1,…, k}

8, 8, 1, 5, 1
4, 4, 7, 4, 9
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Machine Learning Tasks
❖ Examples:

• Regression:  Learn a function predicting real-valued quantities 
 
 
    E.g., What are the physical parameters characterizing a binary merger?

• Sampling:  Generate new samples similar to training examples.

• Denoising:  Given noisy data , predict clean data :     

• Density estimation:  Given training examples  learn a probability 
density function .

• Game playing:  Given a game configuration, what is the best move to make?

x̃ ∈ ℝn x ∈ ℝn p(x | x̃)

x ∈ ℝn

p(x)

f : ℝn → ℝm



Performance Measures

❖ For each task, it is necessary to specify some quantitative measure of 
performance:

• for classification, the accuracy (the fraction of examples that produce the 
correct output)

• for density estimation, the log probability assigned to examples

• for regression, the mean squared error

❖ We are usually interested in how the machine learning algorithm performs on 
data that have not been seen before:  Evaluate performance on a test set that is 
different from the training set.



Types of Learning Algorithms

❖ Typically we have a dataset  consisting of many data points . 
The data points may or may not have associated labels .

❖ Unsupervised:     learn 

• Examples:  density estimation, sampling

❖ Supervised:     learn 

• Examples:  regression, classification

❖ Reinforcement learning allows the algorithm to interact with the environment 
and produce new samples (e.g., game playing).

{x(i)} x(i) ∈ ℝn

y(i) ∈ ℝm

p(x)

p(y |x)
somewhat hazy distinction, 
e.g., learning p(y, x)



Maximum likelihood estimation
❖ Consider a set of  independent examples  drawn from the data-

generating distribution.

❖ Unsupervised learning:  Let  be a parametric family of model probability 
distributions. Choose  such that this becomes a good approximation to .

❖ Maximum likelihood estimator is 
 
 
 
 
 
 

❖ Equivalent to minimizing KL divergence or cross-entropy between  and .

N x(i) ∼ pdata(x)

pmodel(x; θ)
θ pdata(x)

pdata pmodel

<latexit sha1_base64="OHM1H3ehUcfT1hzMFZY8JdgxTRo="></latexit>

✓ML = argmax
✓

pmodel(X;✓)

= argmax
✓

NY

i=1

pmodel(x
(i);✓)

= argmax
✓

NX

i=1

log pmodel(x
(i);✓)

= argmax
✓

Epdata(x) log pmodel(x;✓)



Conditional Estimation
❖ Supervised learning:  Estimate a conditional probability 

❖ Generalize the maximum likelihood estimator: 
 
 
 
 

❖ This is one of the most common situations.

pmodel(y |x; θ)
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Example: Linear regression
❖ Suppose we have labelled data .

❖ Let    where ;    fixed. 

❖ Using the PDF    
 
we obtain the loss function 
 
 
 
 
 

❖ Can solve exactly 

(x(i), y(i))

p(y |x) = ! (μ(x), σ2)(y) μ(x) = θ ⋅ x σ

∇θJ = 0 ⟹ θML = (X⊤X)−1 X⊤y
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More general regression
❖ More generally  does not have to be linear. We can increase the 

representational capacity of the model by using more complicated functions.

•
E.g., polynomial             (can still solve in closed form)

• E.g. nonparametric regression 
 
  nearest neighbor:  For any , find the nearest  in the training set and 
                                   return .

• E.g., neural network (next lecture)

❖ Not all models can be optimized in closed form. The optimization algorithm may 
be imperfect, so the effective capacity is lower than the representational capacity.

μ(x)

μ(x) = b +
k

∑
i=1

wixi

x x(i)

y(i)

“hyperparameter”



Overfitting and underfitting
❖ Higher capacity models run the risk of overfitting. The algorithm must 

perform well not just on data used for training, but also on new, previously 
unseen inputs (test data). This is called generalization.

❖ Training and test examples should be independent and identically 
distributed (i.i.d.), i.e., drawn from the same data-generating distribution pdata

CHAPTER 5. MACHINE LEARNING BASICS

have more parameters than training examples. We have little chance of choosing
a solution that generalizes well when so many wildly different solutions exist. In
this example, the quadratic model is perfectly matched to the true structure of
the task so it generalizes well to new data.

x0

y

Underfitting

x0

y

Appropriate capacity

x0

y

Overfitting

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly sampling x values and choosing y deterministically
by evaluating a quadratic function. (Left)A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. (Center)A
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. (Right)A polynomial of degree 9 fit to
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have described only one way of changing a model’s capacity: by
changing the number of input features it has, and simultaneously adding new
parameters associated with those features. There are in fact many ways of changing
a model’s capacity. Capacity is not determined only by the choice of model. The
model specifies which family of functions the learning algorithm can choose from
when varying the parameters in order to reduce a training objective. This is called
the representational capacity of the model. In many cases, finding the best
function within this family is a very difficult optimization problem. In practice,
the learning algorithm does not actually find the best function, but merely one
that significantly reduces the training error. These additional limitations, such as

113

Goodfellow et al (2016)



Overfitting and underfitting
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have more parameters than training examples. We have little chance of choosing
a solution that generalizes well when so many wildly different solutions exist. In
this example, the quadratic model is perfectly matched to the true structure of
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So far we have described only one way of changing a model’s capacity: by
changing the number of input features it has, and simultaneously adding new
parameters associated with those features. There are in fact many ways of changing
a model’s capacity. Capacity is not determined only by the choice of model. The
model specifies which family of functions the learning algorithm can choose from
when varying the parameters in order to reduce a training objective. This is called
the representational capacity of the model. In many cases, finding the best
function within this family is a very difficult optimization problem. In practice,
the learning algorithm does not actually find the best function, but merely one
that significantly reduces the training error. These additional limitations, such as
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Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

the concept of non-parametric models. So far, we have seen only parametric
models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression,
which has a fixed-length vector of weights, the nearest neighbor regression model
simply stores the X and y from the training set. When asked to classify a test
point x, the model looks up the nearest entry in the training set and returns the
associated regression target. In other words, ŷ = yi where i = arg min ||Xi,: � x||

2
2.

The algorithm can also be generalized to distance metrics other than the L2 norm,
such as learned distance metrics (Goldberger et al., 2005). If the algorithm is
allowed to break ties by averaging the yi values for all Xi,: that are tied for nearest,
then this algorithm is able to achieve the minimum possible training error (which
might be greater than zero, if two identical inputs are associated with different
outputs) on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
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❖ Capacity should be chosen 
to minimize generalization 
error.

❖ Depends also on the size of 
the training set.



❖ One way to improve generalization is to build in preferences for certain values of the 
parameters , without changing the representational capacity.

❖ Add a regularizer to the loss function. 
 
Weight decay:

θ

Regularization
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data significantly better than the preferred solution.
For example, we can modify the training criterion for linear regression to include

weight decay. To perform linear regression with weight decay, we minimize a sum
comprising both the mean squared error on the training and a criterion J(w) that
expresses a preference for the weights to have smaller squared L2 norm. Specifically,

J(w) = MSEtrain + �w
>
w, (5.18)

where � is a value chosen ahead of time that controls the strength of our preference
for smaller weights. When � = 0, we impose no preference, and larger � forces the
weights to become smaller. Minimizing J(w) results in a choice of weights that
make a tradeoff between fitting the training data and being small. This gives us
solutions that have a smaller slope, or put weight on fewer of the features. As an
example of how we can control a model’s tendency to overfit or underfit via weight
decay, we can train a high-degree polynomial regression model with different values
of �. See figure 5.5 for the results.

x(

y

Underfitting
(Excessive λ)

x(

y

Appropriate weight decay
(Medium λ)

x(

y

Overfitting
(λ→()

Figure 5.5: We fit a high-degree polynomial regression model to our example training set
from figure 5.2. The true function is quadratic, but here we use only models with degree 9.
We vary the amount of weight decay to prevent these high-degree models from overfitting.
(Left)With very large �, we can force the model to learn a function with no slope at
all. This underfits because it can only represent a constant function. (Center)With a
medium value of �, the learning algorithm recovers a curve with the right general shape.
Even though the model is capable of representing functions with much more complicated
shape, weight decay has encouraged it to use a simpler function described by smaller
coefficients. (Right)With weight decay approaching zero (i.e., using the Moore-Penrose
pseudoinverse to solve the underdetermined problem with minimal regularization), the
degree-9 polynomial overfits significantly, as we saw in figure 5.2.
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But do we still have a 
probabilistic 

interpretation of this loss?



Bayesian statistics for model parameters
❖ The maximum likelihood objective picks out a single choice of parameters  

corresponding to the maximum of .

❖ We can also treat  in a Bayesian way:

• Specify a prior 

• Obtain the posterior using Bayes’ rule 

❖ This incorporates the uncertainty associated to the choice of  .

❖ The prior acts as a regularizer.

θML
p(X |θ)

θ

p(θ)

θ
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Example: Bayesian linear regression
❖ As before we take a Gaussian likelihood   

❖ Also take a Gaussian prior   

❖ Exercise: show that the posterior is also Gaussian, of the form

p(y |X, w) = ! (Xw, I)(y)

p(w) = !(μ0, Λ0)
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Maximum a posteriori estimation
❖ To obtain a point estimate that still takes into account prior, we can take the 

maximum of the posterior distribution over , 
 
 
 
 
 
 

❖ MAP Bayesian inference with a Gaussian weight prior corresponds to weight 
decay. More generally, MAP provides a way to interpret regularization terms.

θ
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Example: Logistic regression
❖ If instead of estimating real-valued quantity , we are interested in a 

binary classification problem with , we can use logistic 
regression.

❖ Use a logistic sigmoid function                                  to squeeze the result of  
 
linear regression to lie between 0 and 1. Interpret as a probability  
 

❖ Can use maximum likelihood estimation to determine parameters . But 
there is no analytic solution because of nonlinearity.

y
y ∈ {0,1}

w
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Stochastic gradient descent
❖ In the case where a closed-form minimum is not available, gradient 

descent can be used to optimize the loss function, i.e., to tune  to 
approach the minimum. 

❖ Starting from a point  we can move to a new point by following the 
gradient 
 
 
 

❖ Higher order algorithms can involve the second 
or higher derivatives (e.g., Hessian). 

θ

θ0
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Figure 4.6: Gradient descent fails to exploit the curvature information contained in the
Hessian matrix. Here we use gradient descent to minimize a quadratic function f(x) whose
Hessian matrix has condition number 5. This means that the direction of most curvature
has five times more curvature than the direction of least curvature. In this case, the most
curvature is in the direction [1, 1]> and the least curvature is in the direction [1, �1]>. The
red lines indicate the path followed by gradient descent. This very elongated quadratic
function resembles a long canyon. Gradient descent wastes time repeatedly descending
canyon walls, because they are the steepest feature. Because the step size is somewhat
too large, it has a tendency to overshoot the bottom of the function and thus needs to
descend the opposite canyon wall on the next iteration. The large positive eigenvalue
of the Hessian corresponding to the eigenvector pointed in this direction indicates that
this directional derivative is rapidly increasing, so an optimization algorithm based on
the Hessian could predict that the steepest direction is not actually a promising search
direction in this context.
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Stochastic gradient descent
❖ For the negative log likelihood loss, the gradient reduces to the sum of 

per-example gradients, 
 
 
 

❖ Can break this up into minibatches (subsets of the full training set). 
Typically this could be several hundred training elements.

❖ This has two main advantages: (1) it is faster to compute each update, 
and (2) it introduces stochasticity, which helps avoid local minima.
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Summary

❖ A machine learning algorithm requires the following:

1. dataset     —   (supervised) or  (unsupervised)

2. model    —  E.g., linear regression 

3. loss function   —  E.g.,  

4. optimization algorithm   —  E.g., stochastic gradient descent

{x(i), y(i)} {x(i)}

pmodel(y |x) = !(θ⊤x, 1)(y)

J(θ) = − $pdata(x) log pmodel(x)



Next lecture: deep learning

❖ Challenges:

• High dimensionality of data: 
 
The number of possible data configurations is exponential in the 
number of data dimensions. Hard to cover this with training data.

• Manifold learning: 
 
For many data sets, actual data realizations form a much lower 
dimensional subset of . E.g., random realizations of images will 
look like noise.

ℝn


