Lecture Recording

Note: These lectures will be recorded and posted onto the IMPRS website

Dear participants,

We will record all lectures on “Making sense of data: introduction to statistics for
gravitational wave astronomy”, including possible Q&A after the presentation,
and we will make the recordings publicly available on the IMPRS lecture
website at:

- https:/ /imprs-gw-lectures.aei.mpg.de /2023-making-sense-of-data /

By participating in this Zoom meeting, you are giving your explicit consent to
the recording of the lecture and the publication of the recording on the course
website.



Making sense of data: introduction to
statistics for gravitational wave astronomy

Part I11: Machine Learning
Lecture 1: Introduction
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Course outline

Lecture 1: introduction to machine learning
Lecture 2: neural networks and deep learning
Lecture 3: machine learning for gravitational wave astronomy

Practical: GW search and parameter estimation using machine learning



References

+ Textbook: “Deep Learning” by Goodfellow, Bengio, and Courville

e Free online at https:/ /www.deeplearningbook.org

Nothus Bangia,

e Course covers parts of Chapters 5, 6, 9, 20 ! . LRNING_ ‘

+ pyTorch

e machine learning framework for practical part

e many tutorials at https:/ / pytorch.org



https://www.deeplearningbook.org
https://pytorch.org

Introduction to machine learning

Computers are designed to complete repetitive tasks. A task typically involves
taking an input and mapping it to an output.

A computer programme is a set of instructions that teach the computer how to
perform a task.

Machine learning is the development of approaches that allow computers to learn
how to perform a task, typically by seeing a large set of examples.

Machine learning algorithms typically consist of function approximators that have a
large number of free parameters. These are designed in a way that allow the choice
of parameters to be automatically optimised to minimise a specified objective
function (the loss function).



Introduction to machine learning

Example

Classification: learn a function that maps input data into a category
f:R* = {1,...,k}

e.g., recognise handwriting digits
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Machine Learning Tasks

+ BExamples:

* Regression: Learn a function predicting real-valued quantities
e R
E.g., What are the physical parameters characterizing a binary merger?
* Sampling: Generate new samples similar to training examples.

+ Denoising: Given noisy data X € R”, predict clean datax € R": p(x|X)

 Density estimation: Given training examples x € R" learn a probability
density function p(x).

* Game playing: Given a game configuration, what is the best move to make?



Performance Measures

» For each task, it is necessary to specify some quantitative measure of
performance:

» for classification, the accuracy (the fraction of examples that produce the
correct output)

* for density estimation, the log probability assigned to examples

* for regression, the mean squared error

+ We are usually interested in how the machine learning algorithm performs on

data that have not been seen before: Evaluate performance on a test set that is
different from the training set.



T'ypes of Learning Algorithms

+ Typically we have a dataset {x®} consisting of many data points x') € R”".
The data points may or may not have associated labels y) € R™.

+ Unsupervised: learn p(x)

* Examples: density estimation, sampling t1 !

e.g., learning p(y, x) !

+ Supervised: learn p(y|x)
* Examples: regression, classification

* Reinforcement learning allows the algorithm to interact with the environment
and produce new samples (e.g., game playing).



Maximum likelihood estimation

» Consider a set of N independent examples x”) ~ p,...(x) drawn from the data-
generating distribution.

» Unsupervised learning: Let p_ ,.(x; @) be a parametric family of model probability
distributions. Choose @ such that this becomes a good approximation to p4,.,(x).

+ Maximum likelihood estimator is 0y, = argmax prodel(X;0)
0

N
— arg max H D] (CB(i) . 0)
e

N
= argmax Y 108 poac(@; 6
=1

— arg énax Epdata(ac) log pmodel(w; 0)

+ Equivalent to minimizing KL divergence or cross-entropy between p .., and p.4eI-



Condinonal Esttmation

« Supervised learning: Estimate a conditional probability p_, 4./() | X; @)

+ Generalize the maximum likelihood estimator:

N
HML — arg gnax Z 1Og pmodel(y(i) Im(z) : 6)
T—s

— arg ;IlaX Epdata(ac,y) log pmodel(yyw; 9)

+ This is one of the most common situations.



Example: Linear regression

= Suppose we have labelled data (x(i), y(i)).

» Letp(ylx)= (,u(x), 0'2)(y) where u(x) = 0 - x; o fixed.

e | 1 =
+ Using the PDF p(ylw, 9) — oo exp (— 52
we obtain the loss function
(2) | (7).
J z; logp |w 0) o mean squared error
= log 2T + ; 202

» Cansolveexactly Vg/ =0 = O\ = (X X )_1X Ty



More general regression

+ More generally y(x) does not have to be linear. We can increase the
representational capacity of the model by using more complicated functions.

; «— “hyperparameter”

. E.g., polynomial  u(x) =b+ Z wx'  (can still solve in closed form)
=1

* E.g. nonparametric regression

nearest neighbor: For any x, find the nearest x¥) in the training set and
return y\.

 E.g., neural network (next lecture)

# Not all models can be optimized in closed form. The optimization algorithm may
be imperfect, so the effective capacity is lower than the representational capacity.



Overfitting and underfitting

» Higher capacity models run the risk of overfitting. The algorithm must
perform well not just on data used for training, but also on new, previously
unseen inputs (test data). This is called generalization.

* Training and test examples should be independent and identically

distributed (i.i.d.), i.e., drawn from the same data-generating distribution p,,

Underfitting Appropriate capacity Overfitting
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Overfitting and underfitting

Underfitting Appropriate capacity Overfitting
o9
> /< > >
° ? + Capacity should be chosen
to minimize generalization

7o 7o 7o error.
| | — - Training error + Depends also on the size of

Underfitting zone| Overfitting zone

—— (Generalization error

the training set.
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Regularization

* One way to improve generalization is to build in preferences for certain values of the
parameters 0, without changing the representational capacity.

+ Add a regularizer to the loss function.

preference for small values of 6

Weight decay: J(H) = MSE + \0'6

Underfitting Appropriate weight decay Overfitting

(Excessive \) (Medium M) (A—0)
But do we still have a
probabilistic
°® S /"\\ interpretation of this loss?
l® ®

0 ” 0 Goodfellow et al (2016)



Bayesian statistics for model parameters

» The maximum likelihood objective picks out a single choice of parameters 6,
corresponding to the maximum of p(X | ).

= We can also treat @ in a Bayesian way:

 Specify a prior p(0)

* Obtain the posterior using Bayes’ rule p(0|X) =

« This incorporates the uncertainty associated to the choice of 6.

# The prior acts as a regularizer.



Example: Bayesian linear regression

» As before we take a Gaussian likelihood p(y|X,w) = A4 (Xw,I)(y)
= Also take a Gaussian prior p(w) = A (py, Ay)

+ Exercise: show that the posterior is also Gaussian, of the form

p(w|X, y)<><exp ——w D) e (= um

it

A XA m =AM Xy + A po)



Maximum a posteriori estimation

+ To obtain a point estimate that still takes into account prior, we can take the

maximum of the posterior distribution over @,

Onap = argmaxp(6|x)
0
= arg max (log p(z[6) + log p(6))
0 /

For p(w) = A4 (0,1/1) thisterm — Aw'w

+ MAP Bayesian inference with a Gaussian weight prior corresponds to weight

decay. More generally, MAP provides a way to interpret regularization terms.



Example: Logistic regression

+ If instead of estimating real-valued quantity y, we are interested in a
binary classification problem with y € {0,1}, we can use logistic
regression.

1

= 1l +e ¢

« Use a logistic sigmoid function o(u) to squeeze the result of
linear regression to lie between 0 and 1. Interpret as a probability

T

ply =1z, w) =0o(w =)

» Can use maximum likelihood estimation to determine parameters w. But
there is no analytic solution because of nonlinearity.



Stochastic gradient descent

* In the case where a closed-form minimum is not available, gradient
descent can be used to optimize the loss function, i.e., to tune @ to
approach the minimum.

« Starting from a point @, we can move to a new point by following the

gradient

20

91 — 90 = EV@J‘QO o
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“Learning rate”
—20
+ Higher order algorithms can involve the second -
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or higher derivatives (e.g., Hessian). 71

Goodfellow et al (2016)



Stochastic gradient descent

* For the negative log likelihood loss, the gradient reduces to the sum of
per-example gradients,

N
1 : ;
=i () [ 5 (%)
Ng.l = N ;_1 log p(y‘"|x'", 0)

N

Cost «x N

+ Can break this up into minibatches (subsets of the full training set).
Typically this could be several hundred training elements.

# This has two main advantages: (1) it is faster to compute each update,
and (2) it introduces stochasticity, which helps avoid local minima.



Summary

* A machine learning algorithm requires the following;:

I

2

dataset — {x© y®) (supervised) or {x} (unsupervised)
model — E.g., linear regression p_ 4.V |X) = A @ 'x, 1))
loss function — E.g, J(0) = — [, ()108Ppoqel(X)

optimization algorithm — E.g., stochastic gradient descent



Next lecture: deep learning

+ Challenges:

» High dimensionality of data:

The number of possible data configurations is exponential in the
number of data dimensions. Hard to cover this with training data.

* Manifold learning:

For many data sets, actual data realizations form a much lower
dimensional subset of R". E.g., random realizations of images will
look like noise.



