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 ON THE LENGTHS OF THE PIECES

 OF A STICK BROKEN AT RANDOM

 LARS HOLST,* Uppsala University

 Abstract

 Consider the pieces of a randomly broken stick. How long is the jth longest
 piece? How many breaks are necessary for getting all pieces less than a given
 length? These and related questions are studied in particular when the number
 of pieces is large. Using simple properties of the exponential distribution new
 proofs are given of old results and new results are obtained.

 SPACINGS: UNIFORM DISTRIBUTION; EXPONENTIAL DISTRIBUTION; COVERING A

 CIRCLE; ORDER STATISTICS; LIMIT THEOREMS

 1. Introduction

 A stick of length I is broken at random into n pieces. To be more specific, let
 the stick- be the unit interval and the breaking points be given by a random
 sample of size n - 1 from the uniform distribution on this interval. These points
 divide the stick into n random intervals whose lengths we denote in order of

 magnitude by S(1 < S(2) < - -< S(n).
 In Section 2 the exact distribution of S(,j is derived. Also moments of S(,) are

 obtained and some useful representations using independent exponential ran-
 dom variables are given.

 For j fixed convergence of the distribution and the moments of the upper

 extreme value S(,-),, suitably normalized, is proved in Section 3. The same
 questions are studied in Section 4 for the lower extreme value S(>).

 In Section 5 a necessary and sufficient condition for asymptotic normality is
 given, and convergence of moments is obtained for linear combinations of

 S(,,, " " ". S(n,.
 In the last section the number of points N. in order to get length less than a

 for each interval is studied. A limit distribution for N,, is derived and con-

 vergence of moments is proved when a -).0. The random variable N, can also
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 624 LARS HOLST

 be interpreted as the minimum number of arcs of length a placed at random on a

 circle of length I in order to get complete coverage.
 Some words about notation. The interval lengths ordered along the line will be
 denoted by S,, - - -, S,. Independent exponential random variables with mean I

 will always be denoted by X,,X2, , X, and then order statistics by
 X(),-..', X(n) .
 The random variables S,, - , S, are usually called spacings on which a huge
 literature exists, see Pyke (1965), (1972), and Rao (1976) and the references
 therein. But the author has not found any systematic study of the order statistics.

 Further references will be given in connection with the different questions
 considered below.

 2. Exact results

 The following theorem and variants of it has been proved in different ways and
 contexts, see e.g. Whitworth (1897), Problem 667, Fisher (1929), (1940), Stevens
 (1939), Darling (1953), Flatto and Konheim (1962), Kendall and Moran (1963), p.
 31, and Feller (1966), p. 28.

 Theorem 2.1.

 P(S_ ( x)= n ( 1) n- (I-(L + v)x)n-'
 where a+ = max(a, 0).

 Proof. Using indicator functions set Ik = I(Sk > x). Evidently we have

 P(S(, ;= x) = PE j) .
 By symmetry the random vector (I, ..., I.) is exchangeable. Therefore

 ( n (n

 From this the assertion follows if we can show that

 E(f Ik)=P(S,>xn---nS,>x)=(1-rx)+'
 This can be seen in the following way. Let r = 2, the general case is proved
 analogously. Consider

 P(S, >x S 82>x)= P(S,>x)P(S2 >x S,>x).
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 On the lengths of the pieces of a stick broken at random 625

 The event {S, > x } means that all n - 1 breaking points are randomly distributed
 in the interval (x, 1). Given that event the probability that the distance between
 the first and the second point exceeds x is by symmetry the same as the
 probability that the distance from the point x to the first point exceeds x. Thus

 P(S2 > x I S, > x)= P(all points in (2x, 1)1 all points in (x, 1))
 and therefore

 P(S, > x n S2 > x) = P(all points in (2x, 1)) = P(S, > 2x) = (1 - 2x)-

 which completes the proof.

 Using simple properties of the Poisson process the following well-known
 results for the exponential distribution are easily proved, see e.g. Feller (1966),
 Sections 1.6, 111.3 and Pyke (1965), Sections 4.2-4.4.

 For independent exponential random variables X,, - , X, with mean I and
 with

 Tn=E Xk
 k=

 we have

 (s,, - - , S,)--(X,/T , , X,/ T,)
 where - means 'have the same distribution as'. Furthermore
 (XI,/T,, , X,/Tn) and T, are independent and T, is gamma (n, l)-distributed.
 Hence

 (S,,'' *, S.,)~' (XI)I/T., - , Xn,,/ T.).
 It is also well known that order statistics from the exponential distribution have
 the representation given by

 X,,, - X,,/n + X,,_/(n - 1)+ - + X,,_,,/(n - i + 1).
 Theorem 2.2.

 E(S.,) = E(X[,,)F(n)/F(n + r) and
 i--I

 E(nS,,,) = E(X(,,) = 1/(n - v).
 v=O

 Proof. As the random variables T. and X(/)I T are independent and T, is
 gamma (n, 1) we have

 E(X,) = E ((X(,,/ T,)'T) = E ((X,,,/ T,)')E(T.)
 = E(S(;,)F(n + r)/F(n)

 proving the first assertion.
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 626 LARS HOLST

 Taking r = I and using the representation for X(i) given above the second
 assertion follows.

 We may remark that the method used above is very convenient for calculating
 arbitrary mixed moments of spacings, cf. Pyke (1965), Section 2.1, 4.4.

 3. Asymptotic results for upper extreme values

 The exact distribution for S(,,_) given by Theorem 2.1 is unsuitable for
 numerical calculations if n is large and x small. Therefore approximations are of
 interest. The asymptotic distribution of S(,, has been obtained by e.g. Levy
 (1939), Darling (1953), and LeCam (1958). In LeCam (1958), p. 14 the asymptotic
 distribution for S(,_), is implicitly given. We will give a simple derivation using a
 method based on the representation S(,_~- -X(,_)/ T,, (cf. HoIst (1980),

 Theorem 1) where a more complicated situation is considered. The notation --4 is
 used for convergence in distribution.

 Theorem 3.1. For every fixed j = 0, 1, 2, .
 D

 nS(,-j) - In n Z, n--> o

 where

 P(Z, <x)= (e.-x)e e -x/V
 Proof. From the representation S(,,-j X(n,-j/ T, we have

 P(nS(n,, - In n x)= P(X(,,,, - In n x + (x + In n)(T, - 1)),

 where Tn = T/n = C'X, /n. As E(TP)= 1 and Var(T, In n)= (In n)2/n -0 the
 random variable nS(.j), - In n has the same asymptotic distribution as X(n,,_j) -
 In n. Now

 P(X(,,n, x + In n)= P(Yn = j),
 where by the independence of the X's

 Y, = E I(Xk > x + In n)- binomial(n, P(X, > x + In n)).
 k=I

 As

 EYn = n - P(X, > x + Inn)= ex

 it follows that

 Y- Poisson(e-x ), n-

 Hence

 P(X(,,_n - In n < x) --+ (e x)"e -."/v! v=O
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 On the lengths of the pieces of a stick broken at random 627

 As nS(,,-)- In n has the same asymptotic distribution, the theorem is proved.

 Next convergence of moments is considered.

 Theorem 3.2. For fixed j, r = 0, 1,2, -- and Zj defined as in Theorem 3.1

 E(nS(,,j)- In n)--+ EZ, = Iy - i/i,
 i=l

 where y is Euler's constant, and

 E((nS(,_,)- E(nS(,,,)))') r E((Z - EZ,)'),
 when n -- 0.

 Proof. The first assertion follows from Theorem 2.2 and the well-known limit

 V/i - In n --+ y, n --+ ,

 cf. the discussion after Theorem 3.3 below.

 By the results of Section 2 we have

 E((nS(f_, )- E(nS(_,,)))r) = E((X(_,-)/ T, - E(X(_,fl)))
 vr

 = r)(- 1)"E(T-.:)_E(X,_;),)(E(X(,,_,))),_,v

 = ~ () 1)oE(Xt f,))(E(X(f_,)))r_ + O((ln n)'/n)

 = E((X(_,,);- EX(,r,)') + O((ln n)'/n)
 - E ((Z - EZ )), n - oo,

 because by Theorem 3.3 below E(T) = 1+ O(1/n), EX",,_)= O((ln n)") and
 the central moment converges.

 Theorem 3.3. For fixed j, r = 0, 1,2, ? ? ? and z with Re z > - 1, when n --+ oo,

 E(exp(- z (X(_,, - In n)))-- E(e-zz)= F(1 + z) H (1 + z/v), v=l

 where H ,(1 + z / v) 1, and

 E ((X(,, _, - In n)')*-- E(Z;), with

 E(Z;)= (- 1)' (1+ z) - (1+ z/\)
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 628 LARS HOLST

 Proof. Using the representation of X(,j we have

 E(e-zX,-,) = E(exp(- z(X,/n + + X,+,/(j + 1))))

 H= (1 + z v)-' v=j+1

 = E(e-zx'-) (1 + z / v).
 v=I

 By the distribution function transformation we have

 e --,,--- ST

 where S T is the minimum in a sample of size n from a uniform distribution on
 (0, 1). Hence

 E(e-zx,-) = E(STz)= E(Xf)/E(T=,,)
 and therefore when n -- xo

 E(e-Z'(Xn,-nn= E(X) E(X lE((>E Xk/n)) -- EX,= [(1 + z).
 Thus the first assertion is proved. The second follows from the first, because
 convergence of the Laplace transform in an open interval surrounding the origin

 implies convergence of the moments. The third assertion follows trivially.
 From the proof follows in Re z > - 1 the existence of the following limit

 lim n n! (v + z) = tze-'dt.

 Hence we have given a probabilistic proof of the fact that the two definitions of

 the gamma function by Euler and Gauss are equivalent.
 By Theorem 3.3 the cumulant generating function of X(,, - In n converges to

 In F(1 - t) for t < 1. Thus the following hold:

 E(X(,,,- Inn)= 1/i-lInn y = In F(1 - it)=,o= - (In u)e-du
 and

 d2
 Var(X(, - In n)= l/i2 r2/6 = t

 = (In u)2e udu - (In u)e udu)

 We also get for Re z > - 1 that

 e-Y (1+ zv )e-I) = F(1 + z).
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 On the lengths of the pieces of a stick broken at random 629

 Hence with probability one y + C =I(X, - 1)/v is a random variable with
 distribution function exp(- e-x) and Laplace transform F(1 + z).

 4. Asymptotic results for lower extreme values

 The asymptotics of the lower extreme values Su> for fixed j = 1,2, 3, - will be
 considered now. Levy (1939), Darling (1953), LeCam (1958), and Flatto and
 Konheim (1962) have studied convergence of the distributions.

 Theorem 4.1. When n --*o

 n 2Suj> D Y,

 and

 E ((n 2S,,)' )-- E (Yr)

 where Yj - gamma (j , 1).

 Proof. By the representation of S(,)

 P(n2Su> x)= P(nX(j< x + x(T, - 1)).

 As T, -+ 1 in probability it is sufficient to consider the convergence of nX>). But

 nX(j - n (X,/n+X2/(n - 1)+...+Xj/(n-j+ + 1)) >--- X + X2+ + Xj - Yj

 proving the first statement.

 By Theorem 2.2 we have

 E((n 2S(,))r) = E((nXu,)')/E(Xr) -E E(Y;)
 because

 E((nX(,)') = E((X, + X2n/(n - 1) +.. + Xjn/(n - j + 1))')

 -, E(X, + + X,)' = EYJ.
 5. Asymptotics for linear combinations

 Linear combinations of order statistics of independent identically distributed
 random variables have been widely studied. In the special case of order statistics
 from the uniform distribution Hecker (1976) gave necessary and sufficient
 conditions for convergence to N(O, 1), the standard normal distribution. The
 corresponding results for linear combinations of ordered spacings will be
 obtained now.

 Theorem 5.1.

 i a, (nS,,- E(nS>)) o-D N(0, 1)
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 630 LARS HOLST

 if and only if

 max (bi - b )2 0

 and

 S(b - 6) 2
 where

 b, = aj/(n-i+ 1), i= 1,2,---,n, j=i

 and

 b = 6; /n.

 Proof. Using the representation S(,)- X(,)/ T" we find

 I aS)/ X)TX aX,,/ T X ,/(n - i + 1)~ b,S,. i=1 j=i 1

 Now E(nS;)= 1 and 1S, = 1 and therefore

 a (nS(,) - E(nS(,)))- bi,(nS, - 1)= (b, - 6b)nS, - (b - 6)X, / T.

 Because T, -- 1 in probability, we have

 S(b, - 6) X, /I T- N(0, 1)

 if and only if

 (b, -/)(X, - 1) D)N(0, 1).
 It is easily seen that the Lindeberg condition is equivalent to

 max (b, - 6) (b, -

 Therefore, by the Lindeberg-Feller theorem, see e.g. Feller (1966), Section
 XV.6,

 S(b,- 6)(X,- 1) D N(O, 1)

 if and only if

 max ib, 1 - -- 0, i (b,-6)2_1,
 proving the theorem.

This content downloaded from 79.236.209.247 on Wed, 27 Nov 2019 21:54:58 UTC
All use subject to https://about.jstor.org/terms



 On the lengths of the pieces of a stick broken at random 631

 Theorem 5.2. Let bi, b2," , b, be defined as in Theorem 5.1 and satisfy

 max Ibi- 6- 0, i (b-6)2_1.
 Then for r = 1,2, --

 E a, (nS(i,)- E(nS())))) -) E(Yr)

 where Y - N(O, l).

 Proof. We have as in Theorem 5.1 that

 E a, (nS() - E(nS=>))= E (b - 6)X /Tn

 = ((E b-) ) E(T )

 by the independence between (X,/T~, , ,X,/Tn) and T,. As E(T)- 1 it is
 sufficient to show that

 E (b- 6)XI - E(Y')

 By the conditions on the b's it follows that for z in an open interval surrounding

 the origin

 E exp-zE (b -6)X, (I (+z(b-6))i

 = exp( In(1 + z(b, - 6)))

 = exp(z 2/2 + o(1)).

 Hence the Laplace transform converges for small I zI to that of the N(O, 1),
 implying the convergence of the moments given above. Thus the theorem is
 proved.

 Note that asymptotic normality and convergence of moments of central order

 statistics nSeo, ,, and n - jn - + co, are consequences of the above results.
 It is seen from the proofs that the random variable En a, (nS(,)- E(nSo()) has

 the same asymptotic behaviour as E' ;a(X(, - E(X,()). We can say that the
 dependence among the S's coming from Y2 Sk = 1 does not matter. In general,
 this dependence is important when considering asymptotic results for spacings.
 See e.g. LeCam (1958) where the asymptotic distributions are found for random
 variables of the type

This content downloaded from 79.236.209.247 on Wed, 27 Nov 2019 21:54:58 UTC
All use subject to https://about.jstor.org/terms



 632 LARS HOLST

 1 hn(nSk) = hn(nS(I)),

 where hn,() is a function depending on n.
 Darling (1953) has also considered such random variables. This is also
 illustrated by Rao and Sethuraman (1975), Theorem 3.1, showing that the
 empirical distribution function of the spacings suitably normalized converges
 weakly to a Gaussian process with covariance kernel e-1(1 - e - xye ),
 SO x < y. The covariance kernel for the corresponding process based on
 independent exponential random variables is e-Y(1- e-).

 6. The waiting time N,,

 Let N,, be the minimum number of pieces until they all have a length at most
 a. Evidently

 P(N. < n) = P(S, - a).
 By Theorem 3.1 it follows that

 P(N , n)= P(nS(,)- In n _ nc -In n)----exp(- e-),
 if n -+ ,c and a -+ 0 such that na - In n -+ x or equivalently if

 na - In (1/a)- In In (1/a) - x.

 Hence we have proved the following result.

 Theorem 6.1. When a --0,

 P(aN, - In (l/a)- In In(I/a)= x)-+ exp(- e-').
 The problem of finding the limit distribution of N, was posed by Shepp (1972)

 in a paper on covering a circumference with arcs placed at random. In that
 context N, can be interpreted as the minimum number of arcs, each of length a,
 for complete coverage of a circumference of length 1. In Flatto (1973), Edens
 (1975), Kaplan (1977), and Hoist (1980) the limit distribution of the number of
 arcs to cover m times is obtained by different methods. The method used above

 follows Hoist (1980).
 Flatto and Konheim (1962) showed that EN, - (1/a)In (1/a), the leading term

 of the asymptotic distribution. This was improved by Steutel (1967) proving

 EN, = (l/a)(In (l/a)+ In In (1/a) + fy + o(1))

 and by Edens (1975) showing that all the normalized moments of N, converge to
 the corresponding of the limiting distribution exp(- e x). Using Theorem 3.2 we
 will prove this in another way.

 Theorem 6.2. Let Z have the distribution function exp(- e X). Then
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 On the lengths of the pieces of a stick broken at random 633

 E((aN, -(In=(1/a)(-(In In (1/a))')-- EZr = (- l1)((1).
 Proof. Let A >0 be fixed and x > A.

 P(aN, - In 1/a - In In 1/a > x)

 = P(S([(In./a+inn va+x)/a+ij)> a)

 = P([ ... ]So...1)- In[ -.- > a[ --- -In[ ---)

 SP([..---]S(... - In[---] > x - In A (a,x)),

 where for 0 < a < ao

 A (a, x)= In(1 +(a + In In l/a)/ln 1/a + x/In l/a)<x/2.

 Thus, by Theorem 3.2 we have for every r = 1,2, -- that

 P(aN, - In 1/a - In In 1/a > x)

 -P(['.]S( ...I-ln[I l] >x/2)

 - E(J[ - - - ]S,.,- In[ - - ]')/)2 x' <- -K,r/x'.
 Therefore we have uniformly for a < ao the bound on the right tail

 P(aN, - In 1/a - In In 1/a > x) < K, /x'.

 In an analogous way one gets a bound on the left tail. Then for every r = 1,2, -

 P(OaN, - In 1/a - In In i/a > x):5 K, Ix'

 uniformly in 0 < a < ao. This implies the uniform integrability of (aNa - In 1/a -
 In In l/a)'. Hence the assertion follows from Theorem 6.1.
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