Lecture Recording

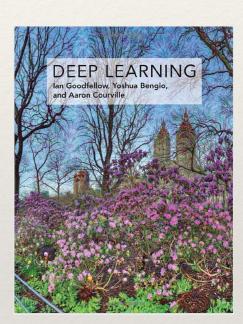
- * Note: These lectures will be recorded and posted onto the IMPRS website
- Dear participants,
- * We will record all lectures on "Making sense of data: introduction to statistics for gravitational wave astronomy", including possible Q&A after the presentation, and we will make the recordings publicly available on the IMPRS lecture website at:
 - https://imprs-gw-lectures.aei.mpg.de/2021-making-sense-of-data/
- * By participating in this Zoom meeting, you are giving your explicit consent to the recording of the lecture and the publication of the recording on the course website.

Outline of course

- Part 4 (week 4): Introduction to machine learning
 - Lecture 10: Machine learning
 - Lecture 11: Neural networks and deep learning
 - Lecture 12: Machine learning for GW astronomy
 - Practical: GW search and parameter estimation using machine learning

References

- * Textbook: "Deep Learning" by Goodfellow, Bengio, and Courville
 - Free online at https://www.deeplearningbook.org
 - Course covers parts of Chapters 5, 6, 9, 20



* PyTorch

- machine learning framework for practical part
- many tutorials at https://pytorch.org

Making sense of data: introduction to statistics for gravitational-wave astronomy

Lecture 10: Machine Learning

AEI IMPRS Lecture Course Stephen Green stephen.green@aei.mpg.de

Introduction to Machine Learning

- Machine learning uses computers to learn patterns from data.
 - Typically used to solve problems that are hard to program in conventional ways. Instead, train by example.
- * Examples:
 - Classification: Learn a function mapping data into a particular category

$$f: \mathbb{R}^n \to \{1, ..., k\}$$

E.g., recognize handwritten digits

Machine Learning Tasks

* Examples:

• Regression: Learn a function predicting real-valued quantities

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

E.g., What are the physical parameters characterizing a binary merger?

- · Sampling: Generate new samples similar to training examples.
- **Denoising:** Given noisy data $\tilde{x} \in \mathbb{R}^n$, predict clean data $x \in \mathbb{R}^n$: $p(x | \tilde{x})$
- **Density estimation:** Given training examples $x \in \mathbb{R}^n$ learn a probability density function p(x).
- Game playing: Given a game configuration, what is the best move to make?

Performance Measures

- * For each task, it is necessary to specify some quantitative measure of performance:
 - for classification, the accuracy (the fraction of examples that produce the correct output)
 - for density estimation, the log probability assigned to examples
 - for **regression**, the mean squared error
- * We are usually interested in how the machine learning algorithm performs on data that have not been seen before: Evaluate performance on a **test set** that is different from the **training set**.

Types of Learning Algorithms

- * Typically we have a dataset $\{x^{(i)}\}$ consisting of many data points $x^{(i)} \in \mathbb{R}^n$. The data points may or may not have associated labels $y^{(i)} \in \mathbb{R}^m$.
 - * Unsupervised: learn p(x)
 - Examples: density estimation, sampling
 - * Supervised: learn p(y|x)
 - Examples: regression, classification
- * **Reinforcement** learning allows the algorithm to interact with the environment and produce new samples (e.g., game playing).

somewhat hazy distinction, e.g., learning p(y, x)

Maximum likelihood estimation

- * Consider a set of N independent examples $\mathbf{x}^{(i)} \sim p_{\text{data}}(\mathbf{x})$ drawn from the data-generating distribution.
- * **Unsupervised learning:** Let $p_{\text{model}}(x; \theta)$ be a parametric family of model probability distributions. Choose θ such that this becomes a good approximation to $p_{\text{data}}(x)$.
- * Maximum likelihood estimator is $m{ heta}_{ ext{ML}} = rg \max_{m{ heta}} p_{ ext{model}}(m{x}; m{ heta})$ $= rg \max_{m{ heta}} \prod_{i=1}^N p_{ ext{model}}(m{x}^{(i)}; m{ heta})$ $= rg \max_{m{ heta}} \sum_{i=1}^N \log p_{ ext{model}}(m{x}^{(i)}; m{ heta})$
 - $= \arg\max_{\theta} \mathbb{E}_{p_{\text{data}}(\boldsymbol{x})} \log p_{\text{model}}(\boldsymbol{x}; \boldsymbol{\theta})$ Equivalent to minimizing **KL divergence** or **cross-entropy** between p_{data} and p_{model} .

Conditional Estimation

- * Supervised learning: Estimate a conditional probability $p_{\text{model}}(y | x; \theta)$
- * Generalize the maximum likelihood estimator:

$$egin{aligned} oldsymbol{ heta}_{ ext{ML}} &= rg \max_{ heta} \sum_{i=1}^{N} \log p_{ ext{model}}(oldsymbol{y}^{(i)} | oldsymbol{x}^{(i)}; oldsymbol{ heta}) \ &= rg \max_{ heta} \, \mathbb{E}_{p_{ ext{data}}(oldsymbol{x}, oldsymbol{y})} \log p_{ ext{model}}(oldsymbol{y} | oldsymbol{x}; oldsymbol{ heta}) \end{aligned}$$

* This is one of the most common situations.

Example: Linear regression

- * Suppose we have labelled data $(x^{(i)}, y^{(i)})$.
- * Let $p(y|\mathbf{x}) = \mathcal{N}(\mu(\mathbf{x}), \sigma^2)(y)$ where $\mu(\mathbf{x}) = \boldsymbol{\theta} \cdot \mathbf{x}$; σ fixed.

* Using the PDF
$$p(y|\boldsymbol{x};\boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu(\boldsymbol{x}))^2}{2\sigma^2}\right)$$

we obtain the loss function

$$J(\theta) = -\sum_{i=1}^{N} \log p(y^{(i)}|\boldsymbol{x}^{(i)};\boldsymbol{\theta})$$

∝ mean squared error

$$= \frac{N}{2} \log 2\pi \sigma^2 + \sum_{i=1}^{N} \frac{(y^{(i)} - \mu(x^{(i)}))^2}{2\sigma^2}$$

* Can solve exactly
$$\nabla_{\theta} J = 0 \implies \theta_{\mathrm{ML}} = (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} y$$

More general regression

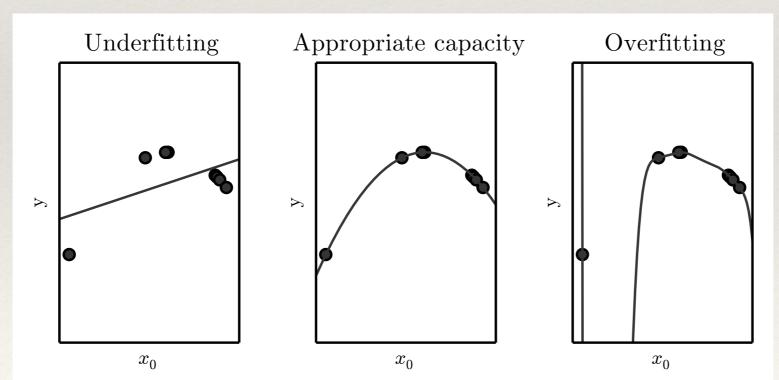
* More generally $\mu(x)$ does not have to be linear. We can increase the **representational capacity** of the model by using more complicated functions.

E.g., polynomial
$$\mu(x) = b + \sum_{i=1}^{k} w_i x^i$$
 (can still solve in closed form)

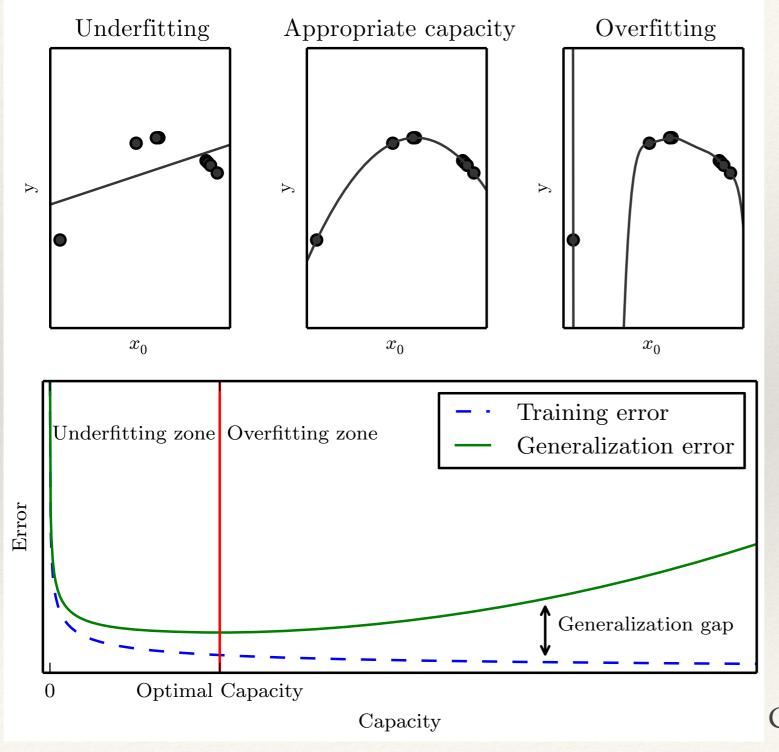
- E.g. nonparametric regression
 - nearest neighbor: For any x, find the nearest $x^{(i)}$ in the training set and return $y^{(i)}$.
- E.g., neural network (next lecture)
- * Not all models can be optimized in closed form. The optimization algorithm may be imperfect, so the **effective capacity** is lower than the representational capacity.

Overfitting and underfitting

- * Higher capacity models run the risk of **overfitting.** The algorithm must perform well not just on data used for training, but also on new, previously unseen inputs (test data). This is called **generalization.**
- * Training and test examples should be **independent and identically distributed (i.i.d.)**, i.e., drawn from the same data-generating distribution $p_{\rm data}$



Overfitting and underfitting



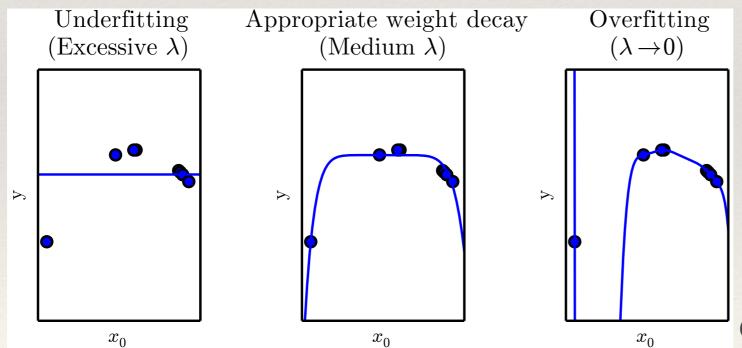
- Capacity should be chosen to minimize generalization error.
- * Depends also on the size of the training set.

Regularization

- * One way to improve generalization is to build in preferences for certain values of the parameters θ , without changing the representational capacity.
- Add a regularizer to the loss function.

Weight decay:
$$J(oldsymbol{ heta}) = \mathrm{MSE} + \lambda oldsymbol{ heta}^ op oldsymbol{ heta}$$

preference for small values of $oldsymbol{ heta}$



But do we still have a probabilistic interpretation of this loss?

Bayesian statistics for model parameters

- * The maximum likelihood objective picks out a single choice of parameters θ_{ML} corresponding to the maximum of $p(X | \theta)$.
- * We can also treat θ in a Bayesian way:
 - Specify a prior $p(\theta)$
 - Obtain the posterior using Bayes' rule $p(\boldsymbol{\theta}|\boldsymbol{X}) = \frac{p(\boldsymbol{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\boldsymbol{X})}$
- * This incorporates the **uncertainty** associated to the choice of θ .
- * The **prior** acts as a regularizer.

Example: Bayesian linear regression

- * As before we take a Gaussian likelihood $p(y|X, w) = \mathcal{N}(Xw, I)(y)$
- * Also take a Gaussian prior $p(w) = \mathcal{N}(\mu_0, \Lambda_0)$
- * Exercise: show that the posterior is also Gaussian, of the form

$$p(\boldsymbol{w}|\boldsymbol{X},\boldsymbol{y}) \propto \exp\left(-\frac{1}{2}(\boldsymbol{w}-\boldsymbol{\mu}_m)^{\top}\boldsymbol{\Lambda}_m^{-1}(\boldsymbol{w}-\boldsymbol{\mu}_m)\right)$$

$$\boldsymbol{\Lambda}_m = (\boldsymbol{X}^{\top}\boldsymbol{X} + \boldsymbol{\Lambda}_0^{-1})^{-1} \qquad \boldsymbol{\mu}_m = \boldsymbol{\Lambda}_m(\boldsymbol{X}^{\top}\boldsymbol{y} + \boldsymbol{\Lambda}_0^{-1}\boldsymbol{\mu}_0)$$

Maximum a posteriori estimation

* To obtain a point estimate that still takes into account prior, we can take the maximum of the posterior distribution over θ ,

$$\begin{aligned} \boldsymbol{\theta}_{\mathrm{MAP}} &= \arg\max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\boldsymbol{x}) \\ &= \arg\max_{\boldsymbol{\theta}} \left(\log p(\boldsymbol{x}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\right) \\ & \boldsymbol{\theta} \end{aligned}$$
 For $p(\boldsymbol{w}) = \mathcal{N}\left(0, \boldsymbol{I}/\lambda\right)$ this term $\longrightarrow \lambda \boldsymbol{w}^{\mathsf{T}} \boldsymbol{w}$

* MAP Bayesian inference with a Gaussian weight prior corresponds to weight decay. More generally, MAP provides a way to interpret regularization terms.

Example: Logistic regression

- * If instead of estimating real-valued quantity y, we are interested in a binary classification problem with $y \in \{0,1\}$, we can use **logistic** regression.
- * Use a logistic sigmoid function $\sigma(u) = \frac{1}{1 + e^{-u}}$ to squeeze the result of

linear regression to lie between 0 and 1. Interpret as a probability

$$p(y = 1 | \boldsymbol{x}, \boldsymbol{w}) = \sigma(\boldsymbol{w}^{\top} \boldsymbol{x})$$

* Can use maximum likelihood estimation to determine parameters w. But there is no analytic solution because of nonlinearity.

Stochastic gradient descent

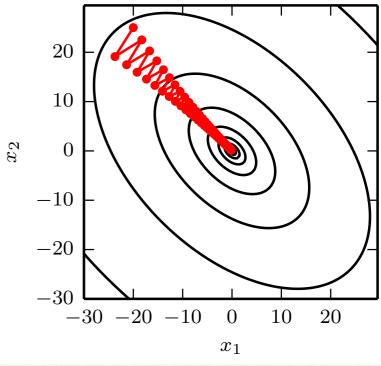
- * In the case where a closed-form minimum is not available, **gradient descent** can be used to **optimize** the loss function, i.e., to tune θ to approach the minimum.
- * Starting from a point $heta_0$ we can move to a new point by following the

gradient

$$\boldsymbol{\theta}_1 = \boldsymbol{\theta}_0 - \epsilon \nabla_{\boldsymbol{\theta}} J|_{\boldsymbol{\theta}_0}$$

"Learning rate"

* Higher order algorithms can involve the second or higher derivatives (e.g., Hessian).



Stochastic gradient descent

* For the negative log likelihood loss, the gradient reduces to the sum of per-example gradients,

$$\nabla_{\boldsymbol{\theta}} J = -\frac{1}{N} \sum_{i=1}^{N} \log p(y^{(i)} | \boldsymbol{x}^{(i)}, \boldsymbol{\theta})$$

$$\subset \operatorname{Cost} \propto N$$

- * Can break this up into **minibatches** (subsets of the full training set). Typically this could be several hundred training elements.
- * This has two main advantages: (1) it is faster to compute each update, and (2) it introduces stochasticity, which helps avoid local minima.

Summary

- * A machine learning algorithm requires the following:
 - 1. dataset $-\{x^{(i)}, y^{(i)}\}$ (supervised) or $\{x^{(i)}\}$ (unsupervised)
 - 2. model E.g., linear regression $p_{\text{model}}(y | \mathbf{x}) = \mathcal{N}(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}, 1)(y)$
 - 3. loss function E.g., $J(\theta) = -\mathbb{E}_{p_{\text{data}}(x)} \log p_{\text{model}}(x)$
 - 4. **optimization algorithm** E.g., stochastic gradient descent

Next lecture: deep learning

Challenges:

High dimensionality of data:

The number of possible data configurations is exponential in the number of data dimensions. Hard to cover this with training data.

Manifold learning:

For many data sets, actual data realizations form a much lower dimensional subset of \mathbb{R}^n . E.g., random realizations of images will look like noise.