
Max Planck Institute for Gravitational Physics
IMPRS Lecture Series

Making sense of data: introduction to statistics for gravitational
wave astronomy

Problem Sheet 4: Advanced topics in statistics

1. (a) The mean is

x̄ =
1

n

n∑
i=1

xi = 50.2.

The autocovariance coefficient at lag k is

ck =
1

n− k − 1

n−k∑
t=1

(xt − x̄)(xt+k − x̄).

We obtain

c0 = 1.803, c1 = −0.431, c2 = 0.133, c3 = 0.056.

The autocorrelation function at lag k is rk = ck/c0, which gives

r̂1 = −0.239, r̂2 = 0.0739, r̂3 = 0.0308.

Note that in the literature you might see the correlation coefficients defined
instead as

ck =
1

n

n−k∑
t=1

(xt − x̄)(xt+k − x̄).

This is a biased estimator of the covariance coefficients, but it has certain nice
properties. Using this definition we obtain

c0 = 1.623, c1 = −0.345, c2 = 0.093, c3 = 0.033.

Conclusions below are not altered by using the alternative definition.

(b) The correlogram for these coefficients is shown in Figure 1.

(c) i. Under the white noise hypothesis, the individual coefficients are approx-
imately Normal with variance 1/n = 0.1. We set a threshold of |rk| >
1.96/

√
n = 0.620 for a 95% significance test of a single coefficient. The

number of coefficients, out of the 3 we have calculated, that exceed the
threshold under the null hypothesis, follows a Bin(3, 0.05) distribution.
The probability that the number of coefficients exceeding the threshold is
k ≥ 1 is 0.086, and for k ≥ 2 it is 0.012. The threshold is therefore 2.
In this case 0 coefficients exceed the threshold so we have no evidence to
reject the white noise hypothesis.
The largest magnitude coefficient is |r1| = 0.239. This corresponds to a p-
value of 0.450 in the N(0, 0.1) distribution. The probability of one or more
successes in a Bin(3, 0.450) distribution is 0.976, so this is the p-value of
the test on this data, i.e., it is highly insignificant.



0.0 0.5 1.0 1.5 2.0 2.5 3.0
lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

rk

Figure 1: Correlogram for temperature data.

ii. The Ljung-Box test statistic is

Q = n(n+ 2)
m∑
h=1

r̂2h/(n− h).

For this data set we compute Q = 0.859. This should be compared to a χ2
3

distribution, for which the upper 95% point is Q = 7.815. Again there is
no evidence to reject the white noise hypothesis. The p-value in this case
is 0.835.

(d) In this case the estimated autocorrelation coefficients are

r̂1 = 0.315, r̂2 = 0.375, r̂3 = 0.264.

The new value of the Ljung-Box test statistic is Q = 19.8, which is above the
threshold and so we now reject the white noise hypothesis for the full series.
In this case the p-value is 0.0002, so there is strong evidence that the series is
not white noise.

2. (a) The least squares estimator is given by

α̂1 = argmin

(
n∑
i=2

(xi − α1xi−1)
2

)
.

Differentiating with respect to α1 and setting the derivative to zero we obtain
the equation

n∑
i=2

xi−1(xi − α̂1xi−1) = 0 ⇒ α̂1 =

∑n−1
i=1 xixi+1∑n−1
i=1 x

2
i

.

(b) The autocorrelation coefficient estimator, r̂1, assuming the mean is zero, is
given by

r̂1 =
n

n− 1

∑n−1
i=1 xixi+1∑n
i=1 x

2
i

.



There is a difference in the prefactor, but this is close to 1 and it is exactly
1 when using the alternative version of the autocorrelation function estimator
mentioned in the previous question (using 1/n instead of 1/(n− k − 1) as the
prefactor, or 1/n instead of 1/(n − k) in the case that the mean is known).
There is also a difference in that the sum in the denominator includes x2n, while
it does not for α̂1. This correction will be small for large numbers of samples
n. In practice, r̂1 is often used as the estimator of α1.

(c) Using the above estimator, α̂1, we obtain for this data

α̂1 = 0.624.

The best-fit AR(1) model is thus

Xt = 0.624Xt−1 + wt.

3. (a) Using the usual backshift operator B this model can be written as

φ(B)Xt = θ(B)wt, where φ(B) = 1+0.3B−0.1B2, θ(B) = 1+0.1B−0.2B2.

The two polynomials can be factorized

φ(B) = 0.1(5−B)(2 +B), θ(B) = 0.1(5− 2B)(2 +B).

The roots of φ(B) are at B = 5 and B = −1, while those of θ(B) are at B = 5/2
and B = −2. All of these roots lie outside the unit circle, so the process is
both invertible and causal. However, the polynomials share a common root at
B = −2 and so the process is not regular.

(b) Cancelling the common root we see that the process is equivalent to

Xt − 0.2Xt−1 = wt − 0.4wt−1, φ̃(B)Xt = θ̃(B),

where φ̃(B) = 1 − 0.2B and θ̃(B) = 1 − 0.4B, The only root of φ̃(B) is at
B = 5 and the only root of θ̃(B) is at B = 5/2. These are both outside the
unit circle so the process is regular as required.

(c) Formally we can write

Xt = (1− 0.2B)−1(1− 0.4B)wt = (1 + 0.2B + 0.04B2 + 0.008B3 + · · · )(1− 0.4B)wt

= (1− 0.2B − 0.04B2 − 0.008B3 + · · · )wt

= wt − 0.2wt−1 − 0.04wt−2 − 0.008wt−3 + · · · =
∞∑
i=0

πiwt−i,

with π0 = 1, π1 = −0.2, π2 = −0.04 and π3 = −0.008. Similarly

wt = (1− 0.4B)−1(1− 0.2B)Xt = (1 + 0.4B + 0.16B2 + 0.064B3 + · · · )(1− 0.2B)Xt

= (1 + 0.2B + 0.08B2 + 0.032B3 + · · · )Xt

= Xt + 0.2Xt−1 + 0.08Xt−2 + 0.032Xt−3 + · · · =
∞∑
i=0

ψiXt−i,

where ψ0 = 1, ψ1 = 0.2, ψ2 = 0.08 and ψ3 = 0.032.



4. (a) The model can be written as

(1−B)3Yt = Zt − θZt−1 = (1− θB)Zt (1)

where B is the usual backshift operator defined such that BYt = Yt−1. We
recognise this as an ARIMA(0,3,1) model. ARIMA processes with d 6= 0 are
never stationary and so this is not a stationary time series.

(b) We can write, formally,

Zt = (1− θB)−1(1−B)3Yt = Π(B)Yt.

If the process is invertible then we can find Π(B) via expanding the above
expression

Zt = (1−B)3(1 + θB + θ2B2 + θ3B3 + · · · )Yt
= (1− 3B + 3B2 −B3)(1 + θB + θ2B2 + θ3B3 + · · · )Yt
= [(1 + θB + θ2B2 + θ3B3 + · · · )− (3B + 3θB2 + 3θ2B3 + · · · )

+ (3B2 + 3θB3 + · · · )− (B3 + · · · )]Yt
= Yt + (θ − 3)Yt−1 + (θ2 − 3θ + 3)Yt−2 + (θ3 − 3θ2 + 3θ − 1)Yt−3 + · · ·

So we deduce π0 = 1, π1 = θ−3, π2 = (θ2−3θ+3) and π3 = (θ3−3θ2+3θ−1).

(c) The local trend model is defined by the equations

Yt = at + εt, at = at−1 + ηt.

Simple manipulations give us

Yt − Yt−1 = εt + ηt − εt−1

which looks quite similar to an ARIMA(0,1,1) model of the general form

Yt − Yt−1 = ζt − θζt−1.

We need to find a suitable specification of θ and σ2
ζ such that these two models

are equivalent. Both the models take the form

Yt − Yt−1 = ξt

where ξt is a sequence of zero mean Gaussian random variables. A set of
Gaussian random variables is completely and uniquely characterised by its
mean and two-point function (covariance). Therefore, all we need to do is find
θ and σ2

ζ such that the ARIMA model has the same covariance properties as
the original series.

For the original series we have variance

var(ξt) = var(εt + ηt − εt−1) = 2σ2 + σ2
η

and covariances

cov(ξt, ξt−k) = cov(εt + ηt − εt−1, εt−1 + ηt−1 − εt−2)I(k = 1) = −σ2I(k = 1).

For the ARIMA model we have

var(ξt) = (1 + θ2)σ2
ζ



and

cov(ξt, ξt−k) = var(ζt − θζt−1, ζt−1 − θζt−2)I(k = 1) = −θσ2
ζI(k = 1).

Hence we need to solve

2σ2 + σ2
η = (1 + θ2)σ2

ζ , σ2 = θσ2
ζ

which yield the equation

θ + 1/θ = 2 + σ2
η/σ

2.

Since σ2
η/σ

2 > 0 this has two solutions, one with θ < 1 and one with θ > 1. So,
we can take the solution with |θ| < 1 and obtain an invertible ARIMA process
that generates the local trend model.

(d) Subsitituting the definitions of an+1 and Bn+1 into

Y n
n+1 = an+1 + bn+1

we obtain

Y n
n+1 = αYn + (1− α)Y n−1

n + γ(an+1 − an) + (1− γ)bn

= αYn + (1− α)(an + bn) + γ[αYn + (1− α)(an + bn)]− γan + (1− γ)bn

= α(1 + γ)Yn + (1− α− αγ)an + (2− α− αγ)bn

= α(1 + γ)Yn + (2− ααγ)(an + bn)− an.
We now note that an + bn = Y n−1

n and an = αYn−1 + (1− α)Y n−2
n−1 . Hence

Y n
n+1 = α(1 + γ)Yn − αYn−1 + (2− α− αγ)Y n−1

n − (1− α)Y n−2
n−1

as required.

5. (a) NW estimator:

f̂h(x) =

∑
i YiKh(xi − x)∑
jKh(xj − x)

, Kh(x) =
1

h
K
(x
h

)
.

From the lecture notes, we have

b(x) = Ef̂(x)− f(x) =
n∑
i=1

wi(x)[f(xi)− f(x)] [Taylor Expansion ]

≈
n∑
i=1

wi(x)

[
f(x) + f ′(x)(xi − x) + f ′′(x)

(xi − x)2

2
− f(x)

]
=

n∑
i=1

Kh(xi − x)∑n
j=1Kh(xj − x)

[
f ′(x)(xi − x) + f ′′(x)

(xi − x)2

2

]

≈ 1

n

[
f ′(x)

n∑
i=1

(xi − x)Kh(xi − x) + f ′′(x)
n∑
i=1

Kh(xi − x)
(xi − x)2

2

]

≈ f ′(x)

∫ 1

0

(z − x)Kh(z − x)dz + f ′′(x)

∫ 1

0

Kh(z − x)
(z − x)2

2
dz

≈ f ′(x)h

∫ (1−x)/h

−x/h
K(v)vdv + f ′′(x)

h2

2

∫ (1−x)/h

−x/h
K(v)v2dv

≈ f ′(x)h

∫ ∞
−∞

K(v)vdv + f ′′(x)
h2

2

∫ ∞
−∞

K(v)v2dv

=
µ2(K)h2

2
f ′′(x)



using 1
n

∑n
i=1 g(xi) ≈

∫ 1

0
g(z)dz which implies 1

n

∑n
i=1Kh(xi − x) ≈ 1, x/h →

+∞ and (1− x)/h→ +∞ since x ∈ (0, 1).

Similarly:

v(x) = σ2

n∑
i=1

[wi(x)]2 = σ2

n∑
i=1

[Kh(xi − x)]2[∑n
j=1Kh(xj − x)

]2
≈{ 1

n

∑n
i=1Kh(xi−x)≈1}

σ2

n2

n∑
i=1

[Kh(xi − x)]2

{ 1
n

∑n
i=1→

∫ 1
0 } ≈

σ2

n

∫ 1

0

[Kh(z − x)]2dz =
σ2

nh

∫ 1

0

[
K

(
z − x
h

)]2
d

(
z − x
h

)
{v= z−x

h } =
σ2

nh

∫ (1−x)/h

−x/h
[K (v)]2 dv ≈ σ2

nh

∫ ∞
−∞

[K (v)]2 dv

=
σ2

nh
||K||22.

(b) The mean square error of an estimator f̂ is E((f̂ − E(f̂))2) = v(x) + b2(x).
From the previous results

AMSE ≈ σ2

nh
||K||22 +

µ2(K)2h4

4
(f ′′(x))2.

Differentiating with respect to h and setting to zero we find the optimal band-
width

hopt =

(
σ2||K||22

n(f ′′(x))2µ2(K)2

) 1
5

.

Substituting back into the AMSE we have

AMSEopt = C
(√

µ2(K)||K||22
) 4

5

where

C =
5σ

8
5 (f ′′(x))

2
5

4n
4
5

.

(c) i. We require
∫
K(x)dx = 1, hence

1 = 2A

∫ √5
0

(1−x2/5)dx = 2A[x−x3/15]
√
5

0 = 4A
√

5/3 ⇒ A = 3/(4
√

5).

We have
∫
xK(x)dx = 0 by inspection and∫
x2K(x)dx = 2A[x3/3− x5/25]

√
5

0 = 4A
√

5/3 = 5 6= 0

so the order is 2.

ii. The distribution is Normal, f̂h(x) ∼ N(f(x) + b(x), v(x)), with f(x) +
b(x) =

∑
wi(x)f(xi) and v(x) = σ2

∑
w2
i (x). For this kernel

||K||22 = 2A2

∫ √5
0

(1−x2/5)2dx = 2A2[x−2x3/15+x5/125]
√
5

0 = 16
√

5A2/15 =
3

5
√

5
= 0.268.



The variance is therefore approximately

v(x) ≈ 0.42

3
× 0.671 = 0.0143.

Assuming the bias is negligible, a confidence interval is therefore

|f(0.2)− 1.2| ≤ 1.96
√

0.036 = 0.234 ⇒ f(0.2) ∈ [0.965, 1.434].

As 1.5 does not lie in this confidence interval, so we reject the null hypoth-
esis at the 5% significance level.

(d) i. The Kernel is of order 2, therefore

0 =

∫ ∞
−∞

xK(x)dx = AbD2 ⇒ b = 0

since if A = 0 or D = 0, the kernel function is identically zero. We find A
from

1 =

∫ ∞
−∞

K(x)dx = 2A(D + cD3/3).

ii. Suppose µ2(K̃) =
∫∞
−∞ x

2K(x)dx, then∫ ∞
−∞

x2K̃h(x)dx = h2
∫ ∞
−∞

u2K̃(u)du = h2µ2(K̃)

where we have made the substitution u = x/h. Hence setting h =

1/
√
µ2(K̃) ensures µ2(K̃h) = 1. Imposing this constraint on K(x) gives

1 =

∫ ∞
−∞

x2K(x)dx = 2A(D3/3 + cD5/5).

iii. From the result in part (b), the AMSE is proportional to µ2(K)
2
5 ||K||

8
5
2 .

Since we can impose the constraint that µ2(K) = 1 from the previous

result, this reduces to ||K||
8
5
2 . Hence we want to choose the parameters to

minimize

||K||22 =

∫ ∞
−∞

K2(x)dx = 2A2(D + 2cD3/3 + c2D5/5).

From the previous constraints we have

1

2A
= D +

cD3

3
=
D3

3
+
cD5

5

⇒ c =
5(D2 − 3)

D2(5− 3D2)

A =
3(3D2 − 5)

8D3
.

Substituting into the expression above gives

||K||22 =
3

32D6

(
3D(3D2 − 5)2 + 10D(3−D2)(3D2 − 5) + 15D(D2 − 3)2

)
=

3

8

(
3

D
− 10

D3
+

15

D5

)
.



As required. Differentiating with respect to D and setting it to 0 gives

0 = − 9

8D6

(
D2 − 5

)2 ⇒ D2 = 5

so we recover the Epanechnikov kernel.

6. (a) Differentiation of the expression with respect to θ0 and θ1 gives

0 = −2
n∑
i=1

(
Yi − θ̂0 − θ̂1

(xi − x)

h

)
Kh(xi − x)

0 = −2
n∑
i=1

(
xi − x
h

)(
Yi − θ̂0 − θ̂1

(xi − x)

h

)
Kh(xi − x).

Using the definitions in the question we obtain the simultaneous equations

0 = Sy − θ̂0S − θ̂1Sx
0 = Sxy − θ̂0Sx − θ̂1Sxx.

Taking appropriate linear combinations gives the expressions in the question.

(b) For large n we can approximate 1
n

∑
i f(xi) =

∫ 1

0
f(x)dx. The various terms in

the expression for θ̂1 can therefore be approximated by

S ≈ n

∫ ∞
−∞

K(u)du = n

Sx ≈ n

∫ ∞
−∞

uK(u)du = 0

Sxx ≈ n

∫ ∞
−∞

u2K(u)du = µ2(K).

Putting this together we have

f̂ ′(x) =
θ̂1(x)

h
≈ nSxy
n2µ2(K)

=
1

nhµ2(K)

n∑
i=1

Yi

(
x1 − x
h

)
Kh(xi − x),

as required.

(c) The variance of ĝ(x) is

var(ĝ) =
∑

l2i (x)var(Yi) = σ2
∑

l2i (x) = σ2||l(x)||2.

(x) As required. For the LP(1) estimator of f ′ we have

li(x) =
1

nhµ2(K)

(
x1 − x
h

)
Kh(xi − x).

Hence

var(f̂ ′(x)) =
σ2

n2h2µ2
2(K)

n∑
i=1

(
x1 − x
h

)2

Kh(xi − x)2

=
σ2

nh3µ2
2(K)

[
1

nh

n∑
i=1

(
x1 − x
h

)2

K2

(
x1 − x
h

)]

≈ σ2ν2(K)

nh3µ2
2(K)

where ν2(K) =

∫ ∞
−∞

u2K2(u)du.



(d) i. Firstly we note

||l(x)||2 =

(
1

nhµ2(K)

)2 n∑
i=1

(
x1 − x
h

)2

K2
h(xi−x) ≈

(
1

nhµ2(K)

)2
n

h
ν2(K).

Hence

Ti(x) ≈

√
h

nν2(K)

(
x1 − x
h

)
Kh(xi − x) =

√
1

nhν2(K)
G

(
xi − x
h

)
,

where G(u) = uK(u). We then find

T ′i (x) ≈ −

√
1

nh3ν2(K)
G′
(
xi − x
h

)
and hence

||T′(x)||2 =
1

nh3ν2(K)

n∑
i=1

(G′
(
xi − x
h

)
)2 ≈ 1

h2ν2(K)
||G′||22 =

(
||G′||2
h||G||2

)2

.

This is independent of x and so we have

κ0 =

∫ b

a

||T′(x)||dx = (b−a)||T′(x)|| =
(
b− a
h

)
||G′||2
||G||2

=

(
b− a
h

)
||xK ′ +K||
||xK||

.

As required

ii. To construct the asymptotic confidence we need to compute the variance,
and κ0. For the former we need

ν2(K) = ||xK||22 = 2

∫ 1

0

x2(1− x)2dx = 2[1/3− 1/2 + 1/5] = 1/15

and

µ2(K) = 2

∫ 1

0

x2(1− x)dx = 2[1/3− 1/4] = 1/6.

Hence we compute

var(f̂ ′) =
0.01× 36

200× 0.13 × 15
= 0.12.

We then evaluate κ0, for which we need

||K ′ + xK||22 = 2

∫ 1

0

(1− 2x)2dx = 2[1− 2 + 4/3] = 2/3

hence we find

κ0 =
1

0.1

√
10 =, ⇒ cα = 3.257.

The asymptotic confidence band is

|g(x)− ĝLP (1)
h (x)| ≤ 1.128.

If the function is linear then its derivative must be constant. A constant
can only fit within the confidence band if there exists C such that

max
x∈[0,1]

ĝ
LP (1)
h − 1.128 ≤ C ≤ min

x∈[0,1]
ĝ
LP (1)
h + 1.128.

In this case we need
2.137 ≤ C ≤ 2.065

which is not possible so we reject the null hypothesis.



7. (a) i. Substituting

g(x) =
N∑
j=1

βjhj(x)

into the penalised least squares estimator we find that the smoothing spline
is solved by

β̂ = arg min
β∈RN


N∑
i=1

[
N∑
j=1

βjhj(xi)

]2
− 2

N∑
i=1

[
N∑
j=1

βjhj(xi)

]
Yi + λ

∫ [ N∑
j=1

βjh
′′
j (x)

]2
dx


= arg min

β∈RN

{
βTHTHβ − 2Y THTβ + λβTΩβ

}
,

whereN×N matrixH has entriesHij = hj(xi), i = 1, . . . , N , j = 1, . . . , N ,
and N ×N matrix Ω has elements Ωj` =

∫
h′′j (x)h′′` (x)dx, j, ` = 1, . . . , N .

Differentiation with respect to β gives

2
(
HTH + λΩ

)
β̂ − 2HTY = 0

which can be rearranged to give the quoted solution.

ii. The basis functions in this case are

h1(x) = 1, h2(x) = x, h3(x) = (x− 1/2)3+ − 2(x− 1)3+ + (x− 3/2)3+.

The corresponding matrices are

H =

 1 1/2 0
1 1 1/8
1 3/2 3/4

 , Ω =

 0 0 0
0 0 0
0 0 99


(b) Requiring the estimator to pass through all the knots is equivalent to∑

j

βjhj(xi) = Yi ∀ i.

This can be written as

Hβ = Y ⇒ β = H−1Y.

The λ = 0 limit of the smoothing spline has

β̂ = (HTH)−1HTY = H−1(HT )−1HTY = H−1Y

and so the solutions agree. Setting λ = 0 puts no weight on the smoothness
penalty and so forces the smoothing spline to go through all the points.

(c) i. Because h′′0(x) = h′′1(x) = 0, the first two columns and rows of Ω are all
zero. Writing

HTH + λΩ =

(
A11 A12

A21 A22

)
where A11 is a 2× 2 matrix, in the limit λ→∞ we have A22 →∞ while
all other matrices remain finite. Hence, using the formula in the hint(

HTH + λΩ
)−1 → (

(A11)
−1 0

0 0

)
.



We see that β̂j → 0 for j ≥ 3 as required. The matrix

A11 =

(
n

∑
xi∑

xj
∑
x2j

)
and the first two elements of HTY are

∑
yj and

∑
xjyj. Hence(

β̂1
β̂2

)
=

1

n
∑
x2j − (

∑
xj)2

( ∑
x2j −

∑
xj

−
∑
xj n

)( ∑
yj∑
xjyj

)
=

1

n
∑

(xj − x̄)2

(
nȲ
∑
x2j − nx̄

∑
xjyj

n
∑

(xj − x̄)yj

)
.

ii. We see immediately that β̂2 agrees with α̂2. For β̂1 we write

nȲ
∑

x2j − nx̄
∑

xjyj = nȲ
∑

(xj − x̄)2 + n2Ȳ x̄2 − nx̄
∑

xjyj

= nȲ
∑

(xj − x̄)2 − nx̄
∑

(xj − x̄)yj

and hence this agrees with α̂1. In the limit λ→∞ we are placing all the
weight on smoothness and not the data. The smoothest function (for a f ′′

penalty) is a linear function. Then we find the best fit linear function to
the data, which is this linear least squares estimator.

(d) On a regular grid, with N points in each dimension, the backfitting estimate
involves fitting splines to the average of the observations in each direction
separately, and using a smoothing parameter λ/N . First we subtract the mean
value from all observations α̂ = 27/9 = 3. Then, we fit in the x1 direction,
averaging over the repeated measurements at each x1 value. We need to fit a
smoothing spline to

(1/2,−4/3), (1, 1), (3/2, 1/3)

with smoothing parameter λ/3 = 1/99. The H and Ω matrices are as found
in part (a)(ii). Hence we compute

A = HTH + λΩ =

 3 3 7/8
3 7/2 5/4

7/8 5/4 101/64

 ,

and

b1 = HTY =

 1 1 1
1/2 1 3/2
0 1/8 3/4

 −4/3
1

1/3

 =

 0
5/6
3/8


and β̂1 = A−1b1. Fitting in the x2 direction we need to fit the data

(1/2,−1), (1, 0), (3/2, 1).

The A matrix is unchanged, but we now have

b2 = HTY =

 1 1 1
1/2 1 3/2
0 1/8 3/4

 −1
0
1

 =

 0
1

3/4


and β̂2 = A−1b2. The final solution is

f̂(x1, x2) = α̂ +
3∑
j=1

β̂1jhj(x1) +
3∑
j=1

β̂2jhj(x2).



8. (a) The Cascade algorithm

i. Set cJk = Yk+1 for k = 0, 1, .., 2J − 1, set j = J − 1;

ii. Set

cjk =
∑
m∈Z

hmcj+1,2k+m, djk =
∑
m∈Z

gmcj+1,2k+m;

iii. if j = 0 stop; else set j := j − 1 and repeat step 2.

In this case we find c00 = 7.15/
√

2 = 5.06, d00 = −2.85/
√

2 = −2.02, d10 =
−0.35, d11 = −0.8, d20 = −0.8/

√
2 = −0.566, d21 = −0.7/

√
2 = −0.495,

d22 = −0.6/
√

2 = −0.424 and d23 = 0.4/
√

2 = 0.283.

(b) To test the hypothesis that the function is constant we need to test whether
there is a change point of any of the Haar wavelets in the interval (0, 0.5). The
wavelets that have change points in (0.5, 1.0) are ψ11, ψ22 and ψ23. Therefore
the equivalent hypothesis is

w11 = w22 = w23 = 0

The test statistic is T = (d211 + d222 + d223)/σ
2 which follows a χ2

3 distribution.
In this case, we find T = 40.0 which is greater than χ2

3(5%) = 7.815. So we
reject the hypothesis that f is constant.

(c) The projection estimator is

f̂2(x) =
1

2
√

2

(
c00φ(x) + d00ψ(x) +

√
2d10ψ(2x) +

√
2d11ψ(2x− 1)

)
At x = 0.4 c00, d00 and d10 contribute and (asymptotically) these are un-
correlated and each has variance σ2, therefore the combined variance is (1 +
1 + 2)σ2/n = σ2/2 = 0.01125. Evaluation of the estimator gives f̂2(0.4) =
1

2
√
2
(c00 + d00 −

√
2d10) = 1.2498. A point wise 95% confidence interval is

1.2498± 1.96
√

0.01125 = 1.2498± 0.2100 and so f(0.4) ∈ [1.0398, 1.4598].

(d) The universal threshold is

λ = σ
√

2 log n = 0.306.

We set coefficients smaller than this value to zero, which means we set d23 = 0
only.

(e) i. To prove the first property

1 =

∫
φ(x)dx =

∑
k∈Z

hk
√

2

∫
φ(2x− k)dx =

∑
k∈Z

hk2
−1/2

∫
φ(v)dv

=
1√
2

∑
k∈Z

hk.

To prove the second property

δ0l =

∫
φ(x)φ(x− l)dx = 2

∫ [∑
k∈Z

hkφ(2x− k)
∑
m∈Z

hmφ(2x−m− 2l)

]2
dx

=
∑
k,m

hkhm

∫
φ(2x− k)φ(2x−m− 2l)d(2x)

=
∑
k,m

hkhmδk,m+2l =
∑
k

hkhk−2l.



ii. To prove the first property

0 =

∫
φ(x)ψ(x−m)dx = 2

∑
k,l∈Z

hlgk

∫
φ(2x− l)φ(2x− 2m− k)dx

= 2
∑
k,l∈Z

hlgkδl,2m+k =
∑
k∈Z

gkhk+2m.

To prove the second property

δ0m =

∫
ψ(x)ψ(x− l)dx = 2

∫ [∑
k∈Z

gkφ(2x− k)
∑
m∈Z

gmφ(2x−m− 2l)

]2
dx

=
∑
k,m

gkgm

∫
φ(2x− k)φ(2x−m− 2l)d(2x)

=
∑
k,m

gkgmδk,m+2l =
∑
k

gkgk−2l.

Setting gk = (−1)kh1−k we have∑
k

gkhk+2m =
∑
k

(−1)kh1−khk+2m =
∑
k′

(−1)1−2m−k
′
hk′+2mh1−k′ = −

∑
k

gkhk+2m

⇒
∑
k

gkhk+2m = 0

where the intermediate step follows from setting k′+2m = 1−k. Similarly∑
k

gkgk−2l =
∑
k

(−1)kh1−k(−1)k−2lh1−k+2l =
∑
k′

hk′hk′−2l = δ0l

where the intermediate step follows from setting k′ = 1− k.

iii. With four unknown coefficients the relationships between the scaling coef-
ficients provide three constraints

h0 + h1 + h2 + h3 =
√

2 (2)

h20 + h21 + h22 + h23 = 1 (3)

h0h2 + h1h3 = 0. (4)

The suggested substitution ensures Eq. (3) is satisfied. Using Eq. (4) we
find

cos β sin β cosα cos γ + cos β sin β sinα sin γ = 0

⇒ cos(α− γ) = 0

⇒ α− γ = π/2 or − π/2.

Note that there is an alternative solution β = 0, but for this h2 = h3 =
0 and it is the Haar wavelet basis. Note also that the two alternative
solutions yield the same final expressions for the hi’s, so we use α−γ = π/2
in the following. Using Eq. (2) we now find

cos β(cosα + sinα) + sin β(cos γ + sin γ) =
√

2

cos β(cosα + sinα) + sin β(sinα− cosα) =
√

2

cos(α− β) + sin(α− β) =
√

2

⇒ α− β = π/4



where the last step follows from the fact that the maximum of cosx+sinx
is
√

2 at x = π/4.

iv. We first verify
∑

k gk = 0 as suggested in the hint:∑
k

gk = −h0 + h1 − h2 + h3 = cos β(sinα− cosα) + sin β(sin γ − cos γ)

= cos β(sinα− cosα)− sin β(sinα + cosα) = sin(α− β)− cos(α− β) = 0.

Using
∫
xψ(x)dx = 0 we have

0 =
√

2
∑
k

gk

∫
xφ(2x− k)dx = 1/(2

√
2)
∑
k

gk

∫
(u+ k)φ(u)du

⇒ 0 =

[∫
uφ(u)du

]∑
k

gk +

[∫
φ(u)du

]∑
k

kgk =

[∫
φ(u)du

]∑
k

kgk

⇒
∑
k

kgk = 0.

The additional constraint is −2h3 + h2 − h0 = 0 from which

h2 − h0 = sin β cos γ − cosα cos β = sin β sinα− cosα cos β

= − cos(α + β) = −1/
√

2(cos 2α + sin 2α)

= 2h3 = 2 sin β sin γ = −2 sin β cosα =
√

2 cosα(cosα− sinα)

= 1/
√

2(1 + cos 2α− sin 2α)

⇒ 1 + 2 cos 2α = 0 ⇒ cos 2α = −1 ⇒ α = −π/6 or π/3.

9. While this question can be done by hand, it is much easier to do it using computer
software to manipulate matrices, such as Mathematica or python.

(a) The first step is to estimate the hyperparameters of the model. The question
suggested using a square exponential covariance function

k(x1, x2) = A exp

[
− 1

2σ2
(x1 − x2)2

]
.

The normalisation parameter A was not explicitly given in the question, but
including it gives the model greater flexibility. We will consider two cases
below, in which we either fix A = 1 or treat it as a hyperparameter to be
constrained by the training data.

From the covariance function we construct the covariance matrix for the train-
ing data

Kij = A exp

[
−0.01

2σ2
(i− j)2

]
,

in which we use the fact that we have a regular design with xi = 0.1(i−1). We
then determine the optimal hyperparameters by maximizing the likelihood for
the training data, {yi}. This is most easily accomplished by minimizing minus
twice the log-likelihood, which up to constant terms is

L =
∑
i,j

yiK
−1
ij yj + log(det[K]).



The optimal choice of hyperparameters can be found using a minimization
routine such as scipy.optimize.minimize in python. In the case where we fix
A = 1 we find the optimal choice σ = 0.144. Allowing both A and σ to vary
we find the optimal choice is A = 2.41 and σ = 0.156.

We denote the kernel function and training data covariance matrix correspond-
ing to these optimized hyperparameters by kopt(x1, x2) and Kopt respectively.
The value of the Gaussian Process at a new set of points {zi} are described by
a multi-variate normal distribution

p(y) ∝ exp

[
−1

2
(y − µ)TΣ−1(y − µ)

]
where yT = {y(zi)} and the mean and covariance matrix are given by

µi =
∑
j,k

[K∗]ji [K
−1
opt]jkỹk

Σij = [K∗∗]ij −
∑
k,l

[K∗]ki[K
−1]kl[K∗]lj

where [K∗]ij = kopt(xi, zj), [K∗∗]ij = kopt(zi, zj),

and ỹk is the observed value of the function at xk.

(b) We now construct the GP approximant at the three new points, zT = {0.15, 0.45, 0.75}.
Plugging these values into the above expressions, for the case where we fixed
the hyperparameter A = 1, we obtain the mean and covariance matrix

µ = (−2.167,−2.324,−1.386)T

Σ =

 1.435× 10−4 −5.752× 10−5 4.166× 10−5

−5.752× 10−5 3.856× 10−5 −4.009× 10−5

4.166× 10−5 −4.009× 10−5 6.771× 10−5


and for the case where we optimize both A and σ using the training data we
obtain

µ = (−2.172,−2.322,−1.391)T

Σ =

 1.120× 10−4 −4.060× 10−5 3.522× 10−5

−4.060× 10−5 2.223× 10−5 −2.615× 10−5

3.522× 10−5 −2.615× 10−5 4.532× 10−5

 .

We note that the covariance is particularly small. Taking the square root
of the diagonal elements we estimate uncertainties in the values at the three
points of (0.012, 0.006, 0.008) or (0.011, 0.005, 0.007) in the first and second
case respectively. The reason for this is that we have constructed this Gaussian
Process assuming that the training data contains no error. In fact this is not
the case. The data was generated by adding N(0, 0.152) errors to the quadratic
function 5x2−3x−2. As we are not accounting for that error the GP is under-
estimating the uncertainties. In Figure 2 we show the data, the GP estimates
at the requested points, with their uncertainties, and the true function used
to generate the data. We see that the value at x = 0.15 is not being well
estimated, with the true value lying several standard deviations away from the
GP estimate.
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Figure 2: Red crosses show the estimated mean values of the function at the target points,
with the vertical tics indicating the 1-σ uncertainties. The blue points are the observed
training data points and the black curve indicates the true quadratic function that was
used to generate the data.

Errors can be accounted for by modifying the K matrix to include the training
data error terms

Kij = A exp

[
−0.01

2σ2
(i− j)2

]
+ σ2

dδij.

In this case we know that σd = 0.15 and so could use that directly. However,
an alternative is to treat this parameter as an additional hyperparameter to
optimize over the training data. Doing this we obtain optimal values of A =
4.17, σ = 0.682 and σd = 0.127. We note that the optimal covariance function
is different, and much broader than before, but the optimal value of σd is pretty
close to the true value used to generate the data.

Note that we include σd in K only and not in K∗ or K∗∗. Including it in the
latter two matrices would be equivalent to attempting to predict the value of
a future noisy measurement of the function, rather than the true value of the
function. If we are interested in the latter, we account for noise in the training
data only.

Using the optimized covariance function including the training data error term
we find new values for the mean and covariance matrix at the requested points
of

µ = (−2.292,−2.356,−1.434)T

Σ =

 4.248× 10−3 1.323× 10−3 −8.568× 10−4

1.323× 10−3 3.777× 10−3 1.315× 10−3

−8.568× 10−4 1.315× 10−3 4.257× 10−3

 .

In particular we see that the square roots of the diagonal elements of the co-
variance matrix are (0.065, 0.061, 0.065), approximately an order of magnitude
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Figure 3: As Figure 2 but now for the Gaussian Process that was fit allowing for uncer-
tainties in the training data.

larger than before. In Figure 3 we compare the new prediction from the GP
model to the true function and now find that at all three points we are within
the 1−σ uncertainty estimated from the GP model.

10. (a) We suppose that at iteration n there are {ni} diners at table i, and ni is drawn
from a multinomial distribution with probability qi. The next (n+ 1’th) diner
sits at Table i with probability ni/(a + n) or is assigned to a new table with
probability a/(a + n). The probability that the n + 1’th diner sits at Table i
is therefore

q =
n∑
j=0

p(ni = j)
j

(a+ n)
=

1

(a+ n)

n∑
j=0

j
n!

j!(n− j)!
qji (1− qi)n−j

=
nqi

(a+ n)

n∑
j=0

(n− 1)!

(j − 1)!(n− 1− (j − 1)!
qj−1i (1− qi)n−1−(j−1)

=
nqi

(a+ n)

n−1∑
k=0

(n− 1)!

k!(n− 1− k)!
qki (1− qi)n−1−k

=
nqi

(a+ n)
→ qi as n→∞,

so asymptotically there is a steady state distribution, as required. The exact
distribution (a draw from a Dirichlet process) depends on the sequence of
draws that are made, since previous events are reinforced by the algorithm.
This same argument cannot be used to give the exact probability distribution
(the proof that it is a DP is complicated), but it can be used to compute
the expected number of diners (or the expected probability weight assigned to
a given interval by the DP). This is the probability assigned to the interval
by the base distribution. We will see the same feature in the stick-breaking
construction in the next part of the question.



(b) The locations of the point masses, {Ul}, and their weights, determined from
{Vl}, are independent. The probability that any one of the point masses is
in the subset Bi is H0(Bi) since the point masses are drawn from H0. Hence
asymptotically the expected probability assigned to Bi is

p(Bi) = H0(Bi)E

(
∞∑
l=1

pl

)
= H0(Bi)

∞∑
l=0

1

1 +MH

(
MH

1 +MH

)l
= H0(Bi)

1

1 +MH

(
1− MH

1 +MH

)−1
= H0(Bi)

as required. the last line follows from summing the geometric progression using
standard results. If the probabilities are drawn from a Dirichlet process, then
the probability assigned to Bi and its complement B̄i should be drawn from a
Dirichlet distribution

(p(Bi), p(B̄i)) = (p(Bi), 1− p(Bi))

∼ Dir(aH0(Bi), aH0(B̄i))) = Dir(aH0(Bi), a(1−H0(Bi))).

The expectation value of a particular component, xj, drawn from a Dirichlet
distribution with parameter vector ~α is αj/

∑
k αk and in this case we deduce

E(p(Bi)) =
aH0(Bi)

aH0(Bi) + a(1−H0(Bi))
= H0(Bi)

and so the result in this question (and the similar result that can be derived
for the Chinese restaurant process) is as expected.


