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Problem Sheet 3: Statistics in Gravitational Wave Astronomy

1. (a) As in the question description we denote the two masses by m1 and m2, the
total mass byM = m1 +m2, the reduced mass by µ = m1m2/M , and the chirp
mass by

Mc =
m

3
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We will use geometric units throughout, i.e., we set c = G = 1 so we don’t
need to worry about keeping track of these factors.

i. For a Newtonian binary, the motion is equivalent to that of a body of
mass µ orbiting in a fixed Newtonian potential with mass M . Denoting
the orbital radius by a (it is also the semi-major axis for a circular binary),
the orbital frequency is given by

2πf =

√
M

a3

and the total energy of the binary is

E = −Mµ

2a
.

A. The GW amplitude is determined by the quadrupole moment of the
spacetime

h ∼ Ïjk
D
, Ijk =

∫
ρxixjdV.

For a binary, the density is only non-zero at the location of the objects.
Using the effective-one-body analogy we deduce

I ∼ µa2 exp(2πift)

where the frequency is now twice the orbital frequency because we are
taking squares of positions, which vary at that frequency. It follows
that

h ∼ 1

D
f 2µa2 ∼ 1

D
f 2µ

(
M

f 2

) 2
3

=
1

D
f

2
3
m1m2

M
1
3

=
1

D
M

5
3
c f

2
3 .

B. The GW energy loss is determined by

ĖGW ∼ D2ḣ2 =
...
I
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C. The rate of change of frequency is given by

ḟ ∼
√
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dt
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D. The Fourier transform of h(t) is given approximately by
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E. The characteristic strain is given by

hc ∼ h
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F. The energy density of a GW background generated by a population of
these sources is given by

ρcΩGW(f) =

∫ ∞
0

N(z)

1 + z

(
fr

dE

dfr

)
fr=f(1+z)

dz.

For the inspiraling binaries the previous results give

f
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and so we find
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ii. The energy of the binary is proportional to 1/a, hence we have

Ėhard ∝ µM
d

dt
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iii. The previous derivation of the background energy density assumed that all
of the energy loss driving the frequency evolution was due to GW emission.
If there are other processes driving energy loss and hence frequency evo-
lution, the background is suppressed because not all of the orbital energy
lost is emitted as gravitational waves. In general we have f = f(E) and
hence ḟ = (df/dE)Ė and therefore

dEGW

df
=

ĖGW

(df/dE)[ĖGW + Ėother]
=

ĖGW

ĖGW + Ėother

(
dEGW

df

)
pure GW

.

The final bracketed expression denotes the background energy density in
the pure GW-driven evolution case. In the case of stellar hardening we
therefore find a modified expression for the GW background energy density

ρcΩGW(f) =M
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This can be simplified a bit more — for example, we notice that the factor

µM
2
3 in the hardening term is just M

5
3
c — but the above result is all we

need to answer the next few questions.



iv. If the sources are at a common redshift, z0, we can replace N(z) by a delta
function, δ(z − z0), and do the integral explicitly. It is then clear that we
have

ΩGW(f) ∼ f
2
3

1 + λf−
8
3

where
λ = k(ρm2/σ

3)M− 5
3

c (1 + z0)
− 8

3 .

This is a broken power-law, as required. For f � 1 the term f−
8
3 dom-

inates in the denominator and we have ΩGW ∼ f
10
3 . This is the stellar

hardening dominated regime. For f � 1 the constant term dominates
in the denominator and we find ΩGW ∼ f

2
3 . This is the GW dominated

regime and this is the standard result for GW backgrounds.

v. If a broken power law background were detected, it tells us about the
processes that drive the inspiral of the binary. In this example the power
at low frequencies (where hardening dominates) is suppressed relative to
that of a pure GW background (see Figure 1). The low frequency slope is
characteristic of whatever process drove the early evolution of the binaries
— a measurement of this tells you which physical process was important
at that time. The high frequency slope tells us about the late evolution
of the binary, and in this case the value f

2
3 is consistent with GW-driven

inspiral. The turn over point tells us about the relative efficiencies of
the two processes. In this example it occurs where f ≈ λ

3
8 and so a

measurement of that value tells us about the parameters that go into λ,
such as σ, ρ and the typical source redshift, z0.

vi. (OPTIONAL) No results here. If there is a distribution over masses, then
the background energy density involves an integral over the mass distribu-
tion as well as the redshift. Try playing around with different choices. Try
also including some dependence of ρ and σ on the binary properties. The
GW background in the PTA regime may well be suppressed by stellar pro-
cesses of the type described here. If we see that suppression we will want
to be able to interpret it in the context of models of the binary population.

(b) i. The average waveform power is

〈h2〉 =
1

2T

∫ T

−T
h2(t)dt =

1

2
√
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D2

∫ √QT
−
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Q
u
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e−u

2

du.

We see that beyond
√
QT ∼ few, the waveform is exponentially suppressed.

Hence, the duration of the signal is order ∼ 1/
√
Q. We take |

√
QT | . 2

as a reasonable approximation.
For this choice, we find

〈h2〉 =
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(
erf(2) + e

−
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2πf0√
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)2
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[
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(
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with a pre-factor that is order 0.few.

ii. Using standard results for Fourier transforms, F [g] = g̃(f), including
F [exp(−t2)] =

√
π exp(−π2f 2), F [g(αt)] = g̃(f/α)/|α| and F [exp(2πif0t)g(t)] =

g̃(f − f0), we find
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Figure 1: Example backgrounds. We show ΩGW(f) as a function of frequency for λ = 0.01
(purple), λ = 1 (green) and λ = 100 (red). Also shown, as a dashed red line, is the
background in the absence of stellar hardening.



We can use the fact that the time series is real to wrap onto only positive
frequencies and then we have

h̃(f) =
A

D

√
π

Q
e−

π2

Q
(f−f0)2 .

We see that the Fourier transform is also proportional to a Gaussian which
goes to zero exponentially when π2(f−f0)2/Q ∼few. Hence the bandwidth
is ∆f ∼

√
Q/π.

iii. Using the power ratio formula(
S

N

)2

≈ 〈h2〉
∆fSn(f)

and assuming white noise, Sn(f) = σ2, we have(
S

N

)2

≈ k
A2

D2
√
Qσ2

where k is a constant of order unity. This SNR could be achieved by
windowing the data (to the time range |

√
QT | .a few) and bandpassing

it (to the frequency range π|f − f0|/
√
Q .a few) and then comparing the

signal power to the average off-source noise power.

iv. Using the Fourier transform obtained above, the matched filtering SNR is(
S

N

)2

= 4

∫ ∞
0

|h̃(f)|2

Sn(f)
df =

4

σ2

A2π

4D2Q
e−

2π2

Q
(f−f0)2df ≈ A2

2D2σ2
√
Q

∫ ∞
−∞

e−
x2

2 dx

which is also equal to A2/(D2σ2
√
Q) times a constant of order unity.

We have found that the matched filtering SNR is essentially the same as
the burst search SNR, so we are not gaining anything by doing matched
filtering. We argued in lectures that matched filtering gained over a burst
search by a factor of the square root of the number of cycles spent near a
particular frequency. These sine-Gaussian sources are peculiar in that as
Q decreases so that the source spends more time near frequency f0, the
bandwidth also decreases so the burst power is increasingly concentrated —
we effectively have only ‘1 cycle’ in the vicinity of each relevant frequency.
This result does not necessarily mean matched filtering is no better than
a burst search — the SNR does not directly translate to a false alarm
probability. There may be many instrumental artefacts that could give
broadband power in the frequency domain which looks burst like, but
those artefacts would look nothing like the specific sine-Gaussian form of
the matched filter. Nonetheless, this problem illustrates why excess power
searches are quite effective for sources that are burst-like, even if models
are available.

v. The energy distribution can be found from∫
dE

df
df =

∫ ∞
−∞

D2ḣ2(t)dt =

∫ ∞
−∞

D2f 2h̃2(f)df.
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2π

2Q
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Q
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)
.



vi. Assuming the number of objects per unit comoving volume with redshift
between z and z + dz and with f0 between f0 and f0 + df0 is N(z)df0dz,
the background energy density is

ρcΩGW(f) =

∫ ∞
0

∫ ∞
0

N(z)(1+z)2A2f
3π

2Q
exp

(
−π

2

Q
(f(1 + z)− f0)2

)
fα0 df0dz.

vii. The common redshift assumption allows us to replace the integral over z
by evaluation of the integrand at z0 as before. We then have

ρcΩGW(f) = N0(1+z0)
2A2 π

2Q
f 3

∫ ∞
0
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−π
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Q
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)
fα0 df0dz.

The integral over f0 takes the form∫ ∞
0

xα exp
[
−(x− λf)2

]
dx

where λ = π(1 + z0)/
√
Q. This integral can be written down as a combi-

nation of hypergeometric functions∫ ∞
0
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[
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]
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)
+Γ
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2
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.

The exact background computed from this expression is shown in Figure 2,
but we can also find analytic approximations for the low and high frequency
behaviour. If f � 1, then the integral is approximately∫ ∞

0

xα exp
[
−x2

]
dx =

1

2
Γ

(
α + 1

2

)
with corrections of order λf . Hence, the dominant behaviour is a constant
and ΩGW(f) ∼ f 3 due to the factor out the front of the expression.
For f � 1 we can make a change of variable in the integral∫ ∞

0

xα exp
[
−(x− λf)2

]
dx =

∫ ∞
−λf

(u+ λf)α exp
[
−u2

]
du

≈ λαfα
∫ ∞
−∞

(
1 +

u

λf

)α
exp

[
−u2

]
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=
√
πλαfα

(
1 +O

(
1

f

))
.

So we deduce ΩGW ∼ f 3+α.

viii. (OPTIONAL) No results here again, but things to explore would be how
the introduction of a redshift distribution modifies things, what happens
if the distribution of f0 is changed, e.g., by introducing a cut-off in the
frequency range, what happens if we add a distribution for Q etc.

2. The Fisher Matrix is given by

Γij =

(
∂h

∂λi

∣∣∣∣ ∂h∂λj
)
, where (a|b) = 2

∫ ∞
0

ã∗(f)b̃(f) + ã(f)b̃∗(f)

Sh(f)
df
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Figure 2: Example backgrounds for the burst population model. We show ΩGW(f) as a
function of frequency for λ = 1 and three choices of α: α = −0.75 (purple), α = −0.5
(green) and α = −025 (red).



where Sh(f) is the power spectral density of the detector noise. In this case we are
assuming that the source is only observed in the interval [fmin, fmax] and the PSD
is constant in that range and equal to Σ2. With these assumptions

(a|b) = 2
1

Σ2

∫ fmax

fmin

ã∗(f)b̃(f) + ã(f)b̃∗(f) df.

The derivatives of the waveform can be computed as

∂h̃

∂M
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(
5
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{
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(
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∂φc
= −ih̃(f)

∂h̃

∂tc
= 2πifh̃(f)

∂h̃

∂DL

= − 1

DL

h̃(f).

The key thing to note here is that all of the derivatives are proportional to h̃(f).
When we construct the inner product all terms in the Fisher Matrix are therefore
proportional to |h̃|2, which does not explicitly depend on ψ(f). The Fisher Matrix
elements therefore reduce to linear combinations of integrals of the form

G(α) =

∫ fmax

fmin

f−α df =
1

α− 1

(
fα−1min − fα−1max

)
.

The Fisher Matrix elements are therefore
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+
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The inverse of the Fisher Matrix provides an estimate of parameter estimation
precision. We won’t attempt toi write down the inverse, but it can be calculated on
a case by case basis using the preceding results.

3. We denote the observed data in frequency bin i by si. The full data set, denoted
D, takes the form

si = ni ∀ i ∈ [1, N ], sN+1 = nN+1 + A, ni ∼ N(0, σ) ∀ i (1)

with corresponding likelihood

p(D|σ,A) ∝ 1

σN+1

(
N∏
i=1

exp

[
− s2i

2σ2

])
exp

[
−(sN+1 − A)2

2σ2

]
. (2)

For flat priors, this is also the posterior, p(σ,A|D). We are not so interested in the
value of σ, but the value of A, so we can marginalise the posterior over σ. If we
write

X(A) = (sN+1 − A)2 +
N∑
i=1

s2i (3)

then we find

p(A|D) ∝ 1

σN+1
exp

(
−X(A)/2σ2

)
⇒
∫ ∞
0

p(σ,A|D)dσ ∝
(

2

X(A)

)N
2

Γ

(
N

2

)
where Γ(x) is the gamma function, with Γ(n+ 1) = n!. Note that we are assuming
a flat prior in σ here, but other priors could be included straightforwardly.

We now recall that the posterior density for the student-t distribution with n degrees
of freedom is

pt,n(x) =
Γ
(
n+1
2

)
√
nπ Γ

(
n
2

) (1 +
x2

n

)−n+1
2

.

Hence we see that

p(A|D) ∝ pt,N−1

 A− sN+1√
1

N−1
∑N

i=1 s
2
i

 = pt,N−1

(
A− sN+1

σ̂

)

where σ̂ =
√∑

s2i /(N − 1) is the usual unbiased estimate of the variance. We can
compare this to the standard likelihood used in parameter estimation for gravita-
tional wave detectors, which is

p(A|D) ∝ pN(0,1)

(
A− sN+1

σ̂

)



where

pN(0,1)(x) =
1√
2π

exp

[
−x

2

2

]
is the pdf of a standard Normal distribution. We see that this marginalisation over
the PSD uncertainty is equivalent to replacing the Normal distribution by a student-
t distribution. This is the same procedure that we argued could be used for robust
regression.

If we take the limit that N →∞ and write
∑N

i=1 s
2
i = Nσ2

est we find

X(A)−
N
2 =

(
1

Nσ2
est

)N
2
(

1 +
(sN+1 − A)2

2(N/2)σ2
est

)−N
2

≈ B exp

(
−(sN+1 − A)2

2σ2
est

)
(4)

where the last part follows from the standard result(
1 +

k

n

)n
∼ ek as n→∞ (5)

For large N we also expect σ2
est = σ2 + O(1/N) and so we recover the standard

Normal likelihood.

4. (a) The information available before O1 indicates that the rate is uncertain over
orders of magnitude. Under these circumstances it is reasonable to suppose
that the the log of the rate is uniform in some range. So, we represent the
prior as

log10(λ) ∼ U [−2, 3].

This prior has an expectation value of 999.99/ ln(105) = 86.858 and variance
of 999999.9999/2 ln(105) − 86.862 = 35885.13. The conjugate distribution to
a Poisson model is a Gamma distribution, Γ(a, b), for which the mean and
variance are a/b and a/b2 respectively. Matching the mean and variance we
find b = 1/413.15 and a = 0.210. We use a conjugate distribution since
we then know the posterior will also be in the conjugate family and so it
is computationally convenient. [Note: any reasonable prior choice is fine,
provided it is justified. It must be wide and flat over several decades and make
some use of the prior information.]

(b) We note first that all of the observation runs are different lengths. The rate λ
was quoted in units of yr−1. Poisson processes are additive, i.e., if the rate in
time period T is λ, the rate in time period kT is λ̃ = kλ. If the prior on λ is
Γ(a, b) then we have

p(λ̃) = k−1
ba

Γ(a)

(
λ̃

k

)a−1

e−bλ̃/k =
(b/k)a

Γ(a)
λ̃a−1e−(b/k)λ̃,

i.e., the prior on kλ is Γ(a, b/k). As three events are observed in O1, we can
write down the posterior distribution on λ̃ as Γ(a+ 3, b/k + 1) and the poste-
rior distribution on λ is Γ(a+ 3, b+ k). In this case using the conjugate prior
derived above we have Γ(3.21, 0.252). The posterior mean and standard devi-
ation are 12.717 and 7.098 respectively, a 95% symmetric confidence interval
is (2.817, 29.934) and the posterior distribution is shown in Figure 3.
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Figure 3: Posterior distribution for the rate per year, λ, after observing the O1 data for
the conjugate prior (black line) and the Jeffrey’s prior (red line).

(c) The probability that the rate exceeds 15 can be computed from the cumu-
lative density function of the gamma distribution. This is γ(α, βx)/Γ(α),
where γ(α, x) is the incomplete gamma function. In this case we need 1 −
γ(3.21, 3.78)/Γ(3.21) = 0.312.

(d) The Jeffrey’s prior for the Poisson distribution is the improper prior p(λ) ∝
λ−1/2. This can be approximated by a Γ(1/2, β) distribution with β → 0. The
posterior on λ from the O1 data with the Jeffrey’s prior is therefore Γ(3.5, 0.25).
The posterior is shown as a red line in Figure 3, the posterior mean and stan-
dard deviation are 14 and 7.48 and a 95% symmetric confidence interval is given
by (3.38, 32.0). The probability that the rate exceeds 15 is now 0.379. So, the
results change a little bit and in particular the Jefffrey’s prior favours slightly
higher rates than the conjugate prior, but there is not a very big difference
between the two.

(e) The second science run, O2, lasts 6 months, so the Poisson rate is 0.5λ. The
posterior for O1 therefore gives a prior on the rate in O2 of Γ(3.21, 0.504)
using the conjugate prior. For a posterior of the form Γ(α, β), the posterior
predictive probability of seeing n events in O2 is therefore

p(n|dO1) =

∫ ∞
0

λne−λ

n!

βαλα−1e−βλ

Γ(α)
dλ =

1

n!

βα

(β + 1)α+n
Γ(α + n)

Γ(α)
. (6)

This can be recognised as a negative binomial distribution. We compute the
probability of seeing 6 or more events in O2 as 1 −

∑5
n=0 p(n|dO1) = 0.504.

The posterior for the rate in the first 5 months of O2 is Γ(3.21, 0.608) and
the probability of seeing 1 or fewer events in 5 months is given by computing
p(0|dO1) + p(1|dO1) = 0.131 using this α and β in Eq. (6). The posterior
probability for the rate in 1 month is Γ(3.21, 3.024), from which we compute



the probability of seeing 5 or more events in one month of O2 as p1 = 1 −∑4
n=0 p(n|dO1) = 0.015. The probability of seeing 5 or more events in at least

one month of O2 is given by 1 − (1 − p1)6 = 0.086. With the Jeffrey’s prior
the posterior distributions on the rate in 6 months, 5 months and 1 month
are Γ(3.5, 0.5), Γ(3.5, 0.6) and Γ(3.5, 3.0) respectively. The probabilities of
seeing 6 or more events in O2, 1 or fewer in 5 months of O2, 5 or more in the
last month of O2 and seeing 5 or more in at least 1 month of O2 are 0.564,
0.103, 0.019 and 0.110 respectively. The probability that the last month would
contain the number of events that were seen is significantly small (at a 2%
confidence level). However, there is no reason to single out the last month a
priori and the probability that one month would be at least this exceptional is
only around 10%, which is small but not sufficiently significant to be a cause
for concern. The choice of prior does not significantly influence this, indicating
that we are data dominated and the conclusion is robust. So, based on O2 we
cannot conclude the rate is inhomogeneous in time, but the significance is high
enough that we should collect more data and see if the next science run shows
any evidence for a time-dependent rate.

(f) In total over O1 and O2 we see 9 events and the total observing time is 0.75
years. Therefore the combined posterior is Γ(9.21, 0.752) using the conjugate
prior derived in (a) or Γ(9.5, 0.75) using the Jeffrey’s prior. The posterior pre-
dictive distribution for the rate in a given 6 month period of O3 is Γ(9.21, 1.504)
or Γ(9.5, 1.5) respectively. The distribution of the difference r = |n1 − n2| of
the number of events observed in two independent samples from a Poisson
distribution with rate θ is given by the Skellam distribution with pmf

p(r|θ) =

{
e−2θI0(2θ) r = 0
2e−2θIr(2θ) r = 1, 2 . . . ,

where Ik(x) is the modified Bessel function of the first kind. Hence the posterior
predictive distribution on r is

p(r|d1+2) =

∫ ∞
0

e−2λIr(2λ)
βαλα−1e−βλ

Γ(α)
dλ

for a Γ(α, β) posterior distribution on the rate. Note that this can also be
written as the difference between two independent negative binomial variables,
which follow a generalised discrete Laplace distribution, but the expressions
that must be evaluated are no easier than this integral.

Table 1 lists the cumulative posterior density for the difference r. We see that
there is less than 5% probability of seeing a difference of 7 or more events.
Therefore a difference of this size or larger would be significant at a 5% level.

There are a number of other ways in which this question could be addressed.
For example, we could look at the number of events in each month and set
a threshold, based on the posterior predictive distribution, on the difference
between the largest and smallest monthly count. Alternatively, we could model
the rates in each one month period as being potentially different, with λi de-
noting the rate in month i. These rates can be connected by a hyperprior,
e.g., λi ∼ Γ(α, β), and the parameters of that hyperprior constrained from the
data. Alternatively, the rates can be modelled parametrically, e.g., λi = a+ bi,
and the parameters of the parametric model constrained from the data. If the



R p(r = R|d1+2) p(r ≤ R|d1+2) R p(r = R|d1+2) p(r ≤ R|d1+2)
0 0.123 0.123 6 0.048 0.935
1 0.229 0.352 7 0.029 0.965
2 0.194 0.546 8 0.018 0.983
3 0.158 0.704 9 0.009 0.992
4 0.109 0.813 10 0.003 0.995
5 0.075 0.888 11 0.002 0.997

Table 1: Posterior predictive probability of the absolute difference in the number of events
detected in the first and second 6 month periods of the O3 science run. The columns give
the difference in the number of events, the posterior probability of observing that difference
and the cumulative posterior probability of observing a difference less than or equal to
that value.

posterior on the slope parameter, b, is inconsistent with 0 there is evidence for
an evolving rate. Similarly if the parameters of the hyperprior are inconsistent
with a constant rate there is evidence for evolution. The advantage of these
kind of approaches is that the results of the analysis give an estimate of the
nature and size of the effect, not just the presence of the effect.


