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1. The probability that he chose route i given the observation that the journey took
less than 1 hour is given by Bayes’ Theorem

p(i|T < 1 hr) =
p(T < 1 hr|i)p(i)∑
j p(T < 1 hr|j)p(j)

.

He chooses one of the four routes at random, so pi = 0.25 for i = 1, . . . 4. Hence

p(1|T < 1 hr) =
0.2

0.2 + 0.5 + 0.8 + 0.9
= 0.083

p(2|T < 1 hr) =
0.5

0.2 + 0.5 + 0.8 + 0.9
= 0.208

p(3|T < 1 hr) =
0.6

0.2 + 0.5 + 0.8 + 0.9
= 0.333

p(4|T < 1 hr) =
0.9

0.2 + 0.5 + 0.8 + 0.9
= 0.375.

2. (a) The log-likelihood is

l(µ|x, σ) = − 1

2σ2

n∑
i=1

(xi − µ)2 − n

2
ln(2πσ2).

The second derivative of the low-likelihood with respect to µ is therefore

∂2l

∂µ2
= − n

σ2

and the Fisher matrix is

Iµ = −E
[
∂2l

∂µ2

]
=

n

σ2
∝ 1

hence the Jeffreys prior, p(µ) ∝
√
Iµ ∝ 1, as required.

(b) The posterior distribution, using the Jeffreys prior is

p(µ|x) ∝ exp

[
− 1

2σ2

n∑
j=1

(xi − µ)2

]

∝ exp

− n

2σ2

(
µ− 1

n

n∑
i=1

xi

)2
 (1)

where we have dropped factors that are independent of µ. The µ-dependence
in the above is the µ dependence of a Normal distribution and so we deduce

p(µ|x) ∼ N

(
1

n

n∑
i=1

xi,
σ2

n

)
.



(c) Using the previous result, the posterior is N(10.1, 0.1). A 95% HPD confidence
interval is

[10.1− 1.96
√

0.1, 10.1 + 1.96
√

0.1] = [9.480, 10.720]

as required.

3. (a) The posterior distribution is proportional to

p(θ|x) ∝
{

aXa

θa+n+1 for θ ≥ X
0 otherwise

where X = max{x0, x1, . . . , xn}. Hence, the posterior is a Pareto distribution
with parameters A = a+ n and X.

(b) Based on this observed data the posterior is a Pareto distribution with param-
eters a = 5 and x0 = 17. The posterior mean is 21.25, compared to the prior
mean of 0.2. The posterior median is 19.53 compared to the prior median of
1.414. The posterior variance is ax2

0/((a− 1)2(a− 2)) = 30.1 compared to the
prior variance which is divergent.

(c) This prior is incompatible with the observed data, since it implies θ ≤ 15 and
therefore no data values should be observed with x ≥ 15. The observation
x3 = 17 violates this condition. Observing this data would tell the chemist
that they were too restrictive in their prior specification and so they should
revise it.

4. (a) From a simple application of Bayes Theorem, the posterior is

P(H0|x) =
P(x|H0)p0

P(x|H0)p0 + P(x|H1)p1

=
p0

p0 + [P(x|H1)/P(x|H0)]p1

=
p0

p0 + p1/B01

where B01 = P(x|H0)/P(x|H1) is the Bayes factor in favour of H0 over H1.

(b) The likelihood under hypothesis Hi is

P(x|Hi) = (2πσ2)−n/2 exp

[
− 1

2σ2

n∑
j=1

(xj − µi)2

]

= (2πσ2)−n/2 exp

[
− 1

2σ2

(
n∑
j=1

x2
j − 2µi

n∑
j=1

xj + nµ2
i

)]
. (2)

Hence, denoting x̄ =
∑n

j=1 xj/n as usual, we deduce

B01 =
P(x|H0)

P(x|H1)
= exp

[
− n

2σ2

(
−2(µ0 − µ1)x̄+ µ2

0 − µ2
1

)]
= exp

[
− n

2σ2
(µ0 − µ1) (µ0 + µ1 − 2x̄)

]
(3)

as required. Setting µ0 = 0, µ1 = 1, σ2 = 1, n = 9 and x̄ = 0.645 we find

B01 = exp(−4.5× (−1)× (−0.29)) = exp(−1.305) = 0.271.

There is weak evidence against the null hypothesis, with the posterior prob-
ability for H0 given the observed data and equal prior weights on the two
hypotheses, of 21%. As n increases, with all other values fixed, the evidence
against H0 increases. For n ≥ 21 P(H0|x) < 0.05 and so you would reject the
null hypothesis at the 5% level.



(c) We need to recalculate P(x|H1), which is done as follows

P(x|H1) = (2πσ2)−n/2(2πτ 2)−1/2

∫ ∞
−∞

exp

[
− 1

2σ2

n∑
j=1

(xj − µ)2 − 1

2τ 2
µ2

]
dµ

= (2πσ2)−n/2(2πτ 2)−1/2 exp

[
− 1

2σ2

n∑
j=1

x2
j +

n2Σ2x̄2

2σ4

]
×

×
∫ ∞
−∞

exp

[
− 1

2Σ2

(
µ− nΣ2

σ2
x̄

)2
]

dµ

= (2πσ2)−n/2
Σ

τ
exp

[
− 1

2σ2

n∑
j=1

x2
j +

n2Σ2x̄2

2σ4

]
(4)

where Σ−2 = nσ−2 + τ−2. The Bayes factor then becomes

B01 =
τ

Σ
exp

[
− n

2σ2
(µ2

0 − 2µ0x̄)− n2Σ2x̄2

2σ4

]
.

In the limit τ →∞ we have Σ2 → σ2/n and

B01 →
τ

Σ
exp

[
− n

2σ2
(µ0 − x̄)2

]
→∞.

In the limit as τ →∞, there is a lot of prior weight to arbitrarily large means.
Any finite x̄ favours means close to x̄, so for large τ , such means are more
consistent with the null hypothesis than the alternative and we never reject
H0. The moral is — don’t be too generic in your prior specification!

5. (a) The posterior takes the form

p(p|x) ∝ p(x|p)p(p) ∝
m∏
i=1

pxii

m∏
j=1

p
αj−1
j ∝

m∏
i=1

pαi+xi−1
i

and we deduce p(p|x) ∼Dir(α1 + x1, α2 + x2, . . . , αm + xm).

(b) We showed in lectures that the Bayes estimator with a quadratic error loss is
the posterior mean. For the Dirichlet distribution this is αi/

∑
j αj and so in

this case the Bayes estimate for the parameters is

p̂i =
αi + xi

N +
∑m

j=1 αj
.

(c) The posterior means, and hence Bayes estimate with quadratic loss, are

p̂1 =
11

66
=

1

6
= 0.167, p̂2 =

13

66
= 0.197, p̂3 =

13

66
= 0.197,

p̂4 =
9

66
= 0.136, p̂5 =

8

66
= 0.121, p̂6 =

12

66
= 0.182. (5)

6. (a) We have

p(σ) =

{
1
T

for 0 ≤ σ ≤ T
0 otherwise

.



Under a change of variables to S = S(σ) we must have

p(S) dS = p(σ) dσ, ⇒ p(S) = p(σ(S))
dσ

dS
.

In this case S = σ2 and we deduce

p(σ2) =

{
1

2Tσ
for 0 ≤ σ2 ≤ T 2

0 otherwise
.

(b) If we assume σ2 is fixed, then this is a standard Normal-Normal model and so
using results from the lecture notes, we deduce

p(µ|x, σ2) ∼ N

(
s2
∑n

i=1 xi
ns2 + σ2

,
σ2s2

ns2 + σ2

)
.

If µ is fixed, the posterior on σ2 is

p(σ2|x, µ) ∝ σ−(n+1) exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
I[0 ≤ σ2 ≤ T 2]

⇒ p(σ2|x, µ) =
A

n−1
2

Γ
(
n−1

2

)
− Γ

(
1
T 2 ; n−1

2

)σ−(n+1) exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
× I[0 ≤ σ2 ≤ T 2] (6)

where

A =
1

2

n∑
i=1

(xi − µ)2, Γ(x;n) =

∫ x

0

xn−1e−x dx

is the incomplete Gamma function, and Γ(n) = Γ(∞;n) is the complete
Gamma function. This is a truncated inverse-Gamma distribution (i.e., τ =
1/σ2 follows a Gamma distribution). In the limit T → ∞ the distribution is
no longer truncated and we deduce

p(τ |x, µ) ∼ Gamma

(
n

2
− 1

2
,
1

2

n∑
i=1

(xi − µ)2

)

as in lecture notes.

7. The cumulative density function of the Pareto distribution can be found to be

P (θ ≤ Θ) =

∫ Θ

x0

axa0
θa+1

dθ =

{
1−

(
x0
Θ

)a
for Θ ≥ x0

0 otherwise
.

The CDF follows a U [0, 1] distribution and the inverse CDF is

F−1(u) =
x0

(1− u)
1
a

.

Hence we can draw samples from the Pareto distribution by simulating ui U [0, 1]
and then computing θi = F−1(ui).



8. (a) The posterior is

p(φ|x) ∝ p(x|φ)p(φ) ∝ φα−1(1− φ)β−1

T+1∏
t=1

pxtt

= φα−1(1− φ)β−1(1− φ)
∑T

t=1 xtφ
∑T+1

t=2 (t−1)xt

= φα−1+
∑T+1

t=1 (t−1)xt(1− φ)β−1+
∑T

t=1 xt (7)

which is the kernel of a Beta(α +
∑T+1

t=1 (t− 1)xt, β +
∑T

t=1 xt) distribution.

(b) The mode of a Beta(a, b) distribution is at x = (a − 1)/(a + b − 2) (provided
a > 1 and b > 1, but if either of these conditions is violated it is not possible
to use rejection sampling from a uniform distribution to obtain samples from
Beta(a, b)). Hence, if we define

A =
(a− 1)a−1(b− 1)b−1

(a+ b− 2)a+b−2

we can generate samples from the Beta(a, b) distribution using the following
simple rejection sampling algorithm

i. Draw u1 ∼ U [0, 1] and u2 ∼ U [0, A].

ii. If
u2 ≤ ua−1

1 (1− u1)b−1

then set xi = u1 and increment i→ i+ 1. Otherwise return to step i.

(c) The 95% HPD interval has width of 0.117, while the 95% symmetric credible
interval has width of 0.111. Since the Beta distribution is unimodal the HPD
interval must be the shortest 95% interval and therefore something is wrong in
these results. Checking the quoted values using the properties of the Beta(91,9)
distribution we find that everything is correct except the HPD interval. The
pdf at the two ends of this interval is not equal, so it can’t be HPD, and the
probability contained is 92.4% so it is not even a 95% interval. The true HPD
interval is (0.853, 0.962).

9. The posterior on (φ1, φa) is

p(φ1, φa|x) ∝
T∏
i=1

pxii = (1− φ1)x1φ
∑T+1

t=2 xt
1 (1− φa)

∑T
t=2 xtφ

∑T+1
j=3 (t−2)xt

a .

The conditional distributions can thus be seen to be

φ1|φa,x ∼ Beta

(
1 +

T+1∑
t=2

xt, 1 + x1

)

φa|φ1,x ∼ Beta

(
1 +

T+1∑
j=3

(t− 2)xt, 1 +
T∑
t=2

xt

)
(8)

A Gibbs sampling algorithm would work as follows

(a) Draw initial parameter values, (φ0
1, φ

0
a), e.g., from the prior U [0, 1].

(b) At step i = 1, . . . , N :



• Draw

φi1 ∼ Beta

(
1 +

T+1∑
t=2

xt, 1 + x1

)
• Draw

φia ∼ Beta

(
1 +

T+1∑
j=3

(t− 2)xt, 1 +
T∑
t=2

xt

)
• Increment i→ i+ 1.

(c) Discard the first M samples as burn-in. The remaining N −M samples are a
sample from the posterior.

The algorithm we have described is a standard Gibbs sampling algorithm. However,
in this case the conditional distribution of φ1 does not depend on φa and vice-versa.
Thus we can draw samples directly from the posterior and there is no need to do
MCMC. The Gibbs sampling algorithm above is providing direct samples from the
posterior for all iterations i ≥ 1.

10. (a) The acceptance probability for a move from x to y is

α(x, y) = min

(
1,
q(y, x)π(y)

q(x, y)π(x)

)
where q(x, y) is the probability that a move from x to y would be proposed by
the chosen proposal distribution. In this case we have

π(x) =
1√
2π σ

exp

[
− x2

2σ2

]
and

q(x, y) =
1√
2π τ

exp

[
−(y − ax)2

2τ 2

]
.

Therefore we have

α(x, y) = min

(
1,
q(y, x)π(y)

q(x, y)π(x)

)
= min

(
1, exp

[
(x2 − y2)

2σ2
+

[(y − ax)2 − (x− ay)2

2τ 2

])
= min

(
1, exp

[
(x2 − y2)

(
1

2σ2
+

(a2 − 1)

2τ 2

)])
. (9)

(b) The condition that the acceptance probability α(x, y) = 1 for all x, y is that
the argument of the exponential is 0, i.e.,

1

σ2
+

(a2 − 1)

τ 2
= 0, ⇒ τ 2 = σ2(1− a2).

(c) If a = 0 then the proposal distribution, q(x, y), is independent of the current
point, x, so this describes an independence sampler. Additionally setting τ = σ
the acceptance probability is again always 1, but in this case we are proposing
samples directly from the posterior and so we don’t need to use MCMC.



11. The Markov chain is reversible if there exists a distribution π(x) such that

π(x)K(x, y) = π(y)K(y, x)

where K(x, y) is the probability of moving from point x to point y. For a Markov
Chain constructed by the Metropolis-Hastings algorithm we haveK(x, y) = q(x, y)α(x, y)
using the notation of the previous question. Therefore

π(x)K(x, y) = π(x)q(x, y) min

(
π(y)q(y, x)

π(x)q(x, y)
, 1

)
= min (π(y)q(y, x), π(x)q(x, y))

= min

(
1,
π(x)q(x, y)

π(y)q(y, x)

)
π(y)q(y, x) = K(y, x)π(y). (10)

As required. Integrating this equation we find∫
π(x)K(x, y)dx =

∫
π(y)K(y, x)dx = π(y)

∫
K(y, x)dx = π(y) (11)

as required. The last equality follows from the fact that K(y, x) is a probability
distribution over x and therefore must integrate to 1.

12. (a) The posterior distribution of the success rate is

p(θ | y) ∝ f(y | θ)p(θ)

=

(
n

y

)
θy(1− θ)n−y 1

B(a, b)
θa−1(1− θ)b−1

∝ θa+y−1(1− θ)b+n−y−1,

which we recognise as the kernel of a beta distribution with parameters a + y
and b+ n− y. Therefore,

θ | y ∼ Beta(a+ y, b+ n− y).

Taking a = 9.2, b = 13.8, n = 20, and y = 15, results in a Beta(24.2, 18.8)
distribution.

(b) The posterior mean is 24.2/(24.2 + 18.8) = 0.563. The HPD interval is
(0.416, 0.708).

(c) By computing the 2.5% and 97.5% percentiles of the posterior distribution,
we obtain the symmetric credible interval (0.414, 0.706). The two intervals
(HPD and credible) are basically the same because in this case the posterior
distribution is unimodal (and also practically symmetric around the mean).

(d) The probability that the true success rate is greater than 0.6 is 0.316.

(e) Under a uniform prior, i.e., with a Beta(1, 1) prior distribution, the above
probability changes to 0.904. With a Jeffreys’ prior, it is 0.918.

(f) Let z denotes the number of positive responses in further m = 40 patients. We



must first calculate the posterior predictive distribution

f(z | y) =
∫

Θ

f(z | θ)p(θ | y)dθ

=

∫ 1

0

(
m

z

)
θz(1− θ)m−z 1

B(a+ y, b+ n− y)
θa+y−1(1− θ)b+n−y−1dθ

=

(
m

z

)
1

B(a+ y, b+ n− y)

∫ 1

0

θa+y+z−1(1− θ)b+n−y+m−z−1dθ

=

(
m

z

)
B(a+ y + z, b+ n− y +m− z)

B(a+ y, b+ n− y)

×
∫ 1

0

1

B(a+ y + z, b+ n− y +m− z)
θa+y+z−1(1− θ)b+n−y+m−z−1dθ

=

(
m

z

)
B(a+ y + z, b+ n− y +m− z)

B(a+ y, b+ n− y)

It is now straightforward to find that Pr(z ≥ 25) = 0.329.

(g) We start by calculating the prior predictive distribution

f(y) =

∫
Θ

f(y | θ)p(θ)dθ

=

∫ 1

0

(
n

y

)
θy(1− θ)n−y 1

B(a, b)
θa−1(1− θ)b−1dθ

=

(
n

y

)
1

B(a, b)

∫ 1

0

θa+y−1(1− θ)b+n−y−1dθ

=

(
n

y

)
B(a+ y, b+ n− y)

B(a, b)

The prior predictive probability of observing at least 15 positive responses can
then be computed from the last expression and it is 0.01526. This suggests
some evidence that the data and the prior are incompatible.

(h) i. Solving for a and b gives a Beta(12, 3) prior.

ii. The mixture prior θ ∼ πBeta(a1, b1) + (1 − π)Beta(a2, b2) is plotted in
Figure 1.

iii. We will start by finding the posterior distribution of θ.

p(θ | y) ∝
(
n

y

)
θy(1− θ)n−y

{
π

1

B(a1, b1)
θa1−1(1− θ)b1−1 + (1− π) 1

B(a2, b2)
θa2−1(1− θ)b2−1

}
∝ π 1

B(a1, b1)
θa1+y−1(1− θ)b1+n−y−1 + (1− π) 1

B(a2, b2)
θa2+y−1(1− θ)b2+n−y−1

= π
B(a1 + y, b1 + n− y)

B(a1, b1)

1

B(a1 + y, b1 + n− y)
θa1+y−1(1− θ)b1+n−y−1

+ (1− π)B(a2 + y, b2 + n− y)
B(a2, b2)

1

B(a2 + y, b2 + n− y)
θa2+y−1(1− θ)b2+n−y−1

= π
B(a1 + y, b1 + n− y)

B(a1, b1)
Beta(θ | a1 + y, b1 + n− y)

+ (1− π)B(a2 + y, b2 + n− y)
B(a2, b2)

Beta(θ | a2 + y, b2 + n− y).

We are almost there, but note that the ‘weights’ πB(a1+y,b1+n−y)
B(a1,b1)

and (1−
π)B(a2+y,b2+n−y)

B(a2,b2)
do not sum up to one. Renormalising, we finally obtain

that

θ | y ∼ ω1Beta(θ | a1 + y, b1 + n− y) + (1− ω1)Beta(θ | a2 + y, b2 + n− y)
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Figure 1: The mixture prior for question 12(h)(ii).

with

ω1 = π
B(a1 + y, b1 + n− y)

B(a1, b1)

(
π
B(a1 + y, b1 + n− y)

B(a1, b1)
+

+(1− π)
B(a2 + y, b2 + n− y)

B(a2, b2)

)−1

We are now ready to compute the required probability, which turns out to
be 0.58062.

iv. The procedure is similar to the one in part (g), the only difference is the
computation of the prior predictive distribution. In this case,

f(y) =

∫
Θ

f(y | θ)p(θ)dθ

=

∫ 1

0

(
n

y

)
θy(1− θ)n−y

{
π

1

B(a1, b1)
θa1−1(1− θ)b1−1

+(1− π) 1

B(a2, b2)
θa2−1(1− θ)b2−1

}
dθ

= π

(
n

y

)
1

B(a1, b1)

∫ 1

0

θa1+y−1(1− θ)b1+n−y−1dθ

+ (1− π)
(
n

y

)
1

B(a2, b2)

∫ 1

0

θa2+y−1(1− θ)b2+n−y−1dθ

= π

(
n

y

)
B(a1 + y, b1 + n− y)

B(a1, b1)
+ (1− π)

(
n

y

)
B(a2 + y, b2 + n− y)

B(a2, b2)

The prior predictive probability of observing at least 15 positive responses
is now 0.0514, which does not provide strong evidence of incompatibility.

v. The prior/likelihood/posterior plot is shown in Figure 2.

13. (a) The pystan model definition for this problem is

lin_model_def = """
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Figure 2: Comparison of prior, likelihood and posterior for question 12(h)(v).

data {

int npts;

vector[npts] year;

vector[npts] jump;

real mu0;

real var0;

real a;

real b;

}

parameters {

real beta0;

real beta1;

real<lower=0> v;

}

model {

for (i in 1:npts) {

target+=normal_lpdf(jump[i] | beta0+beta1*year[i],sqrt(v));

}

target += normal_lpdf(beta0 | mu0, sqrt(var0));

target += normal_lpdf(beta1 | mu0, sqrt(var0));

target += inv_gamma_lpdf(v | a,b);

}

"""

Fitting this model gives the traceplots and posterior distributions shown in
Figure 3. Autocorrelation plots show no evidence of autocorrelation, with
coefficients close to 0 for all lags greater than 0. Summary statistics, effective
number of samples and Gelman-Rubin statistics can be read off from the table
below.



mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta0 -19.32 0.03 2.92 -25.13 -21.23 -19.32 -17.38 -13.6 11107 1.0

beta1 0.01 1.4e-5 1.5e-3 0.01 0.01 0.01 0.01 0.02 11114 1.0

v 0.07 2.2e-4 0.02 0.04 0.05 0.07 0.08 0.12 10274 1.0
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Figure 3: Trace plots and posterior distributions for the linear model fit to the long jump
data, for parameters β0 (top left), β1 (top right) and σ2 (bottom).

(b) pystan is sampling well for this model, although trying the same fit using
rjags gives quite poor sampling. Centring of covariates often helps improve
sampling, while leaving the posterior on the slope of the regression line, which
is the key parameter, unchanged. In this case we do not need to change the
pystan model, but just need to change the year data array as follows

year_cent=year-np.mean(year)

Sampling from this model we obtain the summary table

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta0 8.01 3.7e-4 0.05 7.91 7.97 8.01 8.04 8.11 19145 1.0

beta1 0.01 7.1e-6 1.5e-3 0.01 0.01 0.01 0.02 0.02 45858 1.0

v 0.07 1.7e-4 0.02 0.04 0.05 0.07 0.08 0.12 17484 1.0

There are a larger number of effective samples in this run, indicating that it is
easier to sample from. The result is consistent, with β̂1 = 0.0141 compared to
β̂1 = 0.0140 in the non-centred case.

(c) The pystan model for robust regression with fixed student-t degrees of freedom
is

lin_model_robust_def = """

data {

int npts;

vector[npts] year;

vector[npts] jump;



real mu0;

real var0;

real a;

real b;

real nu;

}

parameters {

real beta0;

real beta1;

real<lower=0> v;

}

model {

for (i in 1:npts) {

target+=student_t_lpdf(jump[i] | nu, beta0+beta1*year[i],sqrt(v));

}

target += normal_lpdf(beta0 | mu0, sqrt(var0));

target += normal_lpdf(beta1 | mu0, sqrt(var0));

target += inv_gamma_lpdf(v | a,b);

}

"""

and the summary table from fitting this model with ν = 3 is

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta0 8.0 3.5e-4 0.05 7.91 7.97 8.0 8.03 8.09 18204 1.0

beta1 0.01 6.4e-6 1.3e-3 0.01 0.01 0.01 0.01 0.02 44428 1.0

v 0.04 1.3e-4 0.02 0.02 0.03 0.04 0.05 0.09 17361 1.0

The new estimate of the slope coefficient is β̂1 = 0.01393. To allow the degrees
of freedom to vary we use the pystan model

lin_model_robustB_def = """

data {

int npts;

vector[npts] year;

vector[npts] jump;

real mu0;

real var0;

real a;

real b;

real c;

real d;

}

parameters {

real beta0;

real beta1;

real<lower=0> v;

real nu;

}

model {

for (i in 1:npts) {

target+=student_t_lpdf(jump[i] | nu, beta0+beta1*year[i],sqrt(v));

}

target += normal_lpdf(beta0 | mu0, sqrt(var0));

target += normal_lpdf(beta1 | mu0, sqrt(var0));

target += inv_gamma_lpdf(v | a,b);



target += gamma_lpdf(nu |c,d);

}

"""

and the result table from fitting this model with c = d = 0.1 is

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta0 8.0 4.5e-4 0.05 7.91 7.97 8.0 8.03 8.1 11482 1.0

beta1 0.01 7.5e-6 1.4e-3 0.01 0.01 0.01 0.01 0.02 35027 1.0

v 0.05 2.1e-4 0.02 0.02 0.04 0.05 0.06 0.1 9020 1.0

nu 7.92 0.11 6.62 1.67 3.66 5.9 9.84 26.08 3514 1.0

The new estimate of the slope coefficient is now β̂1 = 0.01396. To fit both
of these latter two models, we used the centred “year” covariate. Inspection
of the data shows that the year 1968 is an outlier. This data point could be
removed from the data before analysing, which makes some difference to the
results. Robust regression is more immune to the presence of the outlier and
so favours somewhat shallower slopes than the first fits.

14. (a) The conjugate prior to a Normal distribution is a Normal distribution. The
expert prior could be interpreted as a uniform distribution on [0, 2], which
has mean 1 and variance 1/3. The Normal distribution with this mean and
variance is N(1, 1/3) and so that is a good choice of prior. It is not the only
choice. Anything of the form N(1, k) with k ∼ 1, e.g., k = 0.5, 1, 2 is OK since
the expert opinion is vague. However a prior with k � 1 or k � 1 would not
respect the expert opinion and a truncated distribution would not be conjugate.
The posterior for a Normal-Normal model with known measurement variance
σ2 and prior N(µ0, σ

2
0) is

N

(
nȳσ2

0 + µ0σ
2

nσ2
0 + σ2

,
σ2σ2

0

nσ2
0 + σ2

)
.

This data has n = 10, σ2 = 30 and ȳ = 1.6116 so for the N(1, 1/3) prior the
posterior is N(1.06, 0.3).

(b) As in part (a) there are several ways to interpret the US expert’s informa-
tion. Following the procedure above the US expert prior can be interpreted as
N(5, 4/3). A suitable mixture prior is of the form p(µ) = wp1(µ)+(1−w)p2(µ)
where p1(µ) and p2(µ) are the prior from the UK and US experts respectively
and w is the weight for prior p1(µ). A suitable choice is w = 2/3 since there
are twice as many US experts. In this case we have p1(µ) = N(µ1, σ

2
1) and

p2(µ) = N(µ2, σ
2
2). The posterior can be found to be

w′N

(
nȳσ2

1 + µ1σ
2

nσ2
1 + σ2

,
σ2σ2

1

nσ2
1 + σ2

)
+ (1− w′)N

(
nȳσ2

2 + µ2σ
2

nσ2
2 + σ2

,
σ2σ2

2

nσ2
2 + σ2

)
, (12)

where

w′ =
k1w

k1w + k2(1− w)
, ki =

1√
σ2 + nσ2

i

exp

[
−1

2

(
n(ȳ − µi)2

σ2 + nσ2
i

)]
. (13)

In this case we find w′ = 0.890 and the posterior is 0.890N(1.06, 0.3)+0.110N(3.95, 0.923).

(c) We need to choose a suitable prior on the precision τ = 1/σ2 and we use
Γ(0.01, 0.01). The pystan model definition is as follows



normal_model_def = """

data {

int npts;

vector[npts] y;

vector[2] wt;

real mu1;

real var1;

real mu2;

real var2;

real a;

real b;

}

parameters {

real mu;

real<lower=0> v;

}

model {

for (i in 1:npts) {

target+=normal_lpdf(y[i] | mu,sqrt(v));

}

target += log(exp(log(wt[1])+normal_lpdf(mu | mu1,sqrt(var1)))

+exp(log(wt[2])+normal_lpdf(mu | mu2,sqrt(var2))));

target += inv_gamma_lpdf(v | a,b);

}

generated quantities {

real sigma;

sigma = sqrt(v);

}

"""

The output table after fitting the model is

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

mu 1.24 7.4e-3 0.71 0.16 0.82 1.17 1.54 3.21 9114 1.0

v 13.7 0.07 8.29 5.28 8.69 11.66 16.18 34.44 13376 1.0

sigma 3.58 7.7e-3 0.93 2.3 2.95 3.41 4.02 5.87 14605 1.0

and the resulting posteriors and trace plots are shown in Figure 4. Note that
you will not get exactly these values due to sampling error, but your values
should be close to these.

(d) The probability that µ < 1 can be found by integrating the posterior for µ
from −∞ to 1. This can be done by including a line like

real frac;

if (mu < 1)

frac=1;

else

frac=0;

in the “generated quantities” section of the pystan model definition and look-
ing at the posterior mean of the new variable “frac”. We obtain an estimate
p = 0.375.

To compute the probability that a single future measurement will yield a neg-
ative log-concentration, we first need to compute p−,1, the posterior predictive
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Figure 4: Posterior distributions and trace plots for the mean µ (left) and standard
deviation σ (right) of the log concentration of the chemical.

probability of obtaining a negative measurement in a single future observation.
This is accomplished by adding these lines to the “generated quantities” part
of the model definition

real ynew;

real prob;

ynew=normal_rng(mu,sigma);

if (ynew < 0)

prob=1;

else

prob=0;

and looking at the posterior mean for “prob”. This gives p−,1 ≈ 0.360.

The probability that at least one of N future measurements yields a value less
than 0 is one minus the probability that none of them yield a value less than 0
which can be calculated as p−,5 = 1− (1− p−,1)N . For N = 5 and p−,1 = 0.360
we find p−,5 ≈ 0.893.

(e) If we include w as a parameter with a flat prior in the range [0, 1] the posterior
on (µ,w) is given by Eq. (12) above, but with w′ and (1− w′) replaced by

w′ → 2k1w

k1 + k2

, 1− w′ → 2k2(1− w)

k1 + k2

,

with ki as defined in Eq. (13). In this case we find the joint posterior is

1.561wpG(µ; 1.06, 0.3) + 0.439(1− w)pG(µ; 3.95, 0.923),

where pG(x;µ, σ2) denotes the pdf of an N(µ, σ2) distribution.

The marginal distribution on µ is found by integrating over w

p(µ|d) = 0.781pG(µ; 1.06, 0.3) + 0.219pG(µ; 3.95, 0.923).

The marginal distribution on w is found by integrating over µ

p(w|d) = 0.439 + 1.122w.

The marginalisation distribution on µ is the same distribution that would be
obtained using equal weights on the two priors in the mixture, i.e., w = 1/2.



This is because w = 1/2 is the prior expectation value for a U [0, 1] and the w
prior is a hyperprior, i.e., the prior on a parameter that describes a prior on
other parameters. The marginal on w is a straight line. It is rising, meaning
that the mode of the posterior is w = 1, i.e., we favour the prior from the
UK experts. We have weak evidence to suggest the UK experts are better at
predicting than the US experts, but this is perhaps unsurprising given that the
data is being collected in the UK. A straight line posterior does not indicate
a strong constraint on the parameter. This is because the w parameter only
enters once, as a prior on the mean that is common to all the subsequent
observations. As we make more observations we expect to measure µ better
and better, but there will be no strong change in our ability to measure w, since
it only enters once. If we imagine a scenario in which we collect sets of data
in multiple different sites, and we suppose the mean at each site is different,
drawn from the prior described by w, then as we add more and more sites we
would start to see a concentration in the w prior and stronger evidence that
one set of experts is correct.


