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This course will provide a general introduction to statistics, which will be useful for re-
searchers working in the area of gravitational wave astronomy. It will start with some of the
basic ideas from classical (frequentist) and Bayesian statistics then show how some of thee
ideas are or will be used in the analysis of data from current and future gravitational wave
(GW) detectors. The final section of the course will introduce some advanced topics that
are also relevant to GW observations. These topics will not be expounded in great depth,
but some of the key ideas will be described to provide familiarity with the concepts. The
aim of the course will be to establish sufficient grounding in statistics that students will be
able to understand research seminars and papers, and know where to begin if carrying out
research in these areas.

The lectures will be supported by a number of computer practicals. Statisticians typically
use the community software package R and this is also commonly used by researchers in other
disciplines. Most new statistical methods that are developed are implemented as R packages
and so familiarity with R will enable the user to carry out fairly sophisticated analyses
straightforwardly. However, in physics it is more common these days to use python and
there are a number of libraries of statistical functions and methods available for python as
well. Therefore, the practicals will use python.



2 Introduction to Statistics for GWs

Course outline

1. (weeks 1–2) Classical (frequentist) statistics.

– Random variables: definition, properties, some useful probability distributions,
central limit theorem.

– Statistics: definition, estimators, likelihood, desirable properties of estimators,
Cramer-Rao bound.

– Hypothesis testing: definition, Neyman-Pearson lemma, power and size of tests,
type I and type II errors, ROC curves, confidence regions, uniformly-most-powerful
tests.

2. (weeks 3–4) Bayesian statistics.

– Bayes’ theorem, conjugate priors, Jeffrey’s prior.

– Bayesian hypothesis testing, hierarchical models, posterior predictive checks.

– Sampling methods for Bayesian inference.

3. (weeks 5–6) Statistics in gravitational wave astronomy.

– Stochastic processes, optimal filtering, signal-to-noise ratio, sensitivity curves.

– Frequentist statistics in GW astronomy: false alarm rates, Fisher Matrix, PSD
estimation.

– Bayesian statistics in GW astronomy: parameter estimation, population inference,
model selection.

4. (weeks 7–8) Advanced topics in statistics.

– Time series analysis: auto-regressive processes, moving average processes, ARMA
models.

– Nonparametric regression: kernel density estimation, smoothing splines, wavelets.

– Gaussian processes, Dirichlet processes.
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1 Random variables

In classical physics most things are deterministic. There are physical laws governing the
evolution of a system which can be solved and used to predict the state of the system
in the future. In reality there are many situations in which things are not (or effectively
not) deterministic, and so the outcome of an experiment cannot be predicted with certainty.
However, if the experiment is repeated many times some outcomes will occur more frequently
than others. This notion of in-deterministicity in measurements is encoded in the concept
of a random variable. A random variable, X, is a quantity that, when observed, can take
one of a (possibly infinite) number of values. Prior to making a measurement the value of
the random variable cannot be predicted, but the relative frequency of the outcomes over
many experiments are described by a probability distribution. The value that X takes in a
particular observation (or experiment), xi, say is called a realisation of the random variable.

Random variables can be discrete, in which case the values that the variable takes are
drawn from a countable set of discrete possibilities, or continuous in which case the random
variable may take on any value within one or more ranges.

1.1 Discrete random variables

A discrete random variable X can take on any of a (possibly infinite but countable) set of
possible values, {x1, x2, . . .)}, which together comprise the sample space. The probability
that X takes any particular value is represented by a probability mass function (pmf), which
is a set of numbers {pi} with the properties 0 ≤ pi ≤ 1 for all i and

∑
pi = 1. The probability

that X takes the value xi is pi.

1.2 Examples of discrete random variables

1.2.1 Binomial and related distributions

The Binomial distribution is the distribution of the number of success in n trials for which
the probability of success in one trial is p. We write X ∼ B(n, p) and

P (X = k) = pk =





(
n
k

)
pk(1− p)n−k if k ∈ {1, . . . , n},

0 otherwise
. (1)

When n = 1 this is the Bernoulli distribution. The binomial distribution is the distribution of
the sum of n Bernoulli trials, i.e., the number of “successes” in n trials. A related distribution
is the negative binomial distribution which has pmf

P (X = k) = pk =





(
k + r − 1

k

)
pk(1− p)r if k ∈ {0, 1, . . .},

0 otherwise
. (2)

This is the distribution of the number of successes in a sequence of Bernoulli trials that will
be observed before r failures have been observed. Setting r = 1 and p→ (1− p) this is the
geometric distribution, which is the distribution of the number of trials required before the
first success.
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Another generalisation of the Binomial distribution is the multinomial distribution. In
this case the outcome of a trial is not a binary ‘success’ or ‘fail’, but it is one of k pos-
sible outcomes. The probability of each outcome is denoted pi with

∑k
i=1 pi = 1 and the

multinomial distribution describes the probability of seeing n1 occurrences of outcome 1, n2

occurrences of outcome 2 etc. in n trials. The pmf is

P ({n1, . . . , nk}) =

{
n!

n1!n2!...nk!
pn1

1 p
n2
2 . . . pnkk if ni ≥ 0 ∀i and

∑k
i=1 ni = n

0 otherwise
. (3)

Applications: counting problems, e.g., distribution of events in categories or time, trials
factors.

1.2.2 Poisson distribution

This is the distribution of the number of occurrences of some event in a certain time interval
if that event occurs at a rate λ. The quantity X follows a Poisson distribution, X ∼ P (λ) if

P (X = k) = pk =

{
λke−λ/k! if k ∈ {0, 1, . . .},
0 otherwise

. (4)

The Poisson distribution is the limiting distribution of B(n, p) as n→∞, p→ 0 with np = λ
fixed.

Applications: distribution of number of events in a population, e.g., gravitational wave
sources.

1.3 Continuous random variables

A continuous random variable can take any (usually real, but the extension to complex
RVs is straightforward) value within some continuous range, or some set of ranges, which
together comprise the sample space X . The probability that X takes a particular value is
characterised by the probability density function (pdf), p(x). The probability that X takes
a value in the range x to x + dx is p(x)dx. The pdf has the properties 0 ≤ p(x) ≤ 1 for all
x ∈ X and ∫

x∈X
p(x)dx = 1. (5)

For single valued random variables with non-disjoint sample spaces continuous random vari-
ables may also be characterised by the cumulative density function or CDF, defined as

P (X ≤ x) =

∫ x

−∞
p(x)dx. (6)

1.3.1 Uniform distribution

X is uniform on an interval (a, b), denoted X ∼ U [a, b] if the pdf is constant on the interval
[a, b]

p(x) =

{
1
b−a if x ∈ [a, b]

0 otherwise
. (7)

X takes values only in the range [a, b].
Applications: often used as an “uninformative” prior in parameter estimation.
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1.3.2 Normal distribution

X is Normal with mean µ and variance σ2, denoted X ∼ N(µ, σ2) if the pdf has the form

p(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
. (8)

X takes all values in the range (−∞,∞). If µ = 0 and σ2 = 1 we say that X follows a
standard Normal distribution.

Applications: distribution of noise fluctuations in a gravitational wave detector, priors
on mass distribution, most common distribution to assume in parametric statistics.

1.3.3 Chi-squared distribution

X is chi-squared with k degrees of freedom, denoted X ∼ χ2(k) or χ2
k is the pdf has the form

p(x) =
1

2k/2Γ(k/2)
x
k
2
−1e−

x
2 (9)

Here Γ(n) is the Gamma function, defined by

Γ(n) =

∫ ∞

0

xn−1e−xdx (10)

and such that Γ(n+ 1) = n!. X takes non-negative real values only, x ∈ [0,∞). This is the
distribution of the sum of the squares of n independent standard normal distributions.

There is also a non-central chi-square distribution which depends on two parameters —
degrees of freedom, k > 0, as before plus a non-centrality parameter, λ > 0. This has the
pdf

p(x) =
1

2
e−

(x+λ)
2

(x
λ

) k
4
− 1

2
I k

2
−1(
√
λx) (11)

where Iν(y) is the modified Bessel function of the first kind. The non-central chi-square
distribution again takes non-negative values only and arises as the distribution of the sum of
k independent normal distributions with equal (unit) variance, but non-zero means, denoted
µi. The non-centrality parameter is then λ =

∑k
i=1 µ

2
i .

Applications: used to test for deviations from normality, e.g., in noise fluctuations in a
gravitational wave detector.

1.3.4 Student’s t-distribution

X follows Student’s t-distribution with n > 0 degrees of freedom, X ∼ tn, if it has pdf

p(x) =
Γ
(
n+1

2

)
√
nπΓ

(
n
2

)
(

1 +
x2

n

)−n+1
2

. (12)

The Student t-distribution arises in hypothesis testing as the distribution of the ratio of
a standard Normal distribution to the square root of an independent χ2

n distribution, nor-
malised by the degrees of freedom. Specifically if X ∼ N(0, 1 and Y ∼ χ2

n then X/
√
Y/n

follows a tn distribution.
Applications: used for statistical test on significance of parameters in linear models,

used as a “heavy-tailed” distribution for robust parameter estimation, arises naturally when
marginalising over uncertainty in power-spectral density estimation.
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1.3.5 F-distribution

X follows an F-distribution with degrees of freedom n1 > 0 and n2 > 0 if it has pdf

p(x) =
1

B
(
n1

2
, n2

2

)
(
n1

n2

)n1
2

x
n1
2
−1

(
1 +

n1

n2

x

)−n1+n2
2

(13)

where B(a, b) is the beta function, which is given by

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx (14)

and is related to the Gamma function through B(a, b) = Γ(a)Γ(b)/Γ(a + b). The F-
distribution arises as the ratio of two independent chi-squared distributions with n2 and
n2 degrees of freedom.

Applications: arises primarily in analysis of variance to test differences between groups.

1.3.6 Exponential distribution

X is exponential with rate λ > 0, X ∼ E(λ) if it has pdf

p(x) =

{
λe−λx if x > 0
0 otherwise

(15)

X takes positive real values only, x ∈ (0,∞). The exponential distribution is the distribution
of the time that elapses between successive events of a Poisson process.

Applications: distribution of time lag between events, e.g., gravitational wave signals.

1.3.7 Gamma distribution

X is Gamma with parameters n > 0 and λ > 0, X ∼Gamma(n, λ), if it has pdf

p(x) =

{ 1
Γ(n)

λnxn−1e−λx if x > 0

0 otherwise
(16)

X takes positive real values only, x ∈ (0,∞). The Gamma distribution is the distribution
of of the sum of n exponential distributions with parameter λ.

Applications: conjugate distribution to the Poisson distribution, so useful in Bayesian
analysis of rates. Useful as prior distribution whenever variable has support on [0,∞).

1.3.8 Beta distribution

X is Beta with parameters a > 0 and b > 0, X ∼Beta(a, b), if it has pdf

p(x) =

{ 1
B(a,b)

xa−1(1− x)b−1 if 0 < x < 1

0 otherwise
(17)

X takes values in the range x ∈ (0, 1) only.
Applications: conjugate to binomial distribution. Useful as prior when variable has

support on [0, 1], e.g., for probabilities.
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1.3.9 Dirichlet distribution

The Dirichlet distribution is a multivariate extension of the Beta distribution. A realisation of
a Dirichlet random variable is a set of K values, {xi}, satisfying the constraints 0 < xi < 1 for
all i and

∑K
i=1 xi = 1. The Dirichlet distribution is characterised by a vector of concentration

parameters ~α = (α1, . . . , αK) satisfying αi > 0 for all i and has pdf

p(x) =
1

B(~α)

K∏

i=1

xαi−1
i , where B(~α) =

∏K
i=1 Γ(αi)

Γ
(∑K

j=1 αj

) . (18)

Applications: infinite dimensional generalisation is a Dirichlet process which is used
as a distribution on probability distributions. Very important in Bayesian nonparametric
analysis.

1.3.10 Cauchy distribution

X follows a Cauchy distribution (also known as a Lorentz distribution) with location param-
eter x0 and scale parameter γ > 0, if it has pdf

p(x) =
1

πγ

[
1 +

(
x−x0
γ

)2
] . (19)

X takes any real value x ∈ (−∞,∞). The Cauchy distribution arises as the distribution of
the x intercept of a ray issuing from the point (x0, γ) with a uniformly distributed angle. It
is also the distribution of the ratio of two independent zero-mean Normal distributions.

Applications: used to model distributions with sharp features. In a gravitational wave
context it is used as a model for lines in the spectral density of gravitational wave detectors,
for example in BayesLine (and hence BayesWave).

1.4 Properties of random variables

The pdf (or pmf) of a random variable tells us everything about the random variable. How-
ever, it is often convenient to work with a smaller number of quantities that summarise the
properties of the distribution. These characterise the ‘average’ value of a random variable
and the spread of the random variable about the average. We summarise a few of these quan-
tities here. They all rely on the notion of an expectation value, denoted E. The expectation
value of a function, T (X), of a discrete random variable X is defined by

E(T (X)) =
∞∑

i=1

pit(xi). (20)

A similar definition holds for continuous random variables by replacing the sum with an
integral

E(T (X)) =

∫ ∞

−∞
p(x)t(x)dx. (21)
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1.4.1 Quantities representing the average value of a random variable

• Mean The mean, often denoted µ, is the expectation value of X, µ = E(X).

• Median The median, m, is the central value of the distribution in probability, i.e., a
value such that the probability of obtaining a value smaller than that or larger than
that is (roughly) equal. For discrete random variables m = xk, where

∑

i:xi<xk

pi < 0.5 and
∑

i:xi≤xk

pi ≥ 0.5. (22)

For continuous random variables m is the value such that

∫ m

−∞
p(x)dx =

∫ ∞

m

p(x)dx =
1

2
. (23)

• Mode The mode, M , is the ‘most probable’ value of the random variable. For discrete
random variables

M = argmaxi∈Xpi (24)

and for continuous random variables

M = argmaxx∈Xp(x). (25)

The mode may not be unique.

1.4.2 Quantities representing the spread of a random variable

• Variance The variance, often denoted σ2, is the expectation value of the squared
distance from the mean, i.e.,

Var(X) = E
[
(X − E(X))2] . (26)

• Standard deviation The standard deviation is simply the square root of the variance,
usually denoted σ.

• Covariance When considering two random variables, X and Y say, the covariance is
defined as the expectation value of the product of their distance from their respective
means, i.e.,

cov(X, Y ) = E [(X − E(X)) (Y − E(Y ))] . (27)

Here the expectation value is taken with respect to the joint distribution (see section
on independence below).

• Skewness Given the mean, µ, and variance, σ2, defined above, the skewness of a
distribution is

γ1 = E

[(
x− µ
σ

)3
]
. (28)



Introduction to Statistics for GWs 9

• Kurtosis In a similar way, kurtosis is defined as

Kurt(X) = E

[(
x− µ
σ

)4
]
. (29)

This measures the heaviness of the tails of the distribution of the random variable.
The kurtosis of the Normal distribution is 3, so it is common to quote excess kurtosis,
which is the kurtosis minus 3, i.e., the excess relative to the Normal distribution.

• Higher moments Higher moments can be defined in a similar way. The n’th moment
about a reference value c of a probability distribution is

E [(X − c)n] . (30)

Moments are usually defined with c taken to be the mean, µ, as in the definition of
skewness and kurtosis above.

1.4.3 Moment generating functions

A useful object for computing summary quantities of a probability distribution is the moment
generating function, MX(t), which is defined as

MX(t) = E
[
etX
]
t ∈ R. (31)

It is clear that derivatives of this function with respect to t, evaluated at t = 0, give successive
moments about zero of the distribution. Moment generating functions (MGFs) are defined
in the same way for both discrete and continuous random variables.

In Table 1 we list these various summary quantities for the probability distributions listed
earlier. Where quantities are not known in closed form they are omitted from this table.
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Distribution Mean Median Mode Variance Skewness Excess kurtosis MGF

Binomial(n, p) np bnpc b(n+ 1)pc np(1− p) 1−2p√
np(1−p)

1−6p(1−p)
np(1−p) (1− p+ pet)n

Poisson(λ) λ ≈ bλ+ 1
3
− 0.02

λ
c dλe − 1, bλc λ λ−

1
2 λ−1 exp [λ(et − 1)]

Uniform[a, b] 1
2
(a+ b) 1

2
(a+ b) all 1

12
(b− a)2 0 −6

5
etb−eta

t(b−a)

Normal(µ, σ2) µ µ µ σ2 0 0 exp
[
µt+ 1

2
σ2t2

]

χ2
n n ≈ n

(
1− 2

9n

)3
max(n− 2, 0) 2n

√
8
n

12
n

(1− 2t)−k/2

Student’s tn 0 0 0 n
n−2

0 for n > 3 6
n−4

for n > 4 —

F(n1, n2) n1

n2−2
— n2(n1−2)

n1(n2+2)

2n2
2(n1+n2−2)

n1(n2−2)2(n2−4)

(2n1+n2−2)
√

8(n2−4)

(n2−6)
√
n1(n1+n2−2)

see caption —

E(λ) 1
λ

ln 2
λ

0 1
λ2

2 6 λ
λ−t

Gamma(n, λ) n
λ

— n−1
λ

n
λ2

2√
n

6
n

(
1− t

λ

)−n

Beta(a, b) a
a+b

I
[−1]
1
2

(a, b) a−1
a+b−2

ab
(a+b)2(a+b+1)

2(b−a)
√
a+b+1

(a+b+2)
√
ab

see caption see caption

Dirichlet (K, ~α) αi∑K
j=1 αj

— αi−1∑K
j=1 αj−K

ᾱi(1−ᾱi)
α0+1

— — —

Cauchy (x0, γ) undefined x0 x0 undefined undefined undefined does not exist

Table 1: Summary of important properties of common probability distributions. The excess kurtosis of the F distribution is 12n1(5n2−
22)(n1 + n2 − 2) + (n2 − 4)(n2 − 2)2/[n1(n2 − 6)(n2 − 8)(n1 + n2 − 2)]. For the Beta(a, b) distribution, the excess kurtosis is 6[(a −
b)2(a+ b+ 1)− ab(a+ b+ 2)]/[ab(a+ b+ 2)(a+ b+ 3)] and the MGF is 1 +

∑∞
k=1

(∏k−1
r=0

a+r
a+b+r

)
tk

k!
. For the Dirichlet distribution, the

mean and variance are quoted for one component of the distribution, xi, the parameters α0 =
∑K

j=1 αj and ᾱi = αi/
∑K

j=1 αj and the
covariance cov(xi, xj) = −ᾱiᾱj/(1 + α0).
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1.5 Independence

Most of the random variables described above are single valued, but a few of them, e.g., the
multinomial and Dirichlet distributions, return multiple values. In other situations, several
random variables might be evaluated simultaneously, or sequentially, or the same random
variable might be observed multiple times. When dealing with multiple random variables,
covariance as introduced above is an important concept, as is independence. A set of random
variables {X1, . . . , XN} are said to be independent if

P (X1 ≤ x1, X2 ≤ x2, . . . , XN ≤ xN) = P (X1 ≤ x1)P (X1 ≤ x1) . . . P (X1 ≤ x1) ∀ x1, x2, . . . , xN .
(32)

In terms of the pdf (or pmf) the random variables are independent if their joint distribution
p(x1, . . . , xN) can be separated

p(x1, . . . , xN) = pX1(x1)pX2(x2) . . . pXN (xN). (33)

Independence of two random variables implies that the covariance is 0, but the converse is
not true except in certain special cases, for example for two Normal random variables.

A set of variables {Xi} is called independent identically distributed or IID if they are
independent and all have the same probability distribution. This situation arises often, for
example when taking multiple repeated observations with an experiment.

1.6 Linear combinations of random variables

Suppose X1, . . . , XN are (not necessarily independent) random variables and consider a new
random variable Y defined as

Y =
N∑

i=1

aiXi. (34)

For any set of random variables

E(Y ) =
N∑

i=1

aiE(Xi), Var(Y ) =
N∑

i=1

a2
iVar(Xi) +

∑

i 6=j

aiajcov(Xi, Xj). (35)

If the random variables are independent then the variance expression simplifies to

Var(Y ) =
N∑

i=1

a2
iVar(Xi) (36)

and the moment generating function of Y can be found to be

MY (t) =
N∏

i=1

MXi(ait). (37)

A commonly used linear combination of random variables is the sample mean of a set of IID
random variables, defined as

µ̂ =
1

N

N∑

i=1

Xi (38)

for which

E(µ̂) = E(X1), Var(µ̂) =
1

n
Var(X1), Mµ̂(t) =

(
MX1

(
t

N

))N
. (39)
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1.7 Laws of large numbers

Suppose that X1, . . . , Xn are a sequence of IID random variables, each having finite mean µ
and variance σ2. We denote the sum of the random variables by

Sn =
n∑

i=1

Xi, which implies E(Sn) = nµ, Var(Sn) = nσ2. (40)

Laws of large numbers tells us that the sample mean becomes increasingly concentrated
around the mean of the random variable as the number of samples tends to infinity.

1.7.1 Weak law of large numbers

The weak law of large numbers states that, for ε > 0,

P

(∣∣∣∣
Sn
n
− µ

∣∣∣∣ > ε

)
→ 0, as n→∞. (41)

1.7.2 Strong law of large numbers

The strong law of large numbers states simply

P

(
Sn
n
→ µ

)
= 1. (42)

1.7.3 Central limit theorem

In many applications, people assume that the data generating process is Normal. This is
partially because the Normal distribution is convenient to work with and has many nice
properties, but also because regardless of the distribution large samples of random variables
tend to look quite Normally distributed. This fact is encoded in the Central Limit Theorem,
which states that the standardized sample mean, S∗n, is approximately standard Normal in
the limit n→∞

S∗n =
Sn − nµ
σ
√
n

. (43)

Formally the statement of the central limit theorem is

limn→∞P (a ≤ S∗n ≤ b) = Φ(b)− Φ(a) = limn→∞P (nµ+ aσ
√
n ≤ Sn ≤ nµ+ bσ

√
n). (44)
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2 Frequentist statistics

In the last section we discussed the notion of a random variable. When observing phenomena
in nature or performing experiments we would like to deduce the distribution of the random
variable, i.e., the probability distribution from which realisations of that random variable are
drawn. In parametric inference we assume that the distribution of the random variable
takes a particular form, i.e., it belongs to a known family of probability distributions. All
of the distributions that were described in the previous section are characterised by one or
more parameters and so inference about the form of the distribution reduces to inference
about the values of those parameters.

In frequentist statistics we assume that the parameters characterising the distribution are
fixed but unknown. Statements about the parameters, for example significance and confidence
are statements about multiple repetitions of the same observation, with the parameters fixed.
Key frequentist concepts are statistics, estimators and likelihood.

A statistic is a random variable or random vector T = t(X) which is a function of X
but does not depend on the parameters of the distribution, θ. Its realised value is t = t(x).
In other words a statistic is a function of observed data only, not the unknown parameters.

An estimator is a statistic used to estimate the value of a parameter. Typically the ran-
dom vector would be a set of IID random variables, X1, . . . , Xn with pdf p(x| θ). A function

θ̂(X1, . . . , Xn) of X1, . . . , Xn used to infer the parameter values is called an estimator of θ;

note that θ̂ is a random variable with a sampling distribution in this latter context. The
value of the estimator at the observed data θ̂(x1, . . . , xn) is called an estimate of θ.

A statistic might also be used to provide an upper or lower limit for a confidence interval
on the value of a parameter, or to evaluate the validity of a hypothesis in hypothesis testing.

2.1 Likelihood

Likelihood is central to the theory of frequentist parametric inference.
If an event E has probability which is a specified function of parameters ~θ, then the

likelihood of E is P(E| ~θ), regarded as a function of ~θ.

The likelihood, denoted L(~θ; x), is functionally the same as the pdf of the data generating

process, the difference is that the likelihood is regarded as a function of the parameters ~θ
while the pdf is regarded as a function of the observed data, x. It is often convenient to
work with the log likelihood

l(θ; x) = ln[L(θ; x)] = ln[p(x| θ)] (θ ∈ Θ)

Another useful quantity is the score
∂l

∂θi

which is a vector that is also regarded as a function of ~θ with the data fixed at the observed
values.

One interpretation of likelihood is that, given data x, the relative plausibility of or support
for different values ~θ1, ~θ2 of ~θ is expressed by

L(~θ1; x)

L(~θ2; x)
or l(~θ1; x)− l(~θ2; |x).
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As a result, inferences are unchanged if L(~θ|x) is multiplied by a positive constant (possibly
depending on x).

Typically we will be interested in cases where we observe more than one independent
realisation of the random variable. For discrete random variables the combined likelihood is
then the product of the likelihoods of each observed event.
Example: Poisson distribution

We observe a set {x1, . . . , xn}, of n IID observations from a Poisson distribution with
parameter λ. Denoting nx̄ =

∑n
j=1 xj the likelihood is

L(θ; x) =
e−nλλnx̄∏

j xj!
(λ > 0)

l(λ; x) = log (L(λ; x)] = −nλ+ nx̄ lnλ− ln(
∏

j

xj!)

For continuous random variables the joint likelihood can usually be written as

L(θ; x) =
n∏

j=1

p(xj| θ) ⇒ l(θ; x) =
n∑

j=1

l(xj| θ).

or just p(x| θ) for a vector x of random variables that are not IID. One case where this
does not necessarily hold is when measurements are imperfect. Typically we cannot observe
a quantity with infinite precision, but inevitably round to the nearest measurement unit. Ob-
servations of continuous random variables therefore typically involve grouping measurements
into bins.

Suppose random variables X1, . . . , Xn are IID with cumulative distribution function
P (x| ~θ) and we observe that there are n1, . . . , nk observations in each of the k intervals
(a0, a1], . . . , (ak−1, ak], where −∞ ≤ a0 < a1 < . . . < ak ≤ ∞ and P(a0 < Xj ≤ ak) = 1.

The distribution of (N1, . . . Nk) is Multinomial with parameters (n, p1(~θ), . . . pk(~θ)) with

pr(~θ) = P(ar−1 < Xj ≤ ar| ~θ) = P (ar| ~θ)− P (ar−1| ~θ),

and the likelihood is given by (3). For example, with common distribution N(µ, σ2) we have

pr(µ, σ
2) = Φ

(
ar − µ
σ

)
− Φ

(
ar−1 − µ

σ

)
.

If observations of the IID random variables are made with a resolution (or maximum
grouping error )of ±1

2
h, then we are effectively in the above situation, and a recorded value

x represents a value in the range x ± 1
2
h. Assuming that the grouping error is small, the

likelihood is

n∏

j=1

{P (xj +
1

2
h| θ)− P (xj −

1

2
h| θ)}. (45)

If p(x| θ) does not vary too rapidly in each interval (xj − 1
2
h, xj + 1

2
h) then (45) can be

approximated by
n∏

j=1

{hp(xj| θ)},
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or, ignoring the constant hn,

L(θ; x) '
n∏

j=1

p(xj| θ).

which is the result we wrote down when there was no grouping error. However, this argument
can fail, as illustrated in the two examples below.

Examples where this approximation fails

• Single observation from N(µ, σ2)

L(µ, σ|x) = Φ

{
x+ 1

2
h− µ
σ

}
− Φ

{
x− 1

2
h− µ
σ

}
(46)

'
h exp

(
−1

2
(x−µ)2

σ2

)

√
2πσ

(47)

if σ > h. If µ = x and σ → 0, (46)→ 1 but (47)→∞.

• Uniform distribution on [0, θ], U(0, θ)
If X1, . . . , Xn are IID with pdf given by

p(x| θ) =

{
1
θ

(0 < x ≤ θ)
0 otherwise

then

p(x| θ) =

{
1
θn

(0 < x(n) ≤ θ)
0 otherwise

where x(i) denotes the i’th element in the ordered sequence of {xi}. The likelihood is

L(θ; x) '
{

0 (θ < x(n))
1
θn

(θ ≥ x(n))
(48)

Taking account of a grouping error of ±1
2
h, the probability assigned to (xj− 1

2
h, xj+

1
2
h)

is {
h
θ

(xj + 1
2
h < θ)

θ−xj+ 1
2
h

θ
(xj − 1

2
h ≤ θ < xj + 1

2
h)

and, if h ≤ x(n) − x(n−1),

L(θ; x) ∝





0 (θ < x(n) − 1
2
h)

[(θ−x(n)+ 1
2
h)/h]

a

θn
(x(n) − 1

2
h ≤ θ < x(n) + 1

2
h)

1
θn

(θ > x(n) + 1
2
h)

(49)

where a is the number of observations equal to x(n). The continuous likelihood (Eq. (48))
and the likelihood accounting for grouping error (Eq. (49)) are shown in Figure 1.

Ignoring grouping, x(n) is the ML estimator and has variance of order n−2; with group-
ing the asymptotic variance is the usual O(n−1).

To summarise: if the precision of observing the data (h) is much smaller than the variabil-
ity of the data (e.g. than the standard deviation) then it is fine to use the approximation of
the likelihood by the density. However, if the precision h is comparable with the variability,
in order to estimate the unknown parameters reliably, one has to use the discrete version of
the likelihood.
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θ;

y (
n)
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Continuous likelihood
Grouping likelihood

Figure 1: The continuous likelihood for the parameter, θ, of the uniform distribution, as given
in Eq. (48), based on n = 5 observations with maximum observed value x(n) = 5.4 (solid
purple line). Also shown is the likelihood including grouping error, as given in Eq. (49),
assuming that results are rounded to one decimal place, h = 0.1, and there are a = 2
observations equal to 5.4 (dashed green line).
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2.2 Sufficient statistics

If a parametric form is assumed for the distribution of X, then there may exist a lower
dimensional function of the vector of observations x that contains the same information on
the value of ~θ as vector x. Such a function is called a sufficient statistic.

2.3 Definition

Suppose a random vector X has distribution function in a parametric family {P (x| θ); θ ∈ Θ}
and realized value x. A statistic (recall this just means a function of observed data only)

is said to be sufficient for ~θ if the distribution of X given S does not depend on ~θ, i.e.
pX|S(X|s, ~θ) does not depend on ~θ. Note that

(i) if S is sufficient for ~θ, so is any one-to-one function of S.

(ii) X is trivially sufficient.

Examples

• Bernoulli trials : X1, . . . , Xn take values 0 or 1 independently with probabilities 1−p
and p; n is fixed.

pX(x| p) =
n∏

j=1

pxj(1− p)1−xj = p
∑
xj(1− p)n−

∑
xj (50)

If S = X1 + · · · +Xn, then S has the Binomial p.d.f.

pS(s| p) =

(
n
s

)
ps(1− p)n−s (s = 0, 1, . . . , n)

and the p.d.f. of X given S is

pX|s(x|s) =
P(X1 = x1, . . . , Xn = xn, X1 + · · · +Xn = s| θ)

P(X1 + · · · +Xn = s)

=

{
pX(x| p)
pS(s| p) (

∑
xj = s)

0 (
∑
xj 6= s)

=





(
n
s

)−1

(
∑
xj = s)

0 (
∑
xj 6= s)

This does not depend on p, so S is sufficient for p.

For example, in the case when n = 3 the conditional p.d.f of x = (x1, x2, x3) given
s =

∑
xi is as follows:
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Sample s =
∑
xi

(y1, y2, y3) 0 1 2 3
(0 0 0) 1 0 0 0
(1 0 0) 0 1

3
0 0

(0 1 0) 0 1
3

0 0
(0 0 1) 0 1

3
0 0

(1 1 0) 0 0 1
3

0
(1 0 1) 0 0 1

3
0

(0 1 1) 0 0 1
3

0
(1 1 1) 0 0 0 1

• Pois(λ) , S = X1 + · · · +Xn has distribution Pois(nλ) and p.d.f.

pS(s|λ) =
e−nλ(nλ)s

s!
,

so the distribution of X given s has p.d.f.

pX|s(X|s) =





pX(x|λ)
pS(s|λ)

=
e−nλλ

∑
xj (

∏
j xj !)

−1

e−nλ(nλ)s
s!

= n−ss!∏
j xj !

(
∑
xj = s)

0 (
∑
xj 6= s)

,

which does not depend on λ (it is a multinomial distribution), so S is sufficient for λ.

Interpretation of sufficiency: If S is sufficient for ~θ, we can argue that x contains no
information on ~θ beyond what is contained in the value s of S, i.e. all the information in X
about ~θ is contained in s. This suggests that inferences about the value of ~θ should be based
on the value of s. The rest of the information in y is still relevant to testing the correctness
of the assumed parametric family, e.g., by a residual analysis. Sufficiency leads to replacing
x by s and hence to a reduction in the data, so there is an advantage in using statistical
models and designs which lead to sufficient statistics of low dimensionality.

2.4 Recognizing sufficient statistics: Neyman Factorization The-
orem

Theorem 2.1. (Neyman Factorization Theorem). Let X = (X1, . . . , Xn) ∼ p(x| ~θ). Then,

statistic s = s(X1, . . . , Xn) is sufficient for θ iff there exist functions h of x and g of (s, ~θ)
such that

p(x | ~θ) = L(~θ; x) = g(s(x), ~θ)h(x) ∀~θ ∈ Θ, x ∈ X (51)

Proof. Proof (discrete case only).

If s is sufficient, then the conditional p.d.f. pX|S(x|s) does not depend on ~θ and we can
take h(x) to be pX|S(x|s) and g(s; θ) to be fS(s| θ). Then

L(~θ; x) = pX(x| ~θ) = P(X = x| ~θ)
= P(X = x &S = s(x) | ~θ)
= P(X = x|S = s(x), ~θ)P(S = s(x)| ~θ)
= P(X = x|S = s(x))P(S = s(x)| ~θ) [since S is sufficient]

= h(x)g(s(x), ~θ).
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Conversely, if (51) holds, then for any given s there is a subset As of X in which s(x) = s;
for x in As

P(X = x|S = s, ~θ) =
fX(x| ~θ)

∑
z∈As fX(z| ~θ)

=
h(x)∑

z∈As h(z)
,

while for x 6∈ As P(X = x|S = s, ~θ) = 0. Thus the conditional distribution does not depend

on ~θ, i.e. S is sufficient for ~θ.

Note: the statistic s(x) divides the sample space X into equivalence classes As (one for
each value of s). This partitioning of X is unchanged if s is replaced by any one-to-one
function of s.

Examples

• Bernoulli trials
L(p; x) = p

∑
xj(1− p)n−

∑
xj ,

so if s(x) =
∑
xj, we could take h(x) = 1, g(s, p) = ps(1− p)n−s

[or, alternatively, we could take h(x) =

(
n
s

)−1

, g(s, p) =

(
n
s

)
ps(1− p)n−s ].

• Pois(λ), with s =
∑
xi we have the factorization

L(λ; x) = (
∏

xj!)
−1 · e−nλλs

• The Gamma distribution Γ(α, λ)

pX(x|α, λ) =
n∏

j=1

[
λαxα−1

j e−λxj

Γ(α)

]
=
λnα(

∏
j xj)

α−1e−λ
∑
xj

{Γ(α)}n = 1 · λ
nα(s2)α−1e−λs1

{Γ(α)}n

Therefore, (s1, s2) = (
∑
xj,
∏
xj) is sufficient for (α, λ).

• In a gravitational wave context, reduced order models are used to form a basis for the
space of waveforms. Given a set {hi(t)} of basis functions that describe a waveform
model, the set {(d|hi)} of overlaps of the basis functions with the data are sufficient
statistics for deducing the waveform parameters.

2.5 Minimal sufficiency

(Non-trivial) sufficiency leads to a reduction in the data; sufficient statistics achieving the
greatest reduction are called minimal sufficient, i.e. a minimal sufficient statistic is a
function of all other sufficient statistics.

While such statistics are usually obvious, a general method for finding them is implied
from the following lemma.

Lemma 2.1. Consider the following partition of the sample space of X = (X1, . . . , Xn) ∈
X n: x,y ∈ X n belong to the same class of the partition if and only if L(~θ; x)/L(~θ; y) does

not depend on ~θ.
Then, any statistic defining this partition is minimal sufficient.
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Example

• Weibull distribution: {X1, . . . , Xn} IID from Weibull with pdf

p(y|α, λ) = αλαxα−1 exp[−(λx)α] (x > 0;α, λ > 0)

Then

L(α, λ; x) = αnλnα(
n∏

j=1

xj)
α−1 exp(−λα

∑
xαj )

For L(α, λ; z)/L(α, λ; x) not to depend on α, λ, the zj must be some permutation of
the xj, but no other reduction in the data retains sufficiency, i.e. the order statistics
x(1) ≤ . . . ≤ x(n) are minimal sufficient.

2.6 Exponential families of distributions

A family of distributions indexed by a multivariate parameter ~θ ∈ Θ ⊂ Rp, is an exponential
family iff for some real-valued functions {Aj; j = 1 . . . , K}, {Bj; j = 1 . . . , K}, C,D the
pdf has the form

p(x| θ) = exp

{
K∑

j=1

Aj(x)Bj(~θ) + C(~θ) +D(x)

}
∀x, ~θ (52)

Given observations {x1, . . . , xn}, the set of K statistics {∑n
j=1Ai(xj) : 1 ≤ i ≤ K} are

sufficient for ~θ and they are called the natural statistics of the exponential family

In fact, for a K-dimensional parameter ~θ, the minimal sufficient statistic vector is also K-
dimensional only for the distributions from the exponential family (under certain regularity
conditions, which are the same as those that apply for the validity of the Cramer-Rao
inequality described below).

Example. N(µ, σ2):

p(x|µ, σ) = exp

{
µσ−2x− 1

2
σ−2x2 −

(
1

2
µ2σ−2 + lnσ +

1

2
ln(2π)

)}
,

and B1(µ, σ) = µσ−2, B2(µ, σ) = −1
2
σ−2, A1(x) = x, A2(x) = x2. The vector S =

(
∑

i xi,
∑

i x
2
i ) based on sample (x1, . . . , xn) is sufficient for ~θ = (µ, σ).

2.7 Estimators

Recall that an estimator is a statistic (i.e., a function of data only) that is used to obtain an
estimate of one or more parameters of the underlying distribution. Often we consider point
estimators which are single valued functions θ̂(X1, . . . , Xn) of X1, . . . , Xn.

Examples of point estimators:

1. if θ = E(X), we can take θ̂ to be mean, median, mode of the empirical distribution;
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2. moment estimators, including the sample mean

µ̂ =
1

n

n∑

i=1

xi

and the sample variance

σ̂2 =
1

n− 1

n∑

i=1

(xi − µ̂)2 .

3. MLE - maximum likelihood estimator, which minimizes the score.

Typically there will be several possible estimators of a parameter θ. To choose between
estimators we will define various desirable properties: unbiasedness, consistency and effi-
ciency. Admissibility and sufficiency are also desirable properties but we won’t discuss these
here. Sufficiency of an estimator is closely related to sufficiency of a statistic. Robustness
and ease of computation are not considered in this course, but may be important in practical
applications.

2.7.1 Unbiasedness

Definition 2.1. θ̂ (r.v.) is an unbiased estimator of θ iff

E(θ̂) = θ.

If E(θ̂) 6= θ then θ̂ is a biased estimator and we define the bias function of θ̂ as

bias(θ̂) = E(θ̂)− θ.

As an example, suppose θ is a population mean, then the sample mean X̄ is unbiased. Also,
X1 (first observation in sample) is unbiased, and if the distribution is symmetric so is the
sample median.

There are often several unbiased estimators to choose from, but which is best?
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Unbiasedness is not necessarily required for all estimation problems, e.g.,

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

θ1

θ2

True value θ̂1 (with wide density) and

θ̂2 (with narrow density)
are estimators of θ;
θ̂1 is unbiased;
θ̂2 is biased;
but θ̂2 may be preferred because it is
less likely to be a long way from θ.

Biased estimators may be preferred to unbiased estimators in some circumstances. A
good property is asymptotic unbiasedness.

Definition 2.2. θ̂ (r.v.) is asymptotically unbiased estimator of θ iff

E(θ̂)→ θ as n→∞.

2.7.2 Consistency

As sample size is increased the sampling pdf of any reasonable estimator should become
more closely concentrated about θ.

Definition 2.3. θ̂ is a (weakly) consistent estimator for θ if

P(| θ̂ − θ |> ε)→ 0 as n→∞

for any ε > 0.

For a particular problem, it may be difficult to verify consistency from this definition,
however, a sufficient (not necessary) condition for consistency is given in the lemma below.

Lemma 2.2. If var (θ̂)→ 0 and bias(θ̂)→ 0 as n→∞, then θ̂ is (weakly) consistent.

Definition 2.4. The mean square error of an estimator θ̂ is defined as

MSE(θ̂) = E[(θ̂ − θ)2] = var(θ̂) + [bias(θ̂)]2.

Mean squared error consists of two terms: variance of θ̂ and its squared bias.
The Markov inequality states that, for a non-negative random variable X and a > 0

P(X ≥ a) ≤ E(X)

a

which can be proved straightforwardly

E(X) =

∫ ∞

0

xp(x)dx =

∫ a

0

xp(x)dx+

∫ ∞

a

xp(x)dx ≥
∫ ∞

a

xp(x)dx ≥ a

∫ ∞

a

p(x)dx = aP(X ≥ a).
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Setting X = (θ̂ − θ)2 and a = ε2 we find

P[| θ̂ − θ |> ε] ≤ 1

ε2
E(θ̂ − θ)2.

The term on the right had side is the mean square error. If both bias and variance tend
to zero asymptotically, the mean square error tends to zero and therefore the left hand side
must tend to zero. Hence we have proven Lemma 2.2.

Examples

1. Estimation of the mean of a normal distribution: using the sample mean X̄ or median
or just the value of X1 (first observation in sample) are all unbiased estimators and
have variances σ2

n
, ασ

2

n
(α is a constant > 1) and σ2. Therefore the first two are

consistent. However, it is evident that X1 is not consistent as its distribution does not
change with sample size.

2. The Cauchy distribution with scale 1 and pdf p(x| θ) = π−1[1+(x−x0)2]−1. In this case,
the sample mean X̄ has the same distribution as any single Xi, thus P[| X̄ − x0 |> ε]
is the same for any n. This does not tend to zero as n→∞, and so X̄ is not (weakly)
consistent. (However, the sample median is a consistent estimator of x0.)

2.8 Efficiency

Definition 2.5. The efficiency of an unbiased estimator (θ̂) is the ratio of the minimum

possible variance to var(θ̂).

Definition 2.6. An unbiased estimator with efficiency equal to 1 is called efficient or a
minimum variance unbiased estimator (MVUE).

We can also define asymptotic efficiency of an (asymptotically) unbiased estimator (θ̂) is

the limit of the ratio of the minimum possible variance to var(θ̂) as sample size n→∞.

Definition 2.7. An estimator with asymptotic efficiency equal to 1 is called asymptoti-
cally efficient.

We can compare the efficiency of two estimators in the following way.

Definition 2.8. The (asymptotic) relative efficiency of two unbiased estimators θ̂1 and

θ̂2 is the reciprocal of the ratio of their variances, as sample size →∞: limn→∞
V ar(θ̂1)

V ar(θ̂2)
.

The definition of asymptotic relative efficiency can also be extended to asymptotically
unbiased estimators. These definitions are all fine, but they rely on knowing what the
smallest possible variance is. Under certain assumptions we can obtain this from the Cramér-
Rao inequality.
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2.8.1 Cramér-Rao lower bound (inequality)

The theorem below (Cramér-Rao inequality) provides a lower bound on the variance of an
estimator. When this lower bound is attainable for unbiased estimators, it can be used in
the definition of efficiency.

Regularity conditions for the Cramér-Rao inequality.

1. ∀θ1, θ2 ∈ Θ such that θ1 6= θ2, p(x | θ1) 6= p(x | θ2) [identifiability].

2. ∀θ ∈ Θ, p(x | θ) have common support.

3. Θ is an open set.

4. ∃∂p(x | θ)/∂θ.

5. E (∂ log p(X|θ)/∂θ)2 <∞.

Here I(θ) = E
(
∂ log f(X|θ)

∂θ

)2

is the Fisher information matrix.

Theorem 2.2. (Cramér-Rao inequality) Let X1, . . . , Xn denote a random sample from p(x| θ),

and suppose that θ̂ is an estimator for θ. Then, subject to the above regularity conditions,

var(θ̂) ≥
(
1 + ∂b

∂θ

)2

Iθ
,

where

b(θ) = bias(θ̂) and Iθ = E

[(
∂`

∂θ

)2
]
.

Comments

1. For unbiased θ̂, the lower bound simplifies to var(θ̂) ≥ I−1
θ .

2. Iθ is called Fisher’s information about θ contained in the observations.

3. Regularity conditions are needed to change the order of differentiation and integration
in the proof given below.

4. The result can be extended to estimators of functions of θ.

Proof of Theorem 2.2.

E[θ̂] =

∫
. . .

∫
θ̂(x1, . . . , xn)

{
n∏

i=1

p(xi| θ)
}
dx

=

∫
. . .

∫
θ̂(x1, x2, . . . , xn)L(θ; x)dx

∫
. . .
∫

is a multiple integral with respect to x=(x1, x2, . . . , xn).
From the definition of bias we have

θ + b = E(θ̂) =

∫
. . .

∫
θ̂L(θ; x)dx.
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Differentiating both sides with respect to θ gives (using regularity conditions)

1 +
∂b

∂θ
=

∫
. . .

∫
θ̂
∂L

∂θ
dx

since θ̂ does not depend on θ. Since l = ln(L) we have

∂l

∂θ
=
∂ln(L)

∂θ
=

1

L

∂L

∂θ
, and thus

∂L

∂θ
= L

∂l

∂θ
.

Thus

1 +
∂b

∂θ
=

∫
. . .

∫
θ̂
∂l

∂θ
Ldx = E

(
θ̂
∂l

∂θ

)
.

Now use the result that for any two r.v.s Uand V ,

{cov(U, V )}2 ≤ var(U)var(V )

and let

U = θ̂, and V = ∂l/∂θ.

Then

E[V ] =

∫
. . .

∫
∂l

∂θ
Ldx =

∫
. . .

∫
∂L

∂θ
dx

=
∂

∂θ

(∫
. . .

∫
L dx

)
(using regularity conditions)

=
∂

∂θ
(1) = 0.

Hence

cov(U, V ) = E(UV ) = 1 +
∂b

∂θ
.

Similarly

var(V ) = E(V 2) = E

[(
∂l

∂θ

)2
]

= Iθ (by definition of Iθ)

and since var(U) = var(θ̂) we obtain the Cramér-Rao lower bound as

var(θ̂) ≥ {cov(U, V )}2

var(V )
=

(
1 + ∂b

∂θ

)2

Iθ
.

The Cramér-Rao lower bound will only be useful if it is attainable or at least nearly
attainable.
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Lemma 2.3. The Cramér-Rao lower bound is attainable iff there exists a function f(x) of
x only, and functions a(θ), c(θ) of θ only such that

∂l

∂θ
=

(f(x)− a(θ))

c(θ)
,

in which case θ̂ = f(x) attains it. The expectation value Eθθ̂ = a(θ) and da/dθ = c(θ)Iθ.

Corollary 2.1. There is an unbiased estimator that attains the Cramér-Rao lower bound iff
there exists a function g(x) of x only such that

∂l

∂θ
= Iθ(g(x)− θ),

in which case the unbiased estimator θ̂ = g(x) attains it.

Lemma 2.4. Under the same regularity conditions as for the Cramér-Rao lower bound

Iθ = −E
[
∂2l

∂θ2

]

Example
X1, X2, . . . , Xn ∼ N(µ, σ2), σ2 known.
Likelihood for µ

L(µ; x) =
n∏

i=1

(2πσ2)−
1
2 exp

{
− 1

2σ2
(xi − µ)2

}

log likelihood for µ

l = logL = −n
2

log(2πσ2)− 1

2σ2

n∑

i=1

(xi − µ)2

Thus we have
∂l

∂µ
=

1

σ2

n∑

i=1

(xi − µ),
∂2l

∂µ2
= − n

σ2
,

and

Iθ = E
[
− ∂

2l

∂µ2

]
=

n

σ2
.

The lower bound for unbiased estimators is I−1
θ = σ2

n
. However,

var(X̄) =
σ2

n
,

so X̄ attains its lower bound. No other unbiased estimator can have smaller variance than
X̄. Therefore X̄ is MVUE.

Alternatively, we can use Lemma 2.3, and

∂l

∂µ
=

1

σ2

∑
(Xi − µ) =

n

σ2
(X̄ − µ)
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Therefore the bound is attainable.
Regularity conditions are essential to be able to use the lower bound. Consider the

uniform distribution case X1, X2, . . . , Xn ∼ U [0, θ]

L(θ; x) =

{
1
θn

0 ≤ x(1) ≤ x(2) ≤ . . . ,≤ x(n) ≤ θ
0 elsewhere

In the range where L is differentiable l = −n log θ

∂l

∂θ
= −n

θ
and

∂2l

∂θ2
=

n

θ2
.

Thus

Iθ = E

[(
∂l

∂θ

)2
]

=
n2

θ2

but

E
[
− ∂

2l

∂θ2

]
=
−n
θ2
.

Therefore the lower bound should be θ2

n2 , but

var

[
n+ 1

n
X(n)

]
=

θ2

n(n+ 2)
< I−1

θ .

The lower bound is violated because the regularity conditions don’t hold. In particular the
second condition is violated, since the support of the distribution depends on θ.

The derivation and examples above were all for a one dimensional parameter. The cor-
responding result for the multiple parameter case is

cov(ti, tj) ≥
∂mi

∂θk
[Iθ]
−1
kl

∂mj

∂θl
, [Iθ]ij = E

[
∂l

∂θi

∂l

∂θj

]
,

where t is the realised value of some multi-dimensional statistic T and m = ~θ + b = E(T).

2.9 Rao-Blackwell Theorem

The Rao-Blackwell theorem gives a method of improving an unbiased estimator, and involves
conditioning on a sufficient statistic.

Theorem 2.3. (Rao-Blackwell theorem). Let X1, X2, . . . , Xn be a random sample of obser-
vations from a distribution with pdf p(x| θ). Suppose that S is a sufficient statistic for θ and

that θ̂ is any unbiased estimator for θ. Define θ̂S = E[θ̂ | S]. Then

(a) θ̂S is a function of S only;

(b) E[θ̂S] = θ;

(c) var θ̂S ≤ var θ̂.
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2.10 Maximum likelihood estimators

Definition 2.9. The maximum likelihood estimator (MLE) is defined by θ̂ = arg maxθ∈Θ L(θ; x) =
arg maxθ∈Θ `(θ; x).

If ∃∂`/∂θj and Θ is open, then the MLE θ̂ satisfies ∂`/∂θj(θ̂) = 0, j = 1, . . . , K, θ ∈ Θ ⊂
RK .

The MLE can be biased or unbiased but it is asymptotically unbiased and efficient and
it is also consistent. In fact the following lemma holds.

Lemma 2.5. Let X1, . . . , Xn ∼ p(x | θ) IID, θ ∈ Θ ⊂ RK. Under the regularity conditions
of Cramer-Rao inequality, the MLE asymptotically satisfies

θ̂ ∼ NK(θ, I−1
θ ) n→∞,

in particular, E(θ̂)→ θ and for K = 1, Var(θ̂)/I−1
θ → 1 as n→∞.

If there exists an unbiased efficient estimator this has to be the MLE.

Lemma 2.6. Suppose there exists an unbiased estimator θ̃ that attains Cramer-Rao lower
bound, and suppose that MLE θ̂ is the solution of ∂`

∂θ
= 0. Then, θ̃ = θ̂.

Proof. θ̃ is unbiased and attains Cramer-Rao lower bound, hence, by the corollary to Lemma 2.3,
∂`
∂θ

= Iθ(θ̃ − θ). Then, the only solution of ∂`
∂θ

= 0 is θ̃, that is, θ̃ = θ̂.

Thus, (under the regularity conditions of Cramer-Rao inequality) if the Cramer-Rao lower
bound is attainable, the MLE attains it, thus in this case the MLE is efficient. If the bound
is unattainable, then the MLE is asymptotically efficient.

2.11 Confidence intervals and regions

Point estimators provide single estimated values for parameters, but we usually also need an
estimate of the uncertainty in those estimated values. These are characterised by confidence
intervals. A confidence interval is a random variable since the ends of the interval are
typically determined as a function of the observed data. The interval has the property that
over many realisations of the same experiment, the intervals constructed randomly by this
procedure will contain the true value of the parameter a certain fraction of the time.

Formally a set Sα(X) is a (1− α) confidence region for ψ if

P(Sα(X) 3 ψ;ψ, λ) = 1− α ∀ψ, λ.

Thus, Sα(X) is a random set of ψ-values which includes the true value with probability 1−α.
If more than one value of α is considered, we usually require

Sα1(x) ⊃ Sα2(x) if α1 < α2. (53)

e.g. a 99% region contains the 95% region.
If ψ is a scalar and Sα(x) has the form {ψ : tα ≥ ψ} for some statistic tα, then tα is a

(1− α) upper confidence limit for ψ.
If ψ is a scalar and Sα(x) has the form {ψ : sα ≤ ψ} for some statistic sα, then sα is a α

lower confidence limit for ψ.
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If Sα(x) = {ψ : aα(x) ≤ ψ ≤ bα(x)}, it is a two-sided confidence interval.
A two-sided confidence interval is called equitailed if aα(x) is the α/2 lower confidence

limit and bα(x) is the 1− α/2 upper confidence limit.
A high density confidence region is {θ ∈ Θ : p(x|θ) ≥ Kα} where the constant Kα

is determined by the condition P{p(X|θ) ≥ Kα} = 1− α.
Confidence intervals/regions for estimators can be constructed by identifying pivotal

quantities. A pivotal quantity U = u(X, ψ) is a scalar function of X and ψ with the same
distribution for all ψ and λ. If uα is the upper α point of this distribution, then

P(u(X, ψ) ≤ uα) = 1− α,

so that the set {ψ : u(x, ψ) ≤ uα} defines a (1− α) confidence region for ψ.
If ψ is a scalar and u(mathbfx, ψ) is monotone in ψ, this yields a one-sided interval.

In this case we may also define two-sided intervals by {ψ : uαL ≤ u(x, ψ) ≤ uαU} with
αU − αL = 1− α.

Examples of pivotal quantities

• E(λ): 2θ
∑
Xj which has distribution χ2(2n);

• N(µ, σ2), inference about µ with σ unknown:
√
n(x̄ − µ)/s which has distribution

t(n− 1);

• Ratio of two Normal variances: (s2
1/σ

2
1)/(s2

2/σ
2
2) which has distribution F (n1−1, n2−1).
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3 Hypothesis testing

Often when we observed data we have some ideas about the random processes that are
generating the observations. Having collected data it is natural to test whether the observed
data are consistent with those expectations. The idea of hypothesis testing is to say if the
data provides sufficient evidence to rule out those assumptions. The emphasis is always
placed in favour of the assumptions, rather than the alternative. We require strong evidence
that the data are inconsistent with the assumptions before we reject them.

Formally, we suppose that we have data x = (x1, . . . , xn) and want to examine whether
they are consistent with a hypothesis H0 (the null hypothesis or hypothesis under test)
about the distribution function FX of X.

A hypothesis is simple if it defines PX completely:

H0 : PX = P0

otherwise, it is composite. If PX is parametric with more than one parameter, a composite
hypothesis might specify the values of some or all of them. (e.g. one regression coefficient)

The distribution of X under H0, P0, is called null distribution.
Examples of hypotheses

• A significant trigger in a gravitational wave detector is due to instrumental fluctuations.
This is a composite hypothesis as the distribution of triggers under the noise assumption
is not fully specified.

• The numbers of gravitational wave events x1, . . . , x7 observed on Monday, . . . , Sunday.
The null hypothesis is that all days are equally likely, i.e., the joint distribution is
Multinomial(n; 1

7
, . . . , 1

7
). This is a simple hypothesis.

• The right ascensions x1, . . . , xn angles of observed gravitational wave events. The
hyypothesis that the Xj’s are independently Uniform on [0, 2π) is simple.

Suppose we want to test that there is clustering around some angle, then we can assume
that the distribution is von Mises with pdf

p(x| θ, λ) =
1

2πI0(λ)
eλ cos(x−θ), x ∈ X = [0, 2π); λ ≥ 0, 0 ≤ θ < 2π;

for unknown λ. This is a composite hypothesis.

• The hypothesis that the number of gravitational wave events in each monthX1, . . . , Xn

are independently Poisson(θ) with unknown θ is composite.

3.1 Definitions and basic concepts

1. A sample of n observations is available to make inference about parameter θ.

2. We wish to decide between two hypotheses: H0, the null hypothesis, and H1, the
alternative hypothesis.

H0 is often simple (only one value is specified for θ)

i.e. H0 : θ = θ0 (e.g. H0 : µ = 100, H0 : p = 1
2
).
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H1 can be simple: H1 : θ = θ1 but more commonly it is composite (more than one
value is allowed for θ). The most common alternatives are

H1 : θ < θ0 or H1 : θ > θ0 — one-sided/one-tailed alternative

or H1 : θ 6= θ0 — two-sided/two-tailed alternative.

3. Two possible decisions: to reject or not to reject H0 in favour of H1.

The decision whether or not to reject H0 is based on the value of a test statistic, which
is a function of the observations.

4. Values of the test statistic for which H0 is not rejected form the acceptance region, C̄.

Values of the test statistic for which H0 is rejected form the rejection region (or critical
region), C.

The form of these regions depends on the form of H1.

5. There are two possible types of error:

Reject H0 when H0 is true — Type I error
Fail to reject H0 when H0 is false — Type II error

The probability of Type I error, denoted by α, is the significance level (or size) of
the test.

The probability of Type II error, denoted by β, is only defined uniquely if H1 is simple.
In which case

η = 1− β is the power of the test.

For composite H1, η(θ) is the power function.

Generally we consider Type-I error (false rejection) to be worse than Type-II (incorrect
failure to reject) as usually in the latter case more data will be collected and the test will
be re-evaluated. It is therefore usual to specify the significance level of the test in order
to determine the threshold for rejection, or the quote a p-value (see next section) when
quoting test results.

We can define a test function φ(x) such that

φ(x) =

{
1 if t(x) ∈ C
0 if t(x) ∈ C̄

and when we observe φ(X) = 1, we reject H0. This function has the property that α =
EH0(φ(X)) and η = EH1(φ(X)), in which the subscript denotes the hypothesis under which
the expectation value is to be calculated.

For discrete distributions, the probability that the test statistic lies on the boundary of
the critical region, ∂C, may be non-zero. In that case, it is sometimes necessary to use a
randomized test, for which the test function is

φ(x) =





1 if t(x) ∈ C
γ(x) if t(x) ∈ ∂C
0 if t(x) ∈ C̄

for some function γ(x) and we reject H0 based on observed data x with probability φ(x).
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3.2 Test statistic

Often to construct a test (i.e. the decision whether to reject H0 or not based on observed
data x), a test statistic is used.

Definition 3.1. A real-valued function t(x) on X is a test statistic for testing H0 iff

(i) values of t are ordered with respect to the evidence for departure from H0

(ii) the distribution of T = t(X) under H0 is known, at least approximately. For composite
H0 the distribution should be (approximately) the same for all simple hypotheses making
up H0.

For any observation x, we measure the consistency of x with H0 using the significance
probability or the p-value, e.g. if larger values of t correspond to stronger evidence for
departure from H0, the p-value is defined by

p = P(T ≥ t(x)|H0),

the probability (under H0) of seeing the observed value of t or any more extreme value. The
smaller the value of p the greater the evidence against H0.

3.3 Alternative hypothesis

Can be specified or unspecified.

3.3.1 Pure significance tests

In a pure significance test, only the null hypothesis H0 is explicitly specified. The p-value
of the observed value under the null distribution is evaluated, and if it is sufficiently small,
the null hypothesis would be rejected. Such tests are done if we want to avoid specifying a
parametric family of alternative distributions.

There will often be multiple quantities that could be computed under the null hypothesis
and we can choose any of them to evaluated the distribution of the test statistic. The best
choice can be guided if we have a specific idea of the type of departure from H0 we are
looking for, e.g.,

• Directional data: Might look for a tendency for the observed directions to cluster about
a (possibly unknown) direction. But not a specific set of alternatives such as von Mises
distributions.

• Pois(θ): if the alternative is not a Poisson distribution, we might test whether variance
6= expectation.

An important class of pure significance tests are goodness of fit tests where either the
sample distribution function P̂X(x) = 1

n

∑n
i=1 I(x 6 xi) or the histogram are compared to

those of the null distribution.

Examples
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• Event frequency on different days: H0 : X1, . . . , X7 ∼ Mult(n; 1
7
, . . . , 1

7
).

With no particular alternative we might use Pearson’s χ2 test, comparing

X2 =
7∑

i=1

(
xi − n

7

)2

n
7

with χ2
6.

• Right ascension of GW sources: If alternative to H0 is clustering about the reference
direction (e.g. galactic centre) we could use

∑
cosxj, the projection onto the reference

axis of the resultant sum vector (
∑

cosxj,
∑

sinxj).

• Pois(θ) : might use index of dispersion,

d =

∑
(xi − ȳ)2

ȳ
,

which is approximately χ2 with (n− 1) degrees of freedom under H0 for θ ≥ 1.

Note that given
∑
Xj = s, the distribution of X1, . . . , Xn is Mult(s, 1

n
, . . . , 1

n
) and

d is the χ2 statistic for testing the fit of this distribution.

3.3.2 Specified alternative hypothesis

For a parametrised family of distributions p(x| θ), θ ∈ Θ, say H0 : θ = θ0, then

H1 : θ ∈ Θ1 ⊂ Θ \ {θ0},

e.g. θ 6= θ0 (two-sided), θ > θ0 or θ < θ0 (one-sided).
Below we consider two cases: with simple and composite alternative hypotheses (and a

simple null hypothesis).

With composite alternative hypotheses, the power of the test becomes the power function
defined over θ ∈ Θ1:

η(θ) = P(reject H0| θ) = Pθ(reject H0).

3.4 Critical regions

In § 3.2 we defined for each x ∈ X the significance probability

p = P(T ≥ t(x)|H0)

associated with a test statistic t. A different, but equivalent, approach defines a test using
critical regions rather than test statistics. This

(i) facilitates comparison of different tests of H0 according to their properties under H1;

(ii) is useful for establishing a connection between tests and confidence regions.

For any α in the interval (0, 1), a subset Rα of X is a critical region of size α if

P(X ∈ Rα|H0) = α (54)

Interpretations of Rα:
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(i) points in Rα are regarded as not consistent with H0 at level α;

(ii) points in Rα are “significant at level α”;

(iii) if x ∈ Rα, then H0 is “rejected” in a test of size α.

A significance test is defined by a set of critical regions {Rα : 0 < α < 1} satisfying

Rα1 ⊂ Rα2 if α1 < α2. (55)

Thus, for example, if data x are significant at the 1% level, they are also significant at the
5% level.

The significance probability (also called p-value) for data x is then defined as

P = inf(α; x ∈ Rα),

i.e. the smallest α for which x is significant at level α.
The definition of a test in §3.2 corresponds to critical regions of the form

Rt
α = {x : t(x) ≥ tα},

where tα is the upper α point of T = t(X) under H0, since

P(X ∈ Rt
α|H0) = P(t(X) ≥ tα|H0) = α,

by the definition of tα; also if α1 < α2 then tα1 > tα2 and Rt
α1
⊂ Rt

α2
satisfying (55). Finally,

P = P(t(X) ≥ t(x) : H0)

= inf(α; t(x) ≥ tα)

= inf(α; x ∈ Rt
α),

the smallest α for which x is significant at level α.

Example

• Xj independent N(µ, σ2) (σ known and hence =1 without loss of generality) To test
H0 : µ = µ0 vs µ > µ0, obvious test statistics are Ȳ or (Ȳ − µ0)

√
n. The significance

probability is

P = P
(
(Ȳ − µ0)

√
n > (ȳ − µ0)

√
n|H0

)
= 1− Φ((ȳ − µ0)

√
n).

The corresponding critical regions are Rα = {x : (ȳ − µ0)
√
n ≥ Φ−1(1− α)}. Thus

P(X ∈ Rα|H0) = P((Ȳ − µ0)
√
n ≥ Φ−1(1− α)) = α,

as required, and if α1 < α2, then Φ−1(1− α1) > Φ−1(1− α2), so that Rα1 ⊂ Rα2 . Also

inf(α; x ∈ Rα) = inf(α; (ȳ − µ0)
√
n ≥ Φ−1(1− α))

= inf(α;α ≥ 1− Φ((ȳ − µ0)
√
n)

= P.
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3.5 Construction of confidence intervals using critical regions

The construction of hypothesis tests leads naturally to the construction of confidence inter-
vals and regions. For any value ψ0 of ψ, let Rα(ψ0) be a size-α critical region for testing the
null hypothesis ψ = ψ0 against ψ 6= ψ0 (or possibly ψ < ψ0 or ψ > ψ0). For any x define

Sα(x) = {ψ0 : x 6∈ Rα(ψ0)}.

Then Sα(X) is a (1− α) confidence interval for ψ since

P(Sα(X) 3 ψ0;ψ0, λ) = P(X 6∈ Rα(ψ0) : ψ0, λ) = 1− α ∀ψ0, λ

[R̄α(ψ0) comprises x values judged consistent with ψ0 (at level α), so Sα(x) comprises ψ
values consistent with x.]

If α1 < α2, then from (19) {ψ0 : x ∈ Rα1(ψ0)} ⊂ {ψ0 : x ∈ Rα2(ψ0)}, so that (53) holds.
For scalar ψ, critical regions for alternatives ψ < ψ0 lead to upper confidence limits.

Example

• Exp(λ): Find the best size-α critical region for testing λ = λ0 against λ < λ0.

The best size-α critical region for testing λ = λ0 against λ < λ0 is Rα(λ0) = {x :∑
xj >

1
2
λ−1

0 χ2
2n(α)}. The corresponding (1 − α) confidence region for λ is {λ0 :∑

xj ≤ 1
2
λ−1

0 χ2
2n(α)} i.e. {λ0 : λ0 ≤ 1

2
(
∑
xj)
−1χ2

2n(α)}, so that 1
2
(
∑
xj)
−1χ2

2n(α)} is
the (1− α) upper confidence limit for λ.

3.6 Examples of hypothesis tests

We give three commonly encountered examples of hypothesis tests.

3.6.1 z-test

Suppose that we observe two independent samples

X1, . . . , Xn ∼ N(µ1, σ
2), Y1, . . . , Ym N(µ2, σ

2).

We assume additionally that σ2 is known and we are interested in testing the hypothesis

H0 : µ1 − µ2 = 0 versus H1 : µ1 − µ2 6= 0.

If the null hypothesis is violated we expect that the magnitude of the difference in sample
means, |X̄ − Ȳ |, will be large. The statistic

Z =

(
1

n
+

1

m

)− 1
2 (X̄ − Ȳ )

σ

follows a N(0, 1) distribution under the null hypothesis so we use a critical region of the form

|z| > zα
2

to define a test with significance α. Here zα
2

denotes the upper α/2 point in the Normal
distribution, i.e., the point such that

P(X ∼ N(0, 1) > zα
2
) =

α

2
.
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3.6.2 t-test

We now suppose that we want to test the same hypothesis as in the previous example, but
assuming that σ2 is not known. Once again, we expect the difference in sample means to be
large when the null hypothesis is false, but exactly how large now depends on the unknown
value of σ2. If we use the same test statistic, but with the known variance replaced by the
estimated value we have

T =

(
1

n
+

1

m

)− 1
2 (X̄ − Ȳ )

σ̂
where σ̂2 =

1

m+ n− 2

(
n∑

i=1

(Xi − X̄)2 +
m∑

j=1

(Yi − Ȳ )2

)

which follows a tm+n−2 distribution under the null hypothesis.
The critical region of a size-α test is to reject H0 when

|t| > tα
2
,

where zα
2

denotes the upper α/2 point in the t-distribution with m+n−2 degrees of freedom.

3.6.3 Analysis of variance: F-test

Suppose we have observations of random variables Xij where j = 1, . . . , ni labels different
observations of one particular group, and i = 1, . . . , k labels the different groups. We denote
the mean in each group by

X̄i• =
1

ni

ni∑

j=1

Xij

and the overall mean by

X̄•• =
1

N

∑

ij

Xij, N =
k∑

i=1

ni.

We are interested in testing that the means of all the groups are equal. If this is true then
we expect that the between samples sum of squares

SSb =
∑

i

ni(x̄i• − x̄••)2

is comparable to the within samples sum of squares

SSw =
∑

ij

(xij − xi•)2.

If the means are different then we expect the former to be larger than the latter. Therefore,
we reject the null hypothesis for large values of SSb/SSw. The quantity

F =
(N − k)SSb
(k − 1)SSw

follows an Fk−1,N−k-distribution under the null hypothesis and so our critical regions are of
the form to reject H0 when

F > Fk−1,N−k(α)

the upper α critical point of the Fk−1,N−k distribution.
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3.7 Calculating thresholds for tests

For the examples above the test statistics followed known distributions under the null hy-
pothesis and so the critical values can be directly calculated. This is not always possible. In
other situations it might be possible to compute the mean, µ, and variance, σ2, of the test
statistic, if not its full distribution. In that case, a Normal approximation can often be used
by appealing to the Central Limit Theorem.

Example: E(λ): we saw above that X =
∑
xj can be used for testing λ = λ0 versus

λ < λ0. While in this case we know the exact distribution of the test statistic, if we did not
we can approximate

X ∼ N

(
n

λ0

,
n

λ2
0

)

and reject the hypothesis at significance α if

λ0X − n√
n

> zα.

The power of the test can be approximated in a similar way, by writing down a Normal
approximation to the distribution of the test statistic under the alternative hypothesis.

If the mean and variance cannot be easily calculated, or the form of the test statistic
does not lend itself to approximation by the Central Limit Theorem, then usually the best
approach is to do a simulation study, i.e., generate many realisations of the test statistic
under H0 and determine thresholds numerically. In principle, the power of the test can be
evaluated in a similar way although this might not be practical for composite alternative
hypotheses.

3.8 Multiple testing

When presented with new data, there is a temptation to keep asking different questions of
the same data. When doing this you have to be careful to avoid multiple testing (or, in
the language of the gravitational wave community trials factors). If you keep carrying out
independent tests that have a significance of α then you would expect to reject a hypothesis
every 1/α tests purely by chance. Therefore, if you plan to carry out m independent tests
and want the overall significance to be α, the significance levels applied to the individual
tests must be lower.

If we carry out m independent tests, each with significance α, then the combined signif-
icance is

1− (1− α)m = αc.

To reach a target significance of the combined tests requires using individual tests with
significance α = 1 − (1 − αc)1/m = 1 − exp(log(1 − αc)/m) ≈ αc/m. The first expression is
the Ŝidák correction, while the latter correction is referred to as the Bonferroni correction.

It is also possible to not divide the total significance evenly between the different indi-
vidual tests. The Holm-Bonferroni method orders the individual test p-values and then tests
the i’th (starting from the smallest) at a significance level of αc/(m− i+ 1). This approach
gives better overall performance.

In practice, multiple tests on the same data will not be independent and so using the
corrections based on independence will be conservative and the true significance of any
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rejection of the null hypothesis will be greater (i.e., the true p-value will be smaller than
that estimated in this way). Understanding the dependency of multiple tests is typically
highly non-trivial so it is usually best to assess the true p-value of a testing programme
using simulations.

Another issue to be cautious of is changing the question based on the data. Changing
the question based on what was observed can lead to results appearing significant when they
are not, as the following example illustrates.

Example: LIGO/Virgo operate for 8 months from January to August and sees event
counts (1, 0, 0, 0, 0, 1, 1, 4). Are the 4 events in the last month unusual? A total of 7 events
have been observed in 8 months, so we have a rate of ∼ 7/8 per month. Assuming that the
events are Poisson distributed with this rate, the probability that a given month would have
4 or more events in it is ∼ 1.2%, which would be significant at the 5% level usually used
for hypothesis tests. But it is not fair to ask “Is four events in August unusual?”, since we
only decided to look at August in particular when we saw the data. The fair question to
ask is “Is four events in one of the months unusual”, which means we must multiply by 8 to
account for the fact that we have 8 potentially unusual months to choose from. The resulting
probability of ∼ 9.8% is much less significant 1. Note that it is perfectly fine, having made
these observations, to ask “Is August unusual in the next observing run?” and specifically
target the month that was an outlier in previous data in the next analysis. However, this
is less sensitive than doing the test “Is any month unusual?” on all of the data from both
observing runs together. Suppose in the next year we also take data from January to August
and observe events (0, 1, 0, 1, 1, 0, 0, 2). The probability of observing two or more events in
August, given the rate of 5/8 events per month, is 13%, so this would not be considered
significant. However, adding the two observing runs together we have (1, 1, 0, 1, 1, 1, 1, 6)
and the rate for binned observations is 4/3. The probability of seeing 6 or more events in a
Poisson distribution with rate 4/3 is 0.25%, which is significant 2.

3.9 Receiver operator characteristic

As mentioned above, Type-I errors are considered to be more serious than Type-II errors
and so tests are quoted by the significance level. However, there may be (infinitely) many
tests with the same significance, so how do we choose between them? This is done using the
power function. Clearly if one test is more powerful than another for the same significance
level then it is better and should be used.

In general, one way to compare different tests is by plotting a receiver operator charac-
teristic (ROC) curve. This is a plot of the power versus significance of a test, or equivalently
the “detection rate” of deviations in the null hypothesis against the “false alarm rate”. For
a random test, i.e., we toss a coin and, regardless of the observed data, say that if it is heads
we have made a detection, the ROC curve is the diagonal line. Tests that lie above the
line are more powerful than random at given significance, and so the further away from the
diagonal line the better the test is. ROC curves can be used to compare tests visually, or

1Another way to tackle this problem is to say that we expect the distribution of events across the 8
months to be Multinomial with equal probability of 0.125 in each month. The distribution of events in a
specific month is Binomial with n = 7 and p = 0.125 and so the probability that a specific event will have
four or more events out of the 7 is ∼ 0.6%, but this rises to ∼ 5.0% when we compute the probability that
one (unspecified) month has four or more events.

2In the multinomial analysis the probabilities are 12% and 0.18% respectively
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by computing the area between the curve and the diagonal line. Sometimnes the curves can
cross, so one test may be better at one significance level and another at another. The best
test then depends on what regime you are operating in.

In the following subsections we will present a number of results that describe how to find
tests that have the highest power at a given significance, under various assumptions about
the hypotheses and the underlying distributions. As we shall see below, it is not always
possible to find a test that is the best everywhere.

3.10 Designing the best test: simple null and alternative hypothe-
ses

Consider null and alternative hypotheses H0, H1 corresponding to completely specified
p.d.f.’s p0, p1 for X. For these hypotheses, comparison between the critical regions of different
tests is in terms of

P(X ∈ Rα|H1)

the power of a size-α critical region Rα for alternative H1. A best critical region of size α
is one with maximum power.

In terms of p0, p1, the power is

∫

Rα

p1(x)dx =

∫

Rα

p0(x)r(x)dx

(
or
∑

Rα

p0(x)r(x)

)

= E{r(X)|X ∈ Rα;H0}
where

r(x) =
p1(x)

p0(x)
=
L(θ; H1)

L(θ; H0)
,

the likelihood ratio (LR) for H1 vs H0. We can prove that the power is maximized when

Rα has the form {x : r(x) ≥ kα} or {x : L(θ;H1)
L(θ;H0)

≥ kα}, i.e. when Rα is a LR critical region.
Thus we have the Neyman-Pearson lemma.

Theorem 3.1. (Neyman-Pearson lemma). For any size α, the LR critical region is the best
critical region for testing simple hypotheses H0 vs H1. (It is also better than any critical
region of size < α.)

A LR test is a test whose critical regions are LR critical regions for all α for which such
a size-α region exists (all α in the continuous case).

Examples

• Angles: If H0, H1 correspond to a Uniform distribution and a von Mises distribution
with parameter θ1, the LR is

r(x) =
p1(x)

p0(x)
= {2πI0(θ1)}−n e

θ1
∑
j cosxj

(2π)−n
,

which is an increasing function of t(x) =
∑

cosxj. So the LR critical regions have
the form {x :

∑
cosxj > tα}. For any α, tα is given by P(

∑
cosXj ≥ tα|H0) =

α. From §3.3 ∑ cosXj is approximately N(0, 1
2
n) under H0, so tα is approximately(

1
2
n
)1/2

Φ−1(1− α). Note that the critical regions, and hence the test, do not depend
on the value of θ1.
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• E(λ) : X1, . . . , Xn are i.i.d. with d.f. 1−e−λy (y > 0). H0 is λ = λ0; H1 is λ = λ1 < λ0

r(x) =
p1(x)

p0(x)
=

(
λ1

λ0

)n
exp{(λ0 − λ1)

∑
xj},

which is increasing in
∑
xj. So the test is based on

∑
xj or 2λ0

∑
Xj, which is χ2

2n

under H0, and the critical regions are {x :
∑
xj >

1
2
λ−1

0 χ2
2n(α)}, where χ2

2n(α) is the
upper α point of χ2

2n. The power is

P(2λ0

∑
Xj > χ2

α|H1) = P
(

2λ1

∑
Xj >

λ1

λ0

χ2
2n(α)|H1

)

= Q2n

(
λ1

λ0

χ2
2n(α)

)

where Q2n is 1− distribution function for χ2
2n.

For comparison, we might base a test on x(1), which has distribution function 1−e−nλy;
size α critical regions are given by {x : x(1) > −(nλ0)−1 lnα}, and the power is αλ1/λ0 ,

which is < Q2n

(
λ1
λ0
χ2
α

)
for n > 1 and λ1 < λ0, and does not depend on n.

3.11 Designing the best test: simple null and composite alterna-
tive hypotheses

Suppose now there is a parametric family {p(x| θ) : θ ∈ Θ1} of alternative p.d.f.’s for X.
The power of a size-α critical region Rα generalizes to the size-α power function

pow(θ;α) = P(X ∈ Rα| θ)

=

∫

Rα

p(x| θ)dy
(

or
∑

Rα

p(x| θ)dy
)

(θ ∈ Θ1).

A size-α critical region Rα is then uniformly most powerful size α (UMP size α) if it
has maximum power uniformly over Θ1. A test is UMP if all its critical regions are UMP.
More formally

Definition 3.2. A uniformly most powerful or UMP test, φ0(X), of size α is a test t(x)
for which

(i) Eθφ0(X) ≤ α ∀ θ ∈ Θ0;

(ii) given any other test φ(·) for which Eθφ(X) ≤ α ∀ θ ∈ Θ0, we have Eθφ0(X) ≥
Eθφ(X) ∀ θ ∈ Θ1.

Such tests cannot be found in general, as this requires that the Neyman-Pearson test
should be the same for every pair of simple hypotheses. However, for one sided testing
problems, i.e., tests of the form H0 : θ ≤ θ0 against H1 : θ > θ0, there are a wide class of
parametric families for which UMP tests exist. These are distributions that have monotone
likelihood ratio or MLR.
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Definition 3.3. The family of densities {p(x|θ), θ ∈ Ωθ ⊆ R} with real scalar parameter θ
is said to be of monotone likelihood ratio if there exists a function s(x) such that the
likelihood ratio

p(x|θ2)

p(x|θ1)

is a non-decreasing function of s(x) whenever θ1 < θ2.

Note that the same result applies for a non-increasing test statistic, by replacing t(x) by
−t(x).

Theorem 3.2. Suppose X has a distribution from a family that is monotone likelihood ratio
with respect to some continuous test statistic s(X) and we wish to test H0 : θ = θ0 against
H1 : θ > θ0, then a UMP test exists with critical region of the form s ≥ sα.

Proof. For testing θ = θ0 against θ = θ1 for any specific θ1 ∈ Θ1, the Neyman-Pearson
lemma tells us that the most powerful critical region is given by the likelihood ratio critical
region. The LR is a non-decreasing function of s(y) for any θ1 > θ0, and so the critical
region is of the form s ≥ sα. sα is determined by the size of the test and depends only on
θ0. Hence, this critical region is identical for all θ1 ≥ θ0 and this test is UMP.

Corollary 3.1. If X1, . . . , Xn are i.i.d with p.d.f. of the form

p(x| θ) = exp{a(x)b(θ) + c(θ) + d(x)}

with θ a scalar parameter and b(θ) strictly increasing, then for testing the null hypothesis
that θ = θ0 against θ > θ0 the LR test has critical regions corresponding to large values of
s =

∑
a(xj) and is UMP.

Proof For any θ1 > θ0, the LR is

pX(x| θ1)

pX(x| θ0)
= exp[{b(θ1)− b(θ0)}s+ n{c(θ1)− c(θ0)}].

Since b(θ1) > b(θ0), this is monotone likelihood ratio and so the conditions of Theorem 3.2
are satisfied. This applies to all one-parameter exponential families, e.g. Normal, Binomial,
Poisson. There are similar results for θ < θ0, when b(θ) is a decreasing function.

Example.

• Angles : take H0 to be that angles X1, . . . , Xn are i.i.d. and Uniform on [0, 2π).

A set of alternatives representing a type of symmetrical clustering about y = 0 has the
Xj i.i.d. with von Mises p.d.f.

exp(θ cosx)

2πI0(θ)
(0 ≤ x < 2π; θ > 0).

So we test the hypothesis H0 : θ = 0 against the alternative θ > 0.
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3.12 Designing the best test: composite null and alternative hy-
potheses

3.12.1 One-sided tests

Previously we considered tests of hypotheses where the null hypothesis was simple. Testing
composite hypotheses is more complex in general. However, the above result for monotone
likelihood ratio distributions also applies to one-sided tests of the form H0 : θ ≤ θ0 against
H1 : θ > θ0.

Theorem 3.3. Suppose X has a distribution from a family that is monotone likelihood ratio
with respect to some continuous test statistic s(X) and we wish to test H0 : θ ≤ θ0 against
H1 : θ > θ0, then

(a) The test

φ0(x) =

{
1 if s(x) > s0,
0 if s(x) ≤ s0,

(56)

is UMP among all tests of size ≤ Eθ0 {φ0(X)}.

(b) Given some 0 < α ≤ 1, there exists an s0 such that the tests in (a) has size exactly equal
to α.

Proof. 1. From Theorem 3.2, φ0 is UMP for testing H0 : θ = θ0 against H1 : θ > θ0.

2. Eθ{φ0(x)} is a non-decreasing function of θ. If we have θ2 < θ1 and Eθ2{φ0(x)} = β,
then the trivial test φ(x) = β has Eθ1{φ(x)} = β. The test φ0 is UMP for testing θ2

against θ1 and so it must be at least as good as φ, i.e., Eθ1{φ0(x)} ≥ β. Hence, if we
construct the test with Eθ0{φ0(x)} = α, then Eθ{φ0(x)} ≤ α for all θ ≤ θ0, so φ0 is
also of size α under the larger hypothesis H0 : θ ≤ θ0.

3. For any other test φ that is of size α under H0, we have Eθ0{φ(x)} ≤ α and by the
Neyman-Pearson lemma Eθ1{φ(x)} ≤ Eθ1{φ0(x)} for any θ1 > θ0. This shows that this
test is UMP among all tests of its size.

4. If α is specified we must show that there exists a s0 such that Pθ0{s(X) > s0} = α,
but this follows from the assumption that s(X) is continuous.

3.12.2 Two-sided tests

In more general situations we will be interested in testing hypotheses of the form H0 : θ ∈ Θ0,
where Θ0 is either an interval [θ1, θ2] for θ1 < θ2 or a single point Θ0 = {θ0}, against the
generic alternative H1 : θ ∈ Θ1, with Θ1 = R/Θ0. For a family with monotone likelihood
ratio with respect to a statistic s(X), we might expect a good test to have a test function of
the form

φ(x) =





1 if s(x) > s2 or s(x) < s1,
γ(x) if s(x) = s2 or s(x) = s1,
0 if s1 < s(x) < s2.

Such a test is called a two-sided test. For such two-sided tests, we cannot usually find a
UMP test. However, under certain circumstances it is possible to find a uniformly most
powerful unbiased (UMPU) test.
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Definition 3.4. A test φ(y) of H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 is called unbiased of size
α if

sup
θ∈Θ0

Eθ {φ(Y)} ≤ α

and
Eθ {φ(Y)} ≥ α for all θ ∈ Θ1.

In other words, an unbiased test is one which has higher probability of rejecting H0 when
it is false than when it is true. Note that if the power function is a continuous function of
θ then an unbiased test of size α must have size equal to α on the boundary of the critical
region (since the size is less than or equal to α within the critical region and greater than or
equal to α outside).

Definition 3.5. A test which is uniformly most powerful among the set of all unbiased tests
is called uniformly most powerful unbiased.

For a scalar exponential family of the form given in Corollary 3.1 the following theorem
holds

Theorem 3.4. If X1, . . . , Xn are i.i.d with p.d.f. of the form

p(x| θ) = exp{a(x)b(θ) + c(θ) + d(x)}

with θ a scalar parameter and b(θ) strictly increasing, then there exists a unique UMPU
test of size α, φ′, for testing the hypothesis H0 : θ ∈ [θ1, θ2], against the generic alternative
H1 : θ ∈ R− [θ1, θ2], of the form

φ′(x) =





1 if s(x) > s2 or s(x) < s1,
γj if s(x) = sj,
0 if s1 < s(x) < s2.

(57)

where S =
∑
a(xj), for which

Eθjφ′(X) = Eθjφ(X) = α, j = 1, 2.

The boundaries of the critical region, s1, s2, and the rejection probabilities on the boundaries,
γ1, γ2, are determined from the conditions Eθjφ′(X) = α.

Example. Suppose a sample Y is drawn from an Exp(λ) distribution, so that f(y|λ) =
λ exp(−λy). Construct a uniformly most powerful unbiased test of size α = 0.05 of the
hypothesis H0 : λ ∈ [1, 2] against the generic alternative λ ∈ [0, 1) ∪ (2,∞).

For a single sample from the exponential distribution, the sufficient statistic is the ob-
served value, y. Using the previous result, the UMPU test is of the form (57). The probability
that s = si is zero for any single value si and therefore the γi’s do not need to be determined.
The boundaries of the critical region can be found from the constraints

α = 0.05 = 1− exp(−s1) + exp(−s2) = 1− exp(−2s1) + exp(−2s2),

from which we find s1 = 0.02532 and s2 = 3.6889. The corresponding power function η(λ)
is shown in Figure 2. This shows that the test is unbiased as the probability of rejecting H0

is less than or equal to the size α within the region defined by H0, it is equal to α on the
boundary, and greater than α everywhere outside that region.
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Figure 2: Power of the UMPU test of λ ∈ [1, 2] against a generic alternative for an exponential
distribution, as a function of λ, i.e., Pλ(reject H0). The horizontal line indicates the size of
the test, α = 0.05.

3.12.3 Testing a point null hypothesis

A test of the null hypothesis H0 : θ = θ0 against H1 : θ 6= θ0 can be considered as the limit
of the preceding two-sided test when θ2 − θ1 → 0. Therefore, as a corollary to the previous
result, there must exist a unique UMPU test, φ′, of this hypothesis of the form (57) for which

Eθ0{φ′(X)} = α,
d

dθ
Eθ{φ′(X)}|θ=θ0 = 0. (58)

Differentiability of the power function for any test function is ensured from the assumption
that the distribution is in the exponential family.

Example. Returning to the example of the preceding section of a single sample from an
Exp(λ) distribution, if we instead want to test the hypothesis that λ = 1 then we proceed
as before, but the constraints on the boundary of the rejection region are now

α = 0.05 = 1− exp(−t1) + exp(−t2),

0 = t1 exp(−t1)− t2 exp(−t2),

which can be solved numerically to give t1 = 0.0423633, t2 = 4.76517. The power function is
shown in Figure 3. We see that it reaches a minimum of α = 0.05 at θ = θ0 so it is unbiased
and of size α as desired.

3.13 Designing the best test: similar Tests

So far we have focussed on tests of one-parameter distributions. However, often the dis-
tribution will depend on more than one parameter. In that case we are interested in tests
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Figure 3: Power of the UMPU test of λ = 1 against a generic alternative for an exponential
distribution, as a function of λ, i.e., Pλ(reject H0). The horizontal line indicates the size of
the test, α = 0.05.

that perform as well as possible in inferring the value of one parameter of the distribution,
irrespective of the value of the other parameters of the distribution. This gives rise to the
notion of a similar test.

Definition 3.6. Suppose θ = (ψ, λ) and the parameter space is of the form Ωθ = Ωψ × Ωλ.
Suppose we wish to test the null hypothesis H0 : ψ = ψ0 against the alternative H1 : ψ 6= ψ0,
with λ treated as a nuisance parameter. Suppose φ(x), x ∈ X is a test of size α for which

Eψ0,λ {φ(x)} = α for all λ ∈ Ωλ.

Then φ is called a similar test of size α.

This definition can be extended to composite null hypotheses. If the null hypothesis
is of the form θ ∈ Θ0, where Θ0 is a subset of Ωθ, then a similar test is one for which
Eθ {φ(x)} = α on the boundary of Θ0.

If a test is uniformly most powerful among all similar tests then it is called UMP similar.
There is close connection to UMPU tests. If the power function of a test is continuous then
we saw earlier that any unbiased test of size α must have size exactly equal to α on the
boundary, i.e., it must be similar. In such cases, if we can find a UMP similar test and it
turns out to also be unbiased, then it is necessarily UMPU.

Moreover, in many cases it is possible to demonstrate that a test which is UMP among
all tests based on the conditional distribution of a statistic S given the value of an ancillary
statistic A, this test is UMP among all similar tests. In particular, this applies if A is a
complete sufficient statistic for the variables λ.
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One common situation in which this occurs is for multi-parameter exponential families,
for which the likelihood can be written

p(x|θ) = exp

{
p∑

i=1

Ai(x)Bi(θ) + C(θ) +D(x)

}
.

Consider a test of the form H0 : B1(θ) ≤ θ∗1 against H1 : B1(θ) > θ∗1. If we take
s(x) =

∑
j A1(xj) and A = (

∑
j A2(xj), . . . ,

∑
j Ap(xj)), then the conditional distribution of

S given A is also of the exponential form and doesn’t depend on B2(θ), . . . , Bp(θ), so A is
both sufficient and complete for B2(θ), . . . , Bp(θ). The Conditionality Principle suggests we
should make inference about B1(θ) based on the conditional distribution of S given A. Tests
constructed in this way are UMPU (Ferguson 1967). The optimal one-sided test is then of the
following form. Based on observations s1 =

∑
j A1(xj), s2 =

∑
j A2(xj), . . . , sp =

∑
j Ap(xj),

we reject H0 if and only if s1 > s∗1, where s∗1 is calculated from

PB1(θ)=θ∗1 {S1 > s∗1|S2 = s2, . . . , Sp = sp} = α.

It can be shown this is a UMPU test of size α.
Similarly, to construct a two-sided test of H0 : θ∗1 ≤ B1(θ) ≤ θ∗∗1 against B1(θ) < θ∗1 or

B1(θ) > θ∗∗1 , we first define the conditional power function

wθ1(φ|s2, . . . , sp) = Eθ1 {φ(S1)|S2 = s2, . . . , Sp = sp} .
Then we can construct a two-sided conditional test of the form

φ′(s1) =

{
1 if ss < s∗1 or s1 > s∗∗1 ,
0 if s∗1 ≤ s1 ≤ s∗∗1 ,

where s∗1 and s∗∗1 are chosen such that

wθ1(φ
′|s2, . . . , sp) = α when B(θ1) = θ∗1 or B(θ1) = θ∗∗1 .

It can be shown that these tests are also UMPU of size α. If the test is of a simple hypothesis
B(θ1) = θ∗1 against the generic alternative B(θ1) 6= θ∗1 then the test is of the same form but
the conditions are that the power function is equal to α and its derivative with respect to θ
is equal to 0, as in Eq. (58).

3.14 Generalized likelihood ratio tests

In the previous sections we focussed on finding the “best” tests by one metric or another.
However, as we have seen this is not always easy and the resulting test statistics are not
always straightforward to evaluate. Under many circumstances, in the limit n → ∞, the
likelihood ratio follows a χ2 distribution and so this can be used to construct a test that is
valid asymptotically.

In particular, suppose we are testing H0 : ~θ ∈ Θ0 versus H1 : ~θ ∈ Θ1. We define the
likelihood ratio

LX(H0, H1) =
sup~θ∈Θ1

p(x|θ)
sup~θ∈Θ0

p(x|θ)
and denote by p = |Θ1 − Θ0| the difference in the numbers of degrees of freedom in the
unknown parameters between the two hypotheses. Then as n→∞

2 logLX(H0, H1) ∼ χ2
p
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under H0 and tends to be larger under H1. Therefore critical regions of the form 2 logLX >
χ2
p(α) give tests of approximately size α.

The interpretation of p is the number of constraints that have been placed to reduce the,
typically more general, alternative hypothesis, to the more restrictive null hypothesis. For
example, the null hypothesis might be specified by fixing the values of p of the parameters,
or by imposing p linear constraints on the parameters, or by writing the k parameters of Θ1

as functions of an alternative k − p dimensional parameter space.
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4 Bayesian Theory

As we have seen, in frequentist statistics statements are made with reference to repetitions of
the same experiment with parameters fixed. In Bayesian statistics, parameters are no longer
regarded as fixed, but are themselves random variables. The probability distribution of the
parameter values before taking data, the prior distribution, is updated to a probability
distribution after taking data, the posterior distribution, through the likelihood of the
observed data. This update is achieved through Bayes’ Theorem. Bayesian inference
attempts to say as much as possible about the unknown parameter distribution based on the
observed data only, without reference to future repetitions of the same experiment. Bayesian
posteriors are probability distributions on the unknown parameter and can be interpreted
and manipulated in that way, as statements about the relative probability that the parameter
takes different values.

The derivation of Bayes’ theorem is a mathematical result that follows from the definition
of conditional probability, as we will see below, but it is how this result is applied to interpret
data, and the philosophical distinction in the interpretation of the parameter values that
distinguishes the frequentist and Bayesian approach. Typically, in any given observation,
the actual parameter values that led to the generation of the observed data are fixed, not
random, but the Bayesian interpretation is that you can never by sure of what the unknown
parameter is, and so it is appropriate to consider it to be a random variable. In many cases
you will not be able to repeat a particular experiment. Gravitational wave observations are
a good example of this — we cannot choose what events occur in the Universe, so every
observed event is a unique, non-repeatable, experiment. In such contexts, the frequentist
approach of referencing theoretical repetitions cannot really be seen as representative of
reality. In cases where it is possible to repeat an experiment with the unknown parameters
fixed, the Bayesian posterior converges to the true parameter value asymptotically and so
can still be used to represent the current level of uncertainty in the parameter.

Frequentist concepts such as significance and hypothesis testing have been incorporated
into the Bayesian framework, but the interpretation in the latter context is not always clean.
It is therefore useful to have familiarity with both sets of tools to be fully quipped to handle
any kind of data analysis problem.

4.1 Conditional probability

It is often the case that a process generates more than one potentially measurable random
output, but only a subset of these are measurable. If the variables are independent then
measuring one would not provide any information about the others, but when there are
inter-dependencies the observation of a random variable can provide information about other
variables with which it is correlated. For example, suppose we have a bag containing 100
balsa, of which 10 are red and stripy, 20 are blue and stripy, 30 are red and spotted and
40 are blue and spotted. In total there are 30 stripy balls out of the 100 and therefore
the probability that a randomly chosen ball is stripy is 3/10. However, out of the 40 red
balls there are only 10 that are stripy, and so if we have observed that the ball is red the
probability that it is also stripy is now 1/4.

The conditional probability of an event A, given some other event B is defined as

p(A|B) =
p(A ∩B)

B
.
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In other words, this is the fraction that both A and B occur, our of all the times that B
occurs. This can be rewritten in two different ways by interchanging A and B

p(A ∩B) = p(A|B)p(B) = p(B|A)p(A).

Rearranging this identity we obtain Bayes’ Theorem

p(A|B) =
p(B|A)p(A)

p(B)
.

4.2 Bayesian inference

Bayes’ Theorem is a mathematical identity, but it becomes philosophically distinct from
frequentist approaches when it is applied to inference. In Bayesian inference, the event A
is taken to be an observation of data, x, and the event B is taken to be the value of some
unknown parameters, ~θ, characterising the system being observed. Bayes’ Theorem becomes

p(~θ|x) =
p(x|~θ)p(~θ)
p(x)

.

In this context p(x|~θ) is the likelihood (the same function of data and parameters as in the

frequentist case), p(~θ) is the prior distribution of source parameter values, p(~θ|x) is the
posterior distribution on the source parameter values and p(x) is the evidence for the
model under consideration. In a parameter estimation context, the evidence, which does not
depend on parameter values, is a normalisation constant that can be ignored. However, it
plays an important role in Bayesian hypothesis testing, which will be discussed in section 4.6.

Example: Medical testing We suppose that a medical test for a disease is 95% effective
but has a 1% false alarm rate and the prevalence of the disease in the population is 0.5%.
You test positive for the disease. What is the probability you do in fact have it?

The term “95% effective” means that if you have the disease the test gives a positive
result 95% of the time. The term 1% false alarm rate means that if you do not have the
disease you test positive 1% of the time. We can now apply Bayes theorem with data x =
‘positive test’ and parameter θ =‘disease status’ taking values ‘infected’ or ‘not infected’.
The likelihood is

p(positive|infected) = 0.95, p(positive|not infected) = 0.01.

The prior is based on the known prevalence in the population

p(infected) = 1− p(not infected) = 0.005.

The posterior is then

p(infected|positive) =
p(positive|infected)p(infected)

p(positive|infected)p(infected) + p(positive|not infected)p(not infected)

=
0.95 ∗ 0.005

0.95 ∗ 0.005 + 0.01 ∗ 0.995
= 0.323. (59)
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So you are more likely not to be infected than to be infected if you get a positive test result.
The solution is to get a second opinion. If you take a second (independent) test and it is
also positive your posterior probably of being infected is now

p(infected|2nd positive) =
0.95 ∗ 0.323

0.95 ∗ 0.323 + 0.01 ∗ 0.677
= 0.978 =

0.952 ∗ 0.005

0.952 ∗ 0.005 + 0.012 ∗ 0.995
.

The first of these two results follows from using the posterior from the first test as a prior for
the second. The second result follows from regarding the observed data as “two independent
positive tests”.

Example: Blood evidence Based on other evidence, a detective is 50% sure that a
particular suspect has committed a murder. Then new evidence comes to light. A small
amount of blood, of type B, is found at the scene. This is not the victim’s blood type, but it
is the blood type of the suspect. Such a blood type has a prevalence of 2% in the population.
What is the detective’s confidence in the guilt of the suspect in light of this new evidence?

The likelihood is

p(type B blood|guilty) = 1, p(type B blood|not guilty) = 0.02.

The prior is p(guilty) = 0.5 and so the posterior is

p(guilty|type B blood) =
p(type B blood|guilty)p(guilty)

p(type B blood|guilty)p(guilty) + p(type B blood|not guilty)p(not guilty)

=
0.5

0.5 + 0.01
= 0.98. (60)

4.3 Choice of prior

The prior plays a key role in Bayesian parameter inference. It expresses the current state
of our understanding about parameter values, and it is updated to the posterior using data
via the likelihood. Mathematically, the prior represents the distribution of the unknown
parameter value in nature, but usually this is not known. In that case, the prior reflects
the current state of knowledge about the parameter values, which may come from previous
experiments or expert opinion or not be known.

4.3.1 Informative/expert priors

If information is available, it is appropriate to use informative priors. For example, if previous
measurements have been made of a quantity it is reasonable to use the posterior from those
measurements as a prior for the next measurement, as we saw in the medical test example
above. Alternatively, even if a measurement has not been made directly, “experts” may be
able to give a reasonable range or distribution for the parameter based on experience in
other situations. One criticism that is often levelled at Bayesian inference is that the result
can depend on the assumed prior. However, the Bayesian response is that this is desired
behaviour — if we have additional information from prior knowledge, then it is the correct
thing to do to include that in our conclusions based on subsequent observed data.

The process of constructing a prior based on the opinion of experts is known as elici-
tation. Sometimes, elicitation may result in different priors from different experts. In that
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case a mixture prior can be constructed

p(~θ) =
J∑

j=1

ωjpj(~θ)

where j labels which of the J experts we are referring to, pj(~θ) is the prior elicited from that
expert, and ωj is the weight given to that expert (or set of experts).

If the prior is based on the posterior from previous observations it is normally clear
how to fold this in. If the prior comes from expert opinion, it may be possible to use this in
several different ways. In that case, care must be taken to be as conservative as is reasonably
possible in the use of that prior information, to avoid making conclusions form the data that
are too strong.

4.3.2 Conjugate priors

It is convenient to choose a form for the prior that ensures the posterior takes the same form.
In such situations, the posterior from an experiment can be directly be used as a prior for
the next experiment and so on. Such a prior is called conjugate.

Definition: A family of distributions, F , is conjugate to a family of sampling distribu-
tions, P , if, whenever the prior belongs to the family F , the posterior belongs to the same
family, for any number and value of observations from P .

The form of the conjugate prior depends on the nature of the probability distribution, P ,
from which the observed data is drawn. This gives rise to a number of conjugate families.
In particular, any distribution in the exponential family

p(x| θ) = exp

{
K∑

j=1

Aj(x)Bj(~θ) + C(~θ) +D(x)

}
∀x, ~θ

has a conjugate prior in the exponential family of the form

p(~θ|~χ, ν) = p(~χ, ν) exp
[
~θT ~χ− νA(~θ)

]
(61)

where ν and ~χ are the hyperparameters of the prior distribution.
A full list of conjugate priors can be found in the conjugate prior entry on wikipedia,

but the three most widely used are the Beta-Binomial, Poisson-Gamma and Normal-Normal
families, and we will discuss these further here.

Beta-Binomial model Suppose our observed data X ∼Bin(n, p) with likelihood

p(x|p) =

(
n
x

)
px(1− p)n−x.

The conjugate prior is the Beta(a, b) distribution with density

p(p) =
1

B(a, b)
pa−1(1− p)b−1 =

Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1.



52 Introduction to Statistics for GWs

Observing binomial distributed data and using the Beta prior gives a posterior

p(p | x) ∝ p(x | p)p(p)

=

(
n

x

)
px(1− p)n−x Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1

∝ pa+x−1(1− p)b+n−x−1.

So the posterior is also a Beta distribution

p(p | x) = Beta(a+ x, b+ n− x).

The mean and variance of a Beta(a, b) distribution are

E(X) =
a

a+ b
, var(X) =

ab

(a+ b)2(a+ b+ 1)
.

The posterior mean is therefore

E(p|x) =
a+ x

a+ b+ n

which we compare to the mean in the observed data of x/n. One interpretation of the prior
data is that it represents having observed a− 1 events in a+ b− 2 previous trials. If a and b
are kept fixed and n, x→∞ the posterior mean tends to the maximum likelihood estimator
x/n and the posterior variance tends to zero.

Poisson-Gamma model Suppose now that we are observing data, X1, . . . , Xn, from a
Poisson distribution, X ∼Pois(λ), with likelihood

p(x | λ) =
n∏

i=1

{
λxie−λ

xi!

}
.

The conjugate prior is the Gamma(m,µ) distribution

p(λ|m,µ) =
1

Γ(m)
µmλm−1e−µλ,

which has mean m/µ and variance m/µ2. With this prior the posterior is

p(λ | x) ∝ p(x|λ)p(λ)

=
n∏

i=1

{
λxie−λ

xi!

}
1

Γ(m)
µmλm−1e−µλ

∝ e−nλ−µλλ
∑n
i=1 xi+m−1

∝ Gamma(m+ nx̄, µ+ n). (62)

The posterior mean can be seen to equal

E(p(λ | x)) =
m+ nx̄

m+ n
= x̄

(
n

n+m

)
+
m

µ

(
1− n

n+m

)
,

i.e., it is a compromise between the prior mean, m/µ, and the maximum likelihood estimator
x̄. As the number of samples increases, more weight is placed on the data and less on the
prior, as expected.
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Normal-Normal/Normal-Gamma model Now we consider X1, . . . , Xn ∼ N(µ, σ2),
and likelihood

p(x|µ, σ2) =
1

(2πσ2)
n
2

exp

[
− 1

2σ2

n∑

i=1

(xi − µ)2

]
.

We assume first that σ2 is known. The conjugate prior in this case is the Normal distribution,
N(µ0, σ

2
0),

p(µ | µ0, σ
2
0) =

1√
2πσ0

exp

[
− 1

2σ2
0

(µ− µ0)2

]
.

The posterior is

p(µ | x, σ2) ∝ p(x | µ, σ2)p(µ|µ0, σ
2
0)

∝ exp

{
− 1

2σ2

∑

i

(xi − µ)2

}
exp

{
− 1

2σ2
0

(µ− µ0)2

}

∝ exp

{
− 1

2σ2σ2
0

[
µ2(nσ2

0 + σ2)− 2µ(nȳσ2
0 + µ0σ

2)
]}

,

which can be recognized as a N(µn, σ
2
n) distribution, where

µn =
nx̄σ2

0 + µ0σ
2

nσ2
0 + σ2

=

µ0
σ2
0

+ n
σ2 x̄

1
σ2
0

+ n
σ2

, σ2
n =

σ2σ2
0

nσ2
0 + σ2

=
1

1
σ2
0

+ n
σ2

. (63)

Writing these results in terms of τ = 1/σ2, which is called the precision of the Normal
distribution we can see

µn =
τ0

τ0 + nτ
µ0 +

nτ

τ0 + nτ
ȳ

so once again the posterior mean is a balance between the prior mean and the sample mean,
with the relative weighting determined by both the number of observations and the relative
precision of the observations and the prior.

If we suppose that µ is known (which is an unrealistic assumption in practice), but the
variance is uncertain, then we can obtain a conjugate prior by using a Gamma(a, b) prior on
the precision

p(τ |a, b) ∝ τa−1e−bτ

and obtain the posterior

p(τ | x, µ) ∝ p(x | µ, τ)p(τ |a, b)

∝ τn/2 exp

{
−τ

2

n∑

i=1

(xi − µ)2

}
τa−1e−bτ

= τa+n/2−1 exp

{
−τ
(
b+

1

2

∑

i

(xi − µ)2

)}

∼ Gamma

(
a+

n

2
, b+

1

2

n∑

i=1

(xi − µ)2

)
.
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It is common practice to take the limit in which a and b are both very small and then the
posterior becomes

p(τ | x, µ) = Gamma

(
n

2
,
1

2

n∑

i=1

(xi − µ)2

)
⇒ E [τ | x, µ] =

(
1

n

n∑

i=1

(xi − µ)2

)−1

,

so the posterior expectation of the precision is approximately the same as the (frequentist)
sample precision (up to a factor of n/(n− 1)).

Finally we assume that both µ and σ2 are unknown. It would be reasonable to just
multiply together the two previous priors, but this does not result in a conjugate prior,
essentially because the posterior on µ in the first case depends on the known variance σ2.
However, we can find a correlated conjugate prior (writing τ = 1/σ2 as before) by writing

µ ∼ N(µ0, 1/(n0τ)), τ ∼ Gamma(a, b),

or, explicitly,

p(µ, τ |µ0, n0, a, b) ∝
(n0τ

2π

)n
2

exp
[
−n0τ

2
(µ− µ0)2

]
τa−1e−bτ .

The posterior on µ, conditioned on τ , p(µ|τ,x), is given by the same expression as before

p(µ|τ,x) ∼ N

(
n0µ0 + nx̄

n0 + n
,

1

(n0 + n)τ

)
.

The posterior on τ can be found by considering the combined posterior, being careful not to
drop any terms that depend on µ or τ

p(µ, τ |x) ∝ √τ exp

[
−τ

2

n∑

i=1

(xi − µ)2

]
τ
n
2 exp

[
−n0τ

2
(µ− µ0)2

]
τa−1e−bτ

= τa+n
2
−1 exp

[
−
(
b− (nx̄+ n0µ0)2

2(n+ n0)
+

1

2
n0µ

2
0 +

1

2

∑
x2
i

)
τ

]
×

×
(√

(n+ n0)τ

2π
exp

[
−(n+ n0)τ

2

(
µ− (nx̄+ n0µ0)

n+ n0

)2
])

. (64)

If we now marginalise over µ, the round bracketed term on the final line integrates to a
constant, independent of τ , and the term inside the exponent on the penultimate line can
be simplified to obtain

p(τ |x) ∝ τa+n
2
−1 exp

[
−
(
b+

1

2

n∑

i=1

(xi − x̄)2 +
nn0

2(n+ n0)
(µ0 − x̄)2

)
τ

]

⇒ p(τ |x) ∼ Gamma

(
a+

n

2
, b+

1

2

n∑

i=1

(xi − x̄)2 +
nn0

2(n+ n0)
(µ0 − x̄)2

)
. (65)

And so this is also a conjugate prior model, called the Normal-Gamma model.
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4.3.3 Using expert information with conjugate priors

If expert prior information is in the form of a posterior from a previous experiment the form
of the distribution is fixed. However, in other circumstances it can be possible to express
the prior information in the form of a particular choice of parameters for a conjugate prior.
This is most clearly seen with an example.

Example: Consider a drug to be given for relief of chronic pain. Experience with similar
compounds has suggested that response rates, p, between 0.2 and 0.6 could be feasible. We
plan to observe the response rate in n patients and want to infer a posterior on p. Propose
a suitable conjugate prior for p based on the available information.

A response rate between 0.2 and 0.6 could be used to set a uniform prior in that range.
However, this is not conjugate to the binomial distribution that determines the observed
data. Therefore, it would be better to use a conjugate prior. A U [0.2, 0.6] distribution
has mean 0.4 and standard deviation of 0.1. We can find a Beta distribution that has
the same mean and standard deviation. Rearranging the equations given earlier we deduce
Beta(a = 9.2, b = 13.8) has the desired mean and variance. This prior is conjugate and
reflects the expert opinion as regards the expected response rate for the drug. Suppose
now we observe n = 20 patients and x = 15 respond positively. The posterior is then
Beta(9.2 + 15, 13.8 + 5) = Beta(24.2, 18.8). The prior, (scaled) likelihood and posterior are
illustrated in Figure 4.

4.3.4 Mixture priors

The use of a conjugate prior can be somewhat restrictive as there is limited flexibility within
the prior family. However, one way to get around this is by using mixture priors. A
mixture prior is of the form

p(~θ) =
J∑

j=i

πjp(~θ | ~ψj),
J∑

j=1

πj = 1. (66)

Here {πj} are called the mixture weights and it is assumed that the hyperparameters, ψj, are
different in each component. If the mixture components are all drawn from the conjugate
prior family, then the mixture prior is also conjugate.

Example: Beta-Binomial mixture prior Suppose X ∼ Bin(n, p) and we use a prior
on p that is a mixture distribution

p(p|a1, b1, a2, b2) = πBeta(a1, b1) + (1− π)Beta(a2, b2).

What is the posterior distribution for p?
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Figure 4: Conjugate prior, Beta(9.2, 13.8), likelihood, Bin(20, p), and posterior,
Beta(24.2, 18.8) for the drug response problem described in the text. The likelihood has
been rescaled to ensure it has a similar height to the prior and posterior distributions.
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Solution: We find the posterior as follows

p(p | x) ∝
(
n

x

)
px(1− p)n−x

{
π

1

B(a1, b1)
pa1−1(1− p)b1−1 + (1− π)

1

B(a2, b2)
pa2−1(1− p)b2−1

}

∝ π 1

B(a1, b1)
pa1+x−1(1− p)b1+n−x−1 + (1− π)

1

B(a2, b2)
pa2+x−1(1− p)b2+n−x−1

= π
B(a1 + x, b1 + n− x)

B(a1, b1)

1

B(a1 + x, b1 + n− x)
pa1+x−1(1− p)b1+n−x−1

+ (1− π)
B(a2 + x, b2 + n− x)

B(a2, b2)

1

B(a2 + x, b2 + n− x)
pa2+x−1(1− p)b2+n−x−1

= π
B(a1 + x, b1 + n− x)

B(a1, b1)
Beta(p | a1 + x, b1 + n− x)

+ (1− π)
B(a2 + x, b2 + n− x)

B(a2, b2)
Beta(p | a2 + x, b2 + n− x).

We finish by normalising the weights to obtain

p | x ∼ ω1Beta(p | a1 + x, b1 + n− x) + (1− ω1)Beta(p | a2 + x, b2 + n− x)

with

ω1 = π
B(a1 + x, b1 + n− x)

B(a1, b1)

(
π
B(a1 + x, b1 + n− x)

B(a1, b1)
+ (1− π)

B(a2 + x, b2 + n− x)

B(a2, b2)

)−1

So the posterior is also a mixture of Beta distributions.

4.3.5 Jeffreys prior

If we do not have any prior information, it is normal to use an “uninformative” prior, i.e.,
a prior that assumes as little as possible about the parameter values. It is common to use
uniform priors as uninformative priors, so that the posterior basically corresponds to the
likelihood of the data. This is approach taken for many parameters in parameter estimation
of gravitational wave data and was in fact the approach that Bayes himself advocated.
However, uniform priors are not invariant under re-parameterisation. If one is ignorant
about the value of θ, one is also ignorant about the value of θ2 or any other function of
θ. Therefore, any uninformative prior should induce the same form of uninformative prior
on any other variables defined by transformation. Jeffreys (1961) proposed a class of priors
that are invariant under re-parameterisations. By identifying the probability density with a
metric on parameter space he argued that the prior should take the form [det(gij)]

1/2 where
the metric

gij(~θ) =
1

f(~θ)

∂f

∂θi

∂f

∂θj
.

This would lead to an invariant prior for any scalar function f(~θ). Jeffreys advocated the
use of the likelihood, which introduces a data dependence into the expression, that can be
eliminated by taking the expectation over realisations of the data. This procedure leads to
Jeffreys prior which is

p(~θ) ∝
√

det[I(~θ)], where I(~θ)ij = E
[
∂l

∂θi

∂l

∂θj

]

for l = log p(x|~θ) the log-likelihood is the Fisher information matrix.



58 Introduction to Statistics for GWs

Jeffreys prior is “uninformative” because it can be interpreted as being as close as possible
to the likelihood function and it is invariant under re-parameterisation. However, it is rarely
a member of the conjugate family of distributions or of some other convenient form which
is why it is not always convenient to use it in practice. Note also that the Jeffreys prior is
not always proper, i.e., it does not always have a finite integral and therefore may not be
normalisable.

Example: Poisson distribution For a single observation, x, from the Poisson(λ) dis-
tribution with pmf

p(x|λ) =
λxe−λ

x!
we have

∂ log p

∂λ
=
x

λ
− 1,

∂2 log p

∂λ2
= − x

λ2
⇒ I(λ) ≡ E

[
−∂

2 log p

∂λ2

]
=

1

λ
.

The Jeffreys prior for the Poisson distribution is therefore p(λ) ∝ 1/
√
λ. This is an example

of an improper prior, since it cannot be normalised to integrate to 1 unless the range of
rates is restricted.

4.4 Posterior summary statistics

The result of a Bayesian inference calculation is a probability distribution, the full posterior
probability distribution of the parameters, p(~θ|x). This is not only difficult to calculate in
many cases, it is also unwieldy to manipulate and so it is common to use quantities that
summarise the properties of the distribution. These are all of the summary statistics that
we encountered in the first chapter of the course.

4.4.1 Point estimates

To obtain point estimates of a parameter value, θ1 say, one typically works with the marginalised
distribution for that parameter, defined by

pmarg(θ1|x) =

∫
p(~θ|x)dθ2 . . . dθm.

From this marginal distribution, we can evaluate the posterior mean

µ =

∫ ∞

−∞
θ1pmarg(θ1|x)dθ1

or the posterior median, m, defined such that
∫ m

−∞
pmarg(θ1|x)dθ1 = 0.5 =

∫ ∞

m

pmarg(θ1|x)dθ1

or the posterior mode
M = argmax pmarg(θ1|x).

The posterior mean and mode can be defined unambiguously over the full distribution as
well. The posterior mean is the same whether computed over the marginal distribution or
the full distribution, but the mode typically changes. The median is not unambiguously
defined on the whole distribution, as there are infinitely many ways to partition the full
parameter space into equal probability subsets.
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4.4.2 Credible intervals

To move beyond point estimates, it is natural to want to describe ranges in which parameter
values are estimated to lie. The Bayesian equivalent of a frequentist confidence interval is a
credible interval. This is defined as

Definition: An interval (a, b) is a 100(1− α)% posterior credible interval for θ1 if

∫ b

a

pmarg(θ1|x)dθ1 = (1− α), 0 ≤ α ≤ 1.

A credible region can be defined in a similar way. This is any partition of parameter
space that contains 100(1−α)% of the total posterior probability. Clearly credible intervals
and regions are not unique, but there are two types of credible interval that are commonly
used.

Definition: An interval (a, b) is a symmetric 100(1 − α)% posterior credible interval
for θ1 if ∫ a

−∞
pmarg(θ1|x)dθ1 =

α

2
=

∫ ∞

b

pmarg(θ1|x)dθ1.

Definition: An interval (a, b) is a 100(1 − α)% highest posterior density (HPD)
interval for θ1 if

1. [a, b] is a 100(1− α)% credible interval for θ1;

2. for all θ ∈ [a, b] and θ′ /∈ [a, b] we have pmarg(θ|x) ≥ pmarg(θ′|x).

Credible intervals are more intuitive than confidence intervals as they make an explicit
statement about the probability that the parameter takes values in the range, rather than
referencing an ensemble of similar experiments.

4.4.3 Posterior samples

Summary statistics provide a useful way to summarise and compare distributions, but they
inevitably discard information. To retain full information about the parameters we need the
full posterior. Often this cannot be written down in a simple analytic form, but it can be
summarised by drawing a set of samples {~θ1, . . . , ~θM} randomly from the posterior. Such
samples can then be used to compute integrals over the posterior

∫
f(~θ)p(~θ|x)d~θ ≈ 1

M

M∑

i=1

f(~θi).

Most quantities that one might wish to compute from a posterior distribution can be ex-
pressed as integrals of this form, and so generation of such samples is the most complete way
to represent posterior distributions. Efficient production of samples is non-trivial and will
be the topic of the next chapter of these notes.
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4.5 Interpreting summary statistics

4.5.1 Decision theory

The posterior mean, mode and median are all valid ways to summarise a posterior distribu-
tion. One way to motivate these (and other possible) choices is through decision theory. In
decision theory, understanding which decision is the best is motivated by introducing a loss
function which characterises the cost or penalty of making a particular decision. Formally
we define various quantities

• The sample space X denotes the possible values for the observed data, x.

• The parameter space, Ωθ, denotes possible (unknown) states of nature (or parameter
values characterising the true pdf of observed data sets).

• We define a family of probability distributions, {Pθ(x) : x ∈ X , θ ∈ Ωθ}, which
describe how the observed data is generated in the possible states of nature.

• The action space, A, is the set of actions that an experimenter can take after observ-
ing data, e.g., reject or accept a null hypothesis, assign an estimate to the value of θ
etc.

• The loss function, L : Ωθ × A → R, is a mapping from the space of actions and
parameters to the real numbers, such that L(a, θ) is the loss associated with taking
the action a when the true state of nature is θ.

• The set of decision rules, D, is a set of mappings from data to actions. Each element
d ∈ D is a function d : X → A that associates a particular action with each possible
observed data set.

For a parameter value θ ∈ Ωθ, the risk of a decision rule, d, is defined as

R(θ, d) = EθL(θ, d(X)) =

{ ∑
x∈X L(θ, d(x))p(x; θ) for discrete X∫
X L(θ, d(x))p(x; θ)dx for continuous X .

In other words, the risk is the expected loss of a particular decision rule when the true value
of the unknown parameter is θ. Note that this is fundamentally a frequentist concept, since
the definition implicitly invokes the idea of repeated samples from the parameter space X
and computes the average loss over these hypothetical repetitions. However, it is possible to
extend these ideas to a Bayesian framework by defining a prior, π(θ), over the parameters
of the distribution. The Bayes risk of a decision rule, d, is then defined as

r(π, d) =

∫

θ∈Ωθ

R(θ, d)π(θ)dθ,

or by a sum in the case of a discrete-valued probability distribution. A decision rule is a
Bayes rule with respect to the prior π(·) if it minimizes the Bayes risk, i.e.,

r(π, d) = inf
d′∈D

r(π, d′) = mπ, say.

Note that, as usual in a Bayesian context, the Bayes rule depends on the specification of the
prior and therefore there will be infinitely many Bayes rules for any particular problem. A
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useful choice of prior is the one that is most conservative in its estimate of risk. This gives
rise to the concept of a least favourable prior. The prior π(θ) is least favourable if, for
any other prior π′(θ) we have

r(π, dπ) ≥ r(π′, dπ′)

where dπ, dπ′ are the Bayes rules corresponding to π(·) and π′(·) respectively.

4.5.2 Bayes rules as minimizers of posterior expected loss

The Bayes risk can be written as

r(π, d) =

∫

Ωθ

R(θ, d)π(θ)dθ

=

∫

Ωθ

∫

X
L(θ, d(x))p(x|θ)π(θ)dxdθ

=

∫

Ωθ

∫

X
L(θ, d(x))p(θ|x)p(x)dxdθ

=

∫

X
p(x)

{∫

Ωθ

L(θ, d(x))p(θ|x)dθ

}
dx

where the second line follows from the definition of the risk function and the third line follows
by using Bayes’ theorem to write p(x|θ)π(θ) = p(θ|x)p(x) in terms of the posterior p(θ|x)
and the evidence p(x). The Bayes rule minimizes the Bayes risk. We see that this minimum
is achieved for a particular value of x by making the decision that minimizes the expression
in curly brackets. This is the expected posterior loss associated with the observed x. This
observation simplifies the calculation in many cases and also illustrates the general property
of Bayesian procedures, namely that the decision depends only on the observed data and
not on potential unobserved data sets.

We will illustrate this with four examples. In the first three examples, we are attempting
to make a point estimate and so the decision is an assignment of the value of the parameter
d = θ̂.

Example: Point estimation with squared error loss Suppose we want to make a
point estimate of a parameter and we use a squared error loss function, L(θ, d) = (θ − d)2.
Find the Bayes rule.

Solution
The Bayes rule chooses d(Y ) to minimize

∫

Ωθ

(θ − d)2p(θ|y)dθ.

Differentiating with respect to d and setting this to zero gives

∫

Ωθ

(θ − d)p(θ|x)dθ = 0 ⇒ d =

∫

Ωθ

θp(θ|x)dθ.

In other words, the Bayes estimator of θ, with squared error loss, is the posterior mean.
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Example: Point estimation with absolute magnitude error loss
Suppose we instead use the loss function L(θ, d) = |θ − d|. Find the new Bayes rule.

Solution
In this case, the Bayes rule minimizes

∫ d

−∞
(d− θ)p(θ|x)dθ +

∫ ∞

d

(θ − d)p(θ|x)dθ.

Setting the derivative with respect to d to zero now gives

∫ d

−∞
p(θ|x)dθ −

∫ ∞

d

p(θ|x)dθ = 0 ⇒
∫ d

−∞
p(θ|x)dθ =

∫ ∞

d

p(θ|x)dθ =
1

2
.

In other words, the Bayes estimator of θ, with absolute magnitude error loss, is the posterior
median.

Example: Point estimation with delta-function gain
Suppose we instead use the loss function

L(θ, d) =

{
−δ(θ − d) if d = θ

0 if d 6= θ
.

In other words, the loss is infinitely higher for any value except the correct one. Find the
new Bayes rule.

Solution
In this case, the Bayes rule minimizes

−
∫ ∞

−∞
δ(θ − d)p(θ|x)dθ = −p(d|x).

The minimum loss is obtained by setting

d = argmaxp(d|x),

i.e., the posterior mode.

Example: Interval estimation
Suppose we have a loss function of the form

L(θ, d) =

{
0 if |θ − d| ≤ δ
1 if |θ − d| > δ

for specified δ > 0. What is the Bayes rule?
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Solution
The expected posterior loss in this case is the posterior probability that |θ − d| > δ.

The interval that minimises this loss, among intervals of fixed length 2δ, is the interval
that contains the highest posterior probability. This is called the highest posterior density
interval.

We see that all of the “natural” ways to obtain a point estimate from a Bayesian posterior
can be interpreted in terms of Bayes rule’s with different loss functions.

4.6 Bayesian hypothesis testing

The denominator that appears in Bayes’ theorem is the Bayesian evidence and can be com-
puted via

Z = p(x) =

∫
p(x | ~θ)p(~θ)d~θ.

When writing down Bayes’ theorem we suppressed the fact that all of the quantities were
conditioned on the particular model we were assuming for the data generating process.
Explicitly reintroducing the dependence on the model, M , we have

p(~θ|x,M) =
p(x|~θ,M)p(~θ|M)

p(x|M)
.

This makes it clear that the evidence, p(x|M), represents the probability of seeing the model
data under model M and can be thought of as the likelihood for the model given the observed
data. If we now have more than one model, M1 and M2 say, that we believe could describe
the data, we can compute the posterior odds ratio for M1 over M2

O12 =
p(x|M1)

p(x|M2)

p(M1)

p(M2)
.

The first term is called the Bayes factor and is the ratio of the model likelihoods. The
second term is the prior odds ratio, which represents our prior belief about the relative
probability of the two models. The posterior odds is the ratio of model probabilities based
on the observed data and is the basis for Bayesian hypothesis testing. For O12 � 1 we favour
model M1, while for O12 � 1 we favour M2.

In the case of a flat prior on models the prior odds ratio is just 1 and decisions are based
on the Bayes factor. Kass and Rafferty (1995) described a ‘rule of thumb’ for interpreting
Bayes’ factors. This is summarised in Table 2. This Table can be used to interpret the
results of Bayesian hypothesis tests. Alternatively, the distribution of the Bayes factor can
be computed under the null hypothesis and used, in a frequentist way, to produce a mapping
between p-values and Bayesian posterior odds ratios.

The models M1 and M2 need not be very different, but could, for example, represent dif-
ferent regions of the parameter space of a distribution, e.g., M1 : θ ∈ Θ1 versus M2 : θ ∈ Θ2.
If the two hypotheses are both simple then the Bayes factor reduces to the likelihood ratio,
which we saw was the optimal test statistic in the frequentist hypothesis testing context.

Computation of the Bayesian evidence is challenging. Most sampling algorithms that
return independent samples from the posterior ignore the evidence as it is just a normalisa-
tion constant. The evidence can be written as an integral over the posterior which can be
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Bayes Factor Interpretation
< 3 No evidence of M1 over M2

> 3 Positive evidence for M1

> 20 Strong evidence for M1

> 150 Very strong evidence for M1

Table 2: Table for intepretation of Bayes’ factors, as presented in Kass and Rafferty (1995).

approximated by a sum over samples

1

Z =

∫
1

p(x | ~θ)
p(x | ~θ)p(~θ)

Z d~θ ≈ 1

M

M∑

i=1

1

p(x | ~θi)
.

In other words it is the harmonic mean of the likelihoods of the samples. This is an extremely
unstable approximation, however, as this sum is dominated by points with small likelihoods,
but these are precisely the regions where there will be fewer samples and hence larger Monte
Carlo error. Other techniques, such as nested sampling, can be used to compute evidences
more accurately and these will be discussed in the next chapter.

Example: Suppose we have a two dimensional Normal likelihood of the form

p(x|~θ) =

√
1− ρ2

2πσ1σ2

exp

[
−1

(
(x1 − µ1)2

σ2
1

+ 2
ρ(x1 − µ1)(x2 − µ2)

σ1σ2

+
(x2 − µ2)2

σ2
2

)]
(67)

and use priors for the parameters µ1 and µ2 of the form

p(µ1) =
1

Σ1

√
2π

exp

[
− 1

2Σ2
1

µ2
1

]
, p(µ2) =

1

Σ2

√
2π

exp

[
− 1

2Σ2
2

µ2
2

]
. (68)

We are interested in comparing the two models

M1 : µ2 = 0, M2 : µ2 ∈ (−∞,∞).

The evidence for M1 can be computed as

Z1 =
1

2πσ2

√
1− ρ2

σ2
1 + Σ2

1

exp

[
−x

2
2(σ2

1 − (1− ρ2)Σ2
1) + 2ρx1x2σ1σ2 + σ2

2x
2
1

2σ2
2(σ2

1 + Σ2
1)

]

and for M2 it is

Z2 =
1

2π

√
1− ρ2

σ2
1(σ2

2 + Σ2
2) + Σ2

1(σ2
2 + (1− ρ2)Σ2

2)
×

× exp

[
−x

2
2((1− ρ2)Σ2

1 + σ2
1) + 2ρx1x2σ1σ2 + x2

1((1− ρ2)Σ2
2 + σ2

2)

2Σ2
1((1− ρ2)Σ2

2 + σ2
2) + 2σ2

1(σ2
2 + Σ2

2)

]
(69)

which gives the posterior odds ratio in favour of M2, for equal prior odds (which is just the
Bayes factor)

O21 =
Z2

Z1

= σ2

√
Σ2

1 + σ2
1

Σ2
1((1− ρ2)Σ2

2 + σ2
2) + σ2

1(Σ2
2 + σ2

2)
×

× exp

[
Σ2

2(x2((1− ρ2)Σ2
1 + σ2

1) + ρx1σ1σ2)2

2(Σ2
1 + σ2

1)σ2
2(σ2

1(Σ2
2 + σ2

2) + Σ2
1((1− ρ2)Σ2

2 + σ2
2))

]
. (70)
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This is difficult to interpret, but if we now assume that Σ2
1 � σ2

1, i.e., that the prior in µ1 is
much broader than the typical measurement uncertainty, the odds ratio simplifies to

O21 ≈ σ2

√
1

(1− ρ2)Σ2
2 + σ2

2

exp

[
(1− ρ2)x2

2

2σ2
2

]

We see that there is a competition between the size of the additional variable dimension
(characterised by Σ2) in the first term and the weight of evidence for the additional effect
in the data (characterised by the second term). Only if the addition of the extra dimension
significantly improves the fit to the data (characterised by x2 which is effectively the peak
of the posterior in µ2 when that parameter is allowed to vary) should the more complex
model be favoured. If the fit does not improve, then the addition of the extra dimension is
penalised by the first term and so the more complex model should not be preferred. It is
often said that Bayesian posterior odds ratios automatically encode the notion of “Occam’s
razor”, i.e., one should use the simplest model that adequately describes the data since
adding extra degrees of freedom always improves a fit. This is the sense in which it is meant.
Addition of extra dimensions typically includes a prior penalty, as we see here, which will
lead to the disfavouring of an alternative model unless the likelihood shows a significantly
great improvement when the extra degrees of freedom are included.

4.7 Predictive checking

In both a frequentist and a Bayesian context it is natural to ask whether the model is a good
representation of the observed data. In the Bayesian context this is accomplished by using
predictive distributions.

Definition: the prior predictive distribution is the probability distribution

p(x) =

∫

~θ∈Θ

p(x|~θ)p(~θ)d~θ.

This is the likelihood weighted by the assigned prior distribution and therefore represents
our a priori belief about the distribution of data sets that would be observed. Similarly, we
have the following

Definition: the posterior predictive distribution is the probability distribution

p(y|x) =

∫

~θ∈Θ

p(y|~θ)p(~θ|x)d~θ.

This is the likelihood weighted by the posterior probability based on the observed data
x and is our expectation about the distribution of future data sets y.

The posterior predictive distribution can be used to assess whether the observed data is
unusual within the posterior distribution, which is an indicator about whether or not the
model is a good fit. Based on the observed data x we generate a large number of new data
sets {y1, . . .yN} that are similar to x, i.e., they consist of the same number of observations.
For each data set we compute a set of summary statistics, and hence obtain the distribution
of the summary statistics over many realisations of the posterior predictive distribution. We
can then assess the “p-value” of the observed data within these distributions. If it looks like
an outlier in any one of these distributions this suggests the model is not a good fit. Suitable
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summary statistics could include the maximum, minimum, median, skewness, kurtosis etc.
Ideally we choose summary statistics that are orthogonal to the model parameters to increase
sensitivity, since we are using the data twice (once to compute the posterior and once to
compare to the predictive distribution). Statistics that are effectively tuned to the observed
data will tend to lie in the middle of the predictive distributions by construction, even if the
model is poor. We will see an example of this in the next section.

4.8 Example: regression

To illustrate some of the ideas discussed above we will present a Bayesian analysis of a
regression problem. We suppose that we have made measurements of a set of values, {yi},
corresponding to sets of p known explanatory variables, {xi}, and we believe that these
follow a linear relationship with equal variance normally distributed errors

yi ∼ N(xTi
~β, σ2), i = 1, . . . , N.

We want to infer the parameters of the linear relationship, ~β, and the unknown precision
τ = 1/σ2. We use a Bayesian framework and so must write down prior distributions on these
parameters. We can assume a separable prior

p(~β, τ) = p(τ)

p∏

i=1

p(βj)

and take Normal priors for the βj’s and a Gamma prior for τ as these are conjugate priors
in the Normal-Gamma model

βj ∼ N(µβj , σ
2
βj

), τ ∼ Gamma(a, b).

In the absence of prior information it is reasonable to set µβj = 0. Inferred values of
the coefficients that are non-zero then provide evidence for the existence of a relationship
between the observed data and those explanatory variables. Setting σ2

j to a large value, say
104, indicates large uncertainty in the parameter values and avoids strong prior dependence
in the results. For the prior on τ , it is usual to take small values of a and b, for example
a = b = 0.1 or a = b = 0.01. However, such priors lead to a preferred value (i.e., a peak) in
the prior and so the use of such priors is somewhat controversial.

To illustrate fitting such a model, we can use a standard data set, the mtcars data set,
which is available in the R statistical software package and may also be found online. The
data set contains observations, yi, of the miles driven per gallon in the i’th of 32 different
models of car, with explanatory variables xi1, the rear axle ratio, xi2, the weight of the i’th
car and xi3, the time to drive 0.25 miles from rest. We fit the model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, εi
iid∼ N(0, 1/τ), i = 1, . . . 32,

with βj ∼ N(0, 1000) and τ ∼ Gamma(0.1, 0.1). We can use statistical software (in this case
R) to generate samples from the posterior. Techniques for doing this will be discussed in the
next chapter, and in the associated practical. using these samples we can obtain a posterior
mean and 95% symmetric credible interval for each parameter. These can be compared to
the frequentist estimates of the same parameters and the frequentist 95% confidence interval
(see problem sheet 1). This comparison is in Table 3.
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Bayesian results Frequentist results
Parameter Posterior mean 95% credible interval MLE 95% confidence interval

β0 10.369 [-5.098,36.349] 11.395 [-5.134,27.922]
β1 1.777 [-0.721,4.166] 1.750 [-0.857,4.169]
β2 -4.335 [-5.702,-2.995] -4.347 [-5.787,-3.009]
β3 0.968 [0.449,1.493] 0.946 [0.410,1.482]
σ2 6.978 [4.160,11.729] 6.554 —

Table 3: Comparison between Bayesian and frequentist estimates of the linear model fit to
the mtcars data set.

The results of the Bayesian fit are quite consistent between the two approaches, although
there are some differences and the interpretation of the results is different. We now want
to assess the quality of the results. In a frequentist setting, assessment of the quality of a
linear model fit is done through the production of studentised residuals and Q-Q plots. A
studentised residual is

ε̂i =
yi − xTi β̂

σ̂
√

1− hii
where β̂ are the estimated parameters, σ̂ is the esitmated standard deviaiton and hii is the
i’th diagonal element of the matrix H = x(xTx)−1xT . These quantities follow a student-t
distribution which is why they are called studentised residuals. A Q − Q plot is a plot of
the distribution of these values against the theoretical distribution, which should be approx-
imately a straight line if the model is a good description of the data.

We can construct analogous quantities in the Bayesian case, but now the parameters are
described by distributions rather than point estimates. A point estimate can be constructed
in a number of different ways — using posterior mean values, using a single draw from the
posterior, or averaging over the full posterior. The latter approach involves computing the
studentised residual for a large number of draws from the posterior and averaging them, and
is called the posterior mean of the residual. Studentised residuals are plotted in various ways
in Figure 5.

We can also produce posterior predictive checks as described in section 4.7. We compute
realisations of similar data sets and estimate the distribution of various summary statistics
which we then compare to the values in the observed data sets. In this case we compute
the distributions of the minimum, maximum, median and skewness in repeated data sets.
These are shown in Figure 6, along with the values in the observed data set. We see that
the observed values lie within the distributions in all cases, except for skewness. Seeing that
the observed data lies in the tail of the distribution may indicate a failure of the model. In
this case we might want to try varying the assumption of normally distributed errors and
homoskedacity (equal error variance).

The issue with the posterior predictive checks could indicate a failure of the model, or the
influence of an outlying data point. One way to tackle this is to modify the model so that the
distribution of the errors εi is no longer assumed to be normal. The most common approach
is to replace the normal distribution by a tν-distribution, as these have heavier tails. This is
referred to as robust regression. The degrees of freedom, ν, in the tν-distribution can be
fixed to some reasonable value, or allowed to vary in a hierarchical model (see next section).
In that case the prior on ν is usually taken to be a Gamma distribution, ν ∼ Gamma(c, d).

For the mtcars dataset we try this, using prior values c = d = 0.1, and then look at the
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Figure 5: Q−Q plot of the studentised residuals (left), studentised residual versus index of
data point (middle) and studentised residual versus posterior mean of the predicted value,
ŷi, for the Bayesian fit to the mtcars data set. We look for the left hand plot to be on
the diagonal line, for the middle and right hand plots we want the values to be randomly
distributed (i.e., no trend with the x value) and in the range from minus a few to plus a few.
These constraints are all satisfied here and so we see no cause for concern.

posterior predictive distribution again. The results for the skewness are shown in Figure 7.
We that robustifying regression can help to improve the model fit in this case. The observed
dat moves from lying at the 99.6% point of the distribution to lying at the 96.3%. So, it
is still something of an outlier but it is not so much a cause for concern. It is perhaps not
surprising that the use of robust regression only helped a small amount in this case, since
we are trying to compensate for non-zero skew in the data and the t-distribution is also a
symmetric distribution.

4.9 Hierarchical models

In many contexts, for example the observation of mergers of compact binary coalescences
through gravitational wave observations, the likelihood describes the observation of a single
event, and the prior describes the distribution of parameter values in the population from
which the events are drawn. Often the parameters of the population prior are not themselves
known but are of interest. For example, we do not know the distribution of masses of black
holes in binaries and would like to learn about this from observations of the gravitational
wave sources. This leads to the notion of a hierarchical model, in which the likelihood
for data depends on parameters for which we write down a prior that in turn depends on
unknown parameters (usually termed hyperparameters), for which we write down another
prior (the hyperprior).

This hierarchy can be continued to more and more levels, but such models increase
rapidly in complexity. Inference on complex hierarchical models can be simplified by impos-
ing a conditional independence structure in the models, e.g., p(x, y, z) = p(x|z)p(y|z)p(z).
Conditional dependence structures can be compactly represented using graphical models.
These are directed acyclic graphs that indicate dependencies between various components of
the model. It is important that the graph has no cycles as only then can the joint probability
be factorised. An example of a graphical model is shown in Figure 8. This model represents
the following conditional dependence structure

p(p, q, r, s, t, u, v, w, x, y, z) = p(x|y, z)p(y|u,w)p(w|v)p(u)p(v)p(z|r)p(r|p, q)p(p)p(q) (71)
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Figure 6: Predictive distributions for the maximum (top left), minimum (top right), median
(bottom right) and skewness (bottom right) in replicated data sets of size 32, based on the
posterior distribution from the mtcars data set. The vertical red lines indicate the values
in the data set form which the posterior was obtained. We see that this lies in the middle of
the distribution in all cases, except skewness, in which it lies in the tail, which might indicate
a failure to properly fit the data.



70 Introduction to Statistics for GWs

yrobrepskewness

F
re

qu
en

cy

−4 −2 0 2 4

0
50

0
10

00
15

00
20

00
25

00

Figure 7: Posterior predictive distribution of skewness for the robustified regression model.
The observed value of the skewness is indicated by a vertical red line as before.
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Figure 8: Illustration of a Bayesian graphical model. This is an acyclic directed graph that
indicates conditional dependencies in complex Bayesian hierarchical models.

4.9.1 Selection effects

One thing that is important to account for in hierarchical modelling are selection effects.
The decision about whether or not to include an event in a catalogue used for inference is
based on whether or not the event is “detected”, i.e., whether or not the observed data passes
some pre-determined threshold criterion for inclusion. This is usually a property of the data
only. Selection effects can be included by modifying the likelihood so that it represents the
likelihood of “detected” data sets. If the un-corrected likelihood is p(x|~θ) then the likelihood
for observed events is just

p(x|~θ, obs) =
1

ps(~θ)
p(x|~θ), where ps(~θ) =

∫

x>threshold
p(x|~θ)dx.

The integral is over all data sets that would have been considered as “detections”, i.e.,
passing the threshold for inclusion in inference. What we have done here is renormalise the
likelihood so that it integrates to 1 over all above threshold data sets. Since the partition of
the data into observed and unobserved is a property of x only, the relative probabilities of
different above threshold data sets must be in proportion to their probabilities in the set of
all data sets.

Usually, the likelihood will depend on parameters of the particular source, ~θ, that are
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themselves determined by the priors, which depends on the hyperparameters of the popula-
tion, ~λ. Then the likelihood for observed events, marginalised over the source parameters is
simply

p(x|~λ, obs) =
1

ps(~λ)

∫
p(x|~θ)p(~θ|~λ)d~θ, where ps(~λ) =

∫

x>threshold

∫
p(x|~θ)p(~θ|~λ)d~θdx.

Usually we are interested in the parameters of individual sources as well as the overall
population parameters. The joint likelihood of x and ~θ, conditioned on detection, is

p(x, ~θ|~λ, obs) = p(x|~θ, obs)p(~θ|~λ, obs).

The first term is Eq. (4.9.1), but for the source parameters ~θ

p(x|~θ, obs) =
p(x|~θ)
p(obs|~θ)

, where p(obs|~θ) =

∫

x>threshold
p(x|~θ)dx.

The second term is the prior on ~θ for events above threshold. However, this prior is modified
from p(~θ|~λ) by the conditioning on detection, namely

p(~θ|~λ, obs) =
p(~θ, obs|~λ)

p(obs|~λ)
=
p(obs|~θ, ~λ)p(~θ|~λ)

p(obs|~λ)
=
p(obs|~θ)p(~θ|~λ)

ps(~λ)
.

Putting this together we see that the terms relating to selection on ~θ, p(obs|~θ), cancel and
the joint likelihood is

p(x, ~θ|~λ, obs) =
p(x|~θ)p(~θ|~λ)

ps(~λ)

giving a posterior on ~θ

p(~θ|x, ~λ, obs) ∝ p(x|~θ)p(~θ|~λ)

which is unchanged from the posterior that would be written down if there is no selection.
We see that the selection effects corrections do not change inference about the parameters
of individual sources, only inference about the hyperparameters governing the population as
a whole.

This approach implicitly assumes that the number of observed events contains no infor-
mation about the unknown parameters. An alternative approach is to write down a joint
likelihood for all events, both the Nobs events that are observed, {xi}, with parameters {~θi},
and the Nnobs events that are unobserved, {xj}, with parameters {~θj}. We model the number

of events as a Poisson process with overall rate N(~λ), and rate density dN/d~θ. The joint
likelihood is

p
({
~θi

}
,
{
~θj

}
, {xi} , {xj} | ~λ

)
∝
[
Nobs∏

i=1

p
(
xi | ~θi

) dN

d~θi

(
~λ
)]
×

×
[
Nnobs∏

j=1

p
(
xj | ~θj

) dN

d~θj

(
~λ
)]

exp
[
−N

(
~λ
)]

(72)
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We can marginalise over the unobserved data to obtain

p
({
~θi

}
, {xi} | ~λ

)
∝

[
Nobs∏

i=1

p
(
xi | ~θi

) dN

d~θi

(
~λ
)] NNnobs

ndet

(
~λ
)

Nnobs!
exp

[
−N

(
~λ
)]

(73)

where

Nndet

(
~λ
)
≡
∫

{x<threshold}
dx d~θ p

(
x | ~θ

) dN

d~θ

(
~λ
)
. (74)

We can then marginalise over the unknown number of unobserved events to obtain

p
({
~θi

}
, {xi} | ~λ

)
∝
[
Nobs∏

i=1

p
(
xi | ~θi

) dN

d~θi

(
~λ
)]

exp
[
−Ndet

(
~λ
)]
. (75)

We can now introduce the overall rate in the Unvierse, N , by writing dN/d~θ = Np(~θ|~λ).
Then

Ndet(~λ) = N

∫

x>threshold

∫
p(x|~θ)p(~θ|~λ)d~θdx = Nps(~λ). (76)

Setting a scale-invariant prior on N (which states that the number of detected events does
not convey information about the unknown parameters of the population), p(N) ∝ 1/N we
can marginalise N out of the likelihood and recover Eq. (4.9.1).

4.9.2 Examples of hierarchical models

We finish this section with two examples of Bayesian hierarchical models.

Example 1: Salmon fishery In a given year, several fish hatcheries located along rivers
in Washington state, USA raise coho salmon from eggs to a juvenile stage. Each hatchery
releases a batch of juvenile fish into the rivers. The fish then travel to the ocean and some
of them return to the hatchery 3 years later. The probability that a juvenile salmon returns
varies between hatcheries due to different hatchery practices and river conditions at the point
of release. We construct a hierarchical model for this as follows

• Suppose there are J fisheries and nj salmon observed at fishery j.

• The data for an individual observation, xji, of the i’th salmon at fishery j is Bernoulli
(salmon returned or did not return), with parameter pj, where j labels the fishery. The
data for the total number of returning salmon at site j, xj, is Binomial with parameters
(nj, pj).

• We assume that the pj’s are drawn from some common global distribution and use the
conjugate prior of Beta(a, b).

• The parameters a and b are not known and fixed as in the usual case, but these are
unknown quantities of interest as they characterise the variability in the population.
These are the hyperparameters of the prior on pj.

• We define a suitable hyperprior p(a, b) on the hyperparameters, for example a Gamma
prior.
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• The joint posterior on the set ({pj}, a, b) is

p({pj}, a, b|x) ∝ p(x|{pj})
[

J∏

j=1

p(pj|a, b)
]
p(a, b).

Note that the hyperprior on the hyperparameters appears only once as these parameters
are common to all of the individual observations of fisheries.

• The marginal distribution on the hyperparameters (a, b) can be found by marginalising
over the {pj}’s

p(a, b|x) ∝ p(a, b)
J∏

j=1

B (a+ xj, b+ nj − xj)
B(a, b)

.

• Marginals on individual pj’s can be found in a similar way.

Example 2: Gravitational wave cosmology In August 2017 the LIGO/Virgo gravi-
tational wave detectors observed gravitational waves from the inspiral and merger of a binary
neutron star for the first time, GW170817. There was both a short gamma ray burst and
a kilonova associated with this event, which allowed the unique identification of the host
galaxy, NGC 4993, and hence the recessional velocity (redshift) of the host. The gravi-
tational waves provide a measurement of the luminosity distance of the source. The rate
of expansion of the Universe as a function of distance is a key observable for constraining
cosmological parameters. The relationship is linear at low distances and the constant of
proportionality is called the Hubble constant,

v = cz = H0d,

where v is the recessional velocity due to the expansion of the Universe, z is the corre-
sponding redshift, H0 is the Hubble constant and d is the luminosity distance. At low dis-
tance/redshift, the peculiar velocity of individual galaxies, relative to the overall expansion
of the Universe (the “Hubble flow”) is significant and so the observed recessional velocity,
vr, must be corrected by writing vr = H0d+vp. Observations of galaxies provide an estimate
of the smoothed peculiar velocity field, 〈vp〉. We are interested in inferring the value of the
Hubble constant and build a hierarchical model as follows.

• The observed gravitational wave data, xGW, depends on the waveform of the source,
which in turn depends on the source parameters. Most of these are not of interest,
denoted ~λ, and so we can marginalise them out, but we treat distance d and inclination,
ι, separately

p(xGW | d, cos ι) =

∫
p(xGW | d, cos ι, ~λ) p(~λ)d~λ. (77)

• The measured recessional velocity, vr, depends on the true recessional velocity, which
depends on the peculiar velocity, vp, and the Hubble redshift, H0d. Representing the
electromagnetic measurement uncertainty as a Normal distribution we have

p (vr | d, vp, H0) = N
[
vp +H0d, σ

2
vr

]
(vr) (78)
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• The measured smoothed peculiar velocity field at the location of the host galaxy de-
pends on the true peculiar velocity there (and perhaps also on other quantities, but
we suppress other dependencies here)

p (〈vp〉 | vp) = N
[
vp, σ

2
vp

]
(〈vp〉) . (79)

• The combined likelihood for the observations of xGW, 〈vp〉 and vr is

p(xGW, vr, 〈vp〉 | d, cos ι, vp, H0) =

1

Ns(H0)
p(xGW | d, cos ι) p(vr | d, vp, H0) p(〈vp〉 | vp). (80)

Here the factor Ns(H0) is the selection effects factor discussed earlier, which corrects
for the fact that we only analyse events that exceed some threshold in the gravitational
wave detector

Ns(H0) =

∫

detectable

d~λ dd dvp dcos ι dxGW dvr d〈vp〉

×
[
p(xGW | d, cos ι, ~λ) p(vr | d, vp, H0)

× p(〈vp〉 | vp) p(~λ) p(d) p(vp) p(cos ι)
]
, (81)

At the time of GW170817 the horizon for detection of binary neutron stars by the
LIGO/Virgo detectors was much smaller (∼ 100Mpc) than the distance to which the
kilonova radiation could have been confidently observed (∼ 400Mpc). This means
that gravitational wave selection effects were dominant. As these depend directly on
the luminosity distance, the dependence on H0 is a higher order correction and so
the selection function was approximately independent of H0. A correct treatment of
election effects will become increasingly important as the LIGO horizon increases in
the future.

• We define priors on H0, d, vp and cos ι. These are independent and so we write down
a product prior

p(d, cos ι, vp, H0) = p(d)p(cos ι)p(vp)p(H0).

We use flat priors on cos ι and vp, a volumetric prior on d, p(d) ∝ dVc/dd, where Vc
is the comoving volume. We leave p(H0) unspecified, but note that the analysis in
Abbott et al. (2017) used a scale-invariant prior p(H0) ∝ 1/H0.

• We have now fully specified the hierarchical model. A graphical representation of this
model is given in Figure 9. The posterior can now be found as

p(H0, d, cos ι, vp | xGW, vr, 〈vp〉)

∝ p(H0)

Ns(H0)
p(xGW | d, cos ι) p(vr | d, vp, H0)

× p(〈vp〉 | vp) p(d) p(vp) p(cos ι), (82)



76 Introduction to Statistics for GWs

d cos vp H0

xGW vr vp

Figure 9: Graphical model for the Hubble constant measurement with gravitational wave
observations of binary neutron stars. Figure reproduced from Abbott et al., Nature Lett.
551 85 (2017).

• This posterior can be marginalised over d, cos ι and vp to give

p(H0 | xGW, vr, 〈vp〉) ∝
p(H0)

Ns(H0)

∫
dd dvp dcos ι

× p(xGW | d, cos ι) p(vr | d, vp, H0)

× p(〈vp〉 | vp) p(d) p(vp) p(cos ι) . (83)

This marginalised posterior is shown in Figure 10.

• If we make subsequent observations of binary neutron star mergers with counterparts,
indexed by a superscript i = 1, . . . , N , we can combine these

p(H0 | {xiGW, v
i
r, 〈vp〉i}) ∝

p(H0)

NN
s (H0)

N∏

i=1

[∫
dd dvp dcos ι

× p(xiGW | d, cos ι) p(vir | d, vp, H0)

× p(〈vp〉i | vp) p(d) p(vp) p(cos ι)
]
. (84)

Note that, as in the previous example, the prior on the common hyperparameters,
p(H0), occurs only once. The selection effect correction appears once for every obser-
vation.
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Figure 10: Posterior on the Hubble constant derived from GW170817. Figure reproduced
from Abbott et al., Nature Lett. 551 85 (2017).
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5 Bayesian Sampling

As emphasised before, the output of Bayesian inference is a posterior probability distribution
that encodes our state of knowledge about the parameters of the model based on the observed
data and prior information. In certain contexts, for example when using conjugate models,
the posterior can be written down in a closed analytic form and used directly for subsequent
computation of derived quantities of interest. However, most often the posterior is not known
in closed form. There are three approaches to inference in such situations. One is to use a
Normal approximation to the posterior, the second is to use brute force integration methods
and the third is to draw a set of representative samples from the posterior for us in Monte
Carlo integration over the posterior.

5.1 Posterior computation: Bayesian Central Limit Theorem

The Bayesian Central Limit Theorem can be used to approximate posteriors, in the

limit that the number of observations, n→∞. Suppose that we have samples X1, . . . , Xn
iid∼

p(x | θ) and that the prior, p(θ), and likelihood, p(x|θ), are both twice differentiable near

θ̂post, the location of the peak of the posterior distribution. Then, for n → ∞, we can
approximate

p(θ | x) ∼ N
(
θ̂post, [I

post(θ,x)]−1
)

where

Ipost(θ,x) = −
[

∂2

∂θ∂θT
log p(θ | x)

]

θ=θ̂post

.

The Bayesian central limit theorem follows from the usual central limit theorem. It used to
be widely used due to the computational cost of generating posterior samples. However, it
relies on the number of observations being large, which is often difficult to ensure in practice.
Therefore, its use is no longer so widespread since computers are now sufficiently powerful
to enable the generation of large numbers of posterior samples relatively cheaply.

5.2 Posterior computation: numerical integration

In low numbers of dimensions, posterior integrals can be computed using standard numerical
integration techniques. There is a large literature on approximating integrals in various ways.
The simplest is a grid approach, where the posterior is evaluated at a set of regularly spaced
points in the space of waveform parameters. This can be thought of as a type of sampling
approximation, where the samples are on a uniform grid. Direct integration rapidly becomes
prohibitively expensive as the dimensionality of the model parameter space increases. In
addition, it can be inefficient, if the posterior has relatively compact support within the
space of allowed values, since many of the grid points will be in regions with low posterior
weight.



Introduction to Statistics for GWs 79

5.3 Posterior computation: direct sampling methods

As discussed before, sampling methods attempt to generate a set {θ1, . . . ,θM}, from the
posterior, which can be used to approximate integrals over the posterior

∫
f(θ) p(θ|x) dθ ≈ 1

M

M∑

i=1

f(θi).

Sampling methods can be direct or stochastic. Direct methods draw samples directly (or
nearly directly) from the target probability distribution. Stochastic methods use Markov
chain Monte Carlo methods to generate a sequence of samples that are drawn form the
target distribution.

5.3.1 Method of inversion

The method of inversion is a simple application of the probability integral transformation.
If we denote by F the cumulative distribution function of some random variable X, then
the random variable F (X) follows a U [0, 1] distribution. Therefore, if we can analytically
compute the inverse of the cumulative distribution function, we can generate samples form
X by generating samples from a uniform distribution. If

F (x) = P(X ≤ x)

and it has inverse F−1 then the algorithm is simply

1. Generate u ∼ U [0, 1].

2. Compute x = F−1(u).

Example: exponential distribution with parameter r Suppose we want to draw
X ∼ Exp(r). The pdf of the exponential distribution is

p(x|r) = r exp(−rx)

which has cumulative density function

F (X) =

∫ X

0

r exp(−rx)dx = 1− exp(−rX).

The inverse can be found as

u = F (x) ⇒ x = F−1(u) = −1

r
ln(1− u).

Samples generated by applying this inverse to U [0, 1] samples are shown in Figure 11.

5.3.2 Rejection sampling

Rejection sampling draws samples from a distribution that can be directly sampled and then
discards a subset of them that do not match the desired distribution. The simplest rejection
sampling algorithm draws uniform samples from a box that encloses the distribution. Sup-
pose that we want to draw samples θ1, . . . , θn from a probability distribution with pdf p(θ)
and that the pdf has compact support, so p(θ) = 0 if θ /∈ [a, b]. Suppose additionally that
the pdf at the mode of the probability distribution is M = max[p(θ)]. Rejection sampling
proceeds as follows
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Figure 11: Histogram of samples drawn from the Exp(1) distribution using the method of
inversion. The pdf of the exponential distribution is shown as a line for comparison.

1. Draw θ ∼ U [a, b].

2. Draw y ∼ U [0,M ].

3. If y ≤ p(θ), accept θ as a sample from p(θ). Otherwise return to step 1.

Example: beta distribution We want to draw samples from a Beta(3, 2) distribution.
This has compact support on the interval [0, 1] and the maximum value of the pdf is M =
16/9 (EXERCISE). In Figure 12 we illustrate this procedure by indicating which of the first
50 samples drawn in this way are rejected or accepted. In Figure 15 we show a histogram
of the accepted samples in the first 1000 draws, which illustrates that the distribution of
samples does follow the Beta(3, 2) distribution as desired.

The box rejection sampling procedure does not work at all when the support of the target
distribution is unbounded. In addition, it can be very inefficient for compact distributions
with long tails. An alternative approach is to draw samples from an easy-to-sample distribu-
tion, g(θ), that is similar to the target distribution p(θ). First we find a number M such that
Mg(θ) ≥ p(θ) ∀θ, i.e., we require Mg(θ) to contain the target distribution. The algorithm
is then

1. Draw θ ∼ g(θ).

2. Draw y ∼ U [0, 1].

3. If y ≤ p(θ)/(Mg(θ)), accept θ as a sample from p(θ). Otherwise return to step 1.

Trial samples are taken uniformly from within the region between the curve Mg(θ) and the
θ axis. Samples that fall in the region between p(θ) and Mg(θ) are rejected. Therefore we
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Figure 12: Accepted (green plusses) and rejected (red crosses) samples in the first 50 draws of
the rejection sampling algorithm used to simulate the Beta(3, 2) distribution. Only samples
that lie within the target pdf are accepted.
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Figure 13: Histogram of the accepted samples in 1000 iterations of the rejection sampling
algorithm. We compare the distribution to Beta(3, 2), which is the target distribution.
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Figure 14: Accepted (green plusses) and rejected (red crosses) samples in the first 50 draws
of the rejection sampling algorithm to simulate draws from a half-Normal distribution. Only
samples that lie within the target pdf are accepted.

make the efficiency (i.e., the fraction of samples that are accepted) as large as possible by
making the choice

M = sup
θ

(
p(θ)

g(θ)

)
.

Example: half-Normal distribution We want to draw samples from the half-Normal
distribution with pdf

p(θ) =

{ √
2
π
e−

θ2

2 for x ≥ 0

0 otherwise
.

We will take g(θ) = exp(−θ), i.e., the exponential distribution with rate 1. We find M from

M = sup
θ

(
p(θ)

g(θ)

)
= sup

θ>0

(√
2

π
exp

[
−1

2
(θ − 1)2 +

1

2

])
=

√
2

π
e

1
2 .

In Figure 14 we show the samples accepted and rejected during the first 50 iterations of
the algorithm, and in Figure ?? we show a histogram of the accepted samples during 1000
iterations of the algorithm. We see that the histogram is correctly approximating the desired
distribution.

5.3.3 Importance sampling

Rejection sampling can be effective and easy to implement, but it is not always possible
to find an easy-to-sample target distribution that closely matches the target distribution.
Additionally effort is wasted drawing samples and evaluating the posterior at points which
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Figure 15: Histogram of the accepted samples in 1000 iterations of the rejection sampling
algorithm. We compare the distribution to the target distribution, which in this case is a
half-Normal distribution with mean 0 and variance 1.

are subsequently discarded as rejected samples. Importance sampling attempts to address
the latter problem by using all samples.

Importance sampling uses an easy-to-sample reference distribution g(θ) as before, but
now this is not rescaled, the only stipulation is that the support is common to that of the
target distribution, i.e., if p(θ) > 0 then g(θ) > 0. No samples are discarded. Instead the
samples are defined importance weights via

wi =
p(θ)

g(θ)

and integrals over the target distribution are approximated by weighted averages over the
samples ∫

f(θ)p(θ)dθ ≈ 1

M

M∑

i=1

wif(θi).

It is straightforward to see that

Eg(wif(θi)) =

∫
w(θ)f(θ)g(θ)dθ =

∫
p(θ)

g(θ)
f(θ)g(θ)dθ =

∫
f(θ)p(θ)dθ = Ep(f(θ))

so the importance sampling estimate is unbiased. However

varg(wif(θi)) =

∫
w2(θ)f 2(θ)g(θ)dθ − [Ep(f(θ))]2 =

∫
p(θ)

g(θ)
f 2(θ)p(θ)dθ − [Ep(f(θ))]2

= Ep
(
p(θ)

g(θ)
f 2(θ)

)
− [Ep(f(θ))]2. (85)
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We see that the importance sampling estimate can suffer from high variance if g(θ) is much
smaller than p(θ) in regions where the function of interest has significant support.

Note that the above assumes that the normalisation of the target distribution is known,
but this is not always the case when sampling from posterior distributions due to the difficulty
of computing the Bayesian evidence. If the posterior is not normalised the weights can be
renormalised as

w̃i =
wi∑M
j=1wj

.

The results on the mean and variance are now only approximate, but are valid asymptotically.

Example: Cauchy distribution Suppose we have a standard Cauchy distribution with
pdf

p(θ) =
1

π(1 + θ2)

and want to compute P(θ > 2). We can sample from the distribution g(θ) = 2/θ2I(θ > 2)
using the method of inversion. This has the same support as the portion of p(θ) of interest.
We define the importance weights

wi =
θ2
i

2π(1 + θ2
i )

and then compute

p̂>2 =
1

M

M∑

i=1

wi

since we are interested in P(θ > 2) which is the integral of I(θ > 2), but this equal to 1
throughout the region where g(θ) has support. Note that in this case it would be wrong to
renormalise the weights since then we would compute the probability as 1. As an exercise,
verify that using the above weights in the usual sampling estimate gives the expected result.

In Figure 16 we show the convergence of the importance sampling estimate of P(θ > 2) as
a function of the number of importance samples. We see that it converges much faster than
if we used Monte Carlo draws from the Cauchy distribution itself. The correct probability
is π/2− tan−1(2)/π = 0.14758.

5.3.4 Sampling importance resampling

Sampling importance resampling is a simple extension of importance sampling that uses the
importance samples to generate samples approximately from the target distribution. Given
M importance samples, {θ1, . . . , θM}, the importance weights are computed and normalised
as described above. Then M samples, {φ1, . . . , φM} are drawn, with replacement, from
the original set using the normalised weights as probabilities. Integrals over the target
distribution can then be approximated by

∫
f(θ)p(θ)dθ ≈ 1

M

M∑

i=1

f(φi).

Sampling importance resampling is a form of particle filtering. One problem that it can
suffer form is particle depletion, where a small number of samples carry the majority of
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Figure 16: Importance sampling estimate of P(θ > 2) for the standard Cauchy distribution
as a function of number of samples (blue line), compared to Monte Carlo estimate using
direct samples from the Cauchy distribution (yellow line).

the weight and therefore only a small number of points are represented repeatedly in the
final data set. Particle depletion leads to poor estimates of derived quantities.

Example: Cauchy distribution We use sampling importance resampling to generate
samples from the Cauchy distribution with θ > 2 using the samples generated for the example
in the previous section. A histogram of these values is shown in Figure 17, where they are
compared to the target distribution, which is a truncated Cauchy distribution.

5.4 Posterior computation: Markov chain Monte Carlo

Direct sampling methods suffer form the problem of dimensionality. They are typically
easy to implement in one dimension, but become increasingly challenging, inefficient or
impossible to implement as the number of dimensions increases. In higher dimensions it is
more common to use stochastic methods, in which a sequence of samples is constructed that
has a distribution that follows the target distribution. Typically this is done using Markov
chain Monte Carlo algorithms.

A Markov Chain is a sequence of random numbers, θ1, θ2 . . ., such that the value of
θn+1 depends only on the previous values, θn, and not on earlier numbers in the sequence. A
Markov chain can be simulated using a transition kernel, K(θn+1|θn), which is a conditional
probability distribution for θn+1 given the value of θn. The transition kernel uniquely defines
the Markov chain. If we assume the Markov chain is aperiodic and irreducible then the
distribution of samples in the Markov chain will converge to a stationary distribution,
which is independent of the initial starting state of the chain. In Bayesian inference, the
goal is to construct a Markov chain such that the stationary distribution is the posterior
distribution, p(θ|x).
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Figure 17: Histogram of 1000 sampling importance resampling samples for the Cauchy distri-
bution in the region θ > 2. These were generated from the importance samples constructed
in the example in the last section. The line shows the expected distribution, which is the
truncated standard Cauchy distribution.

A Markov chain with transition kernel K(θn+1|θn) is said to satisfy detailed balance
for a distribution π(θ) if

π(θ)K(φ|θ) = π(φ)K(θ|φ) ∀φ, θ,
in which case π(θ) is the stationary distribution of the Markov chain. Enforcing detailed
balance in the Markov chain, for π(θ) = p(θ|x), will ensure we generate samples from the
posterior distribution.

There are two widely used approaches to construct Markov chains satisfying detailed
balance with a particular stationary distribution — Gibbs sampling and the Metropolis-
Hastings algorithm.

5.4.1 Gibbs Sampling

Gibbs sampling for multi-variate probability distributions works by sampling sequentially
from full conditional distributions on each parameter given the current state of the other
parameters. Algorithmically it works as follows. We suppose that the distribution of interest,
p(θ|x), depends on a multi-dimensional parameter vector, (θ) = (θ1, θ2, . . . , θp). We use (θ)k,
θki to denote the value of the full parameter vector and its i’th component at iteration k of
the algorithm. We denote by θ(i) the vector of all parameter values except the i’th and use
p(θi|θ(i),x) to denote the full conditional distribution of θi, given the values of all the other
components and the data. If the value of the Markov chain at step t is θt, then the value at
step t+ 1 is obtained via

• Sample θt+1
1 from p(θ1|θt2, θt3, . . . , θtp,x).

• Sample θt+1
2 from p(θ2|θt+1

1 , θt3, . . . , θ
t
p,x).
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• . . . . . . . . . . . .

• Sample θt+1
i from p(θi|θt+1

j for j < i and θtj for j > i,x).

• . . . . . . . . . . . .

• Sample θt+1
p from p(θp|θt+1

1 , . . . , θt+1
p−1,x).

This set of sequential updates is repeated at each iteration of the algorithm to generate a
set of samples from the target distribution.

The transition kernel in Gibbs sampling is

KG(θt+1|θt) =
k∏

i=1

p(θi|θt+1
j for j < i and θtj for j > i,x)

which satisfies detailed balance with target distribution p(θ|x).

5.4.2 Metropolis-Hastings algorithm

In the Metropolis-Hastings algorithm all the parameters of the model are typically updated
simultaneously. This is achieved using a proposal distribution, q(φ|θ), to propose a new
point φ, given the current parameter values θ. The algorithm is as follows

1. Initialise θ0 by drawing from a distribution of starting vlaues (often the prior can be
used for this).

2. At step t:

(a) Propose a new point φ ∼ q(φ|θt−1).

(b) Compute the acceptance probability

α = min

(
1,

p(φ|x)q(θt−1|φ)

p(θt−1|x)q(φ|θt−1)

)
.

(c) Draw u ∼ U [0, 1]. If u < α, set θt = φ, otherwise set θt = θt−1.

3. Repeat until the desired number of iterations, T , have been completed.

the initial version of this algorithm, due to Metropolis, used symmetric proposal distribu-
tions and so that factor cancels out of the acceptance probability. A subsequent paper by
Metropolis and Hastings generalised the result to non-symmetric proposals.

It can be readily verified in this case as well that the Markov chain constructed in this
way satisfies detailed balance with target distribution equal to the posterior p(θ|x).

There are a few special cases of the Metropolis-Hastings algorithm

• The Metropolis Algorithm This is the case described above where the proposal is
symmetric, q(φ|θ) = q(θ|φ), and the acceptance probability reduces to

α = min

(
1,

p(φ|x)

p(θt−1|x)

)
.



88 Introduction to Statistics for GWs

• Random Walk Metropolis If we use q(φ|θ) = f(θ − φ), with f some function
satisfying f(y) = f(−y), then the kernel driving the chain is a random walk. This is a
symmetric proposal and so the accpetance probability is as in the Metropolis Algorithm
above.

• The Independence Sampler If we take q(φ|θ) = f(φ), the candidate value is
independent of the current value. The acceptance probability is

α = min

(
1,
w(φ)

w(θ)

)

where w(θ) = p(θ|x)/f(θ).

• Single-updates Individual parameters of the parameter vector can be updated se-
quentially in the Metropolis-Hastings algorithm in the same way they are during the
Gibbs sampling algorithm. At step t we sequentially propose updates, φj, to each
component, θj, of the parameter vector in turn. After updating parameter j, the new
parameter vector is (θt+1

1 , . . . θt+1
j−1, θj,

t+1 θtj+1, . . . , θ
t
p). The new value, θt+1

j is chosen by
the algorithm

1. Propose a new candidate value φj ∼ q(φj|θtj) and set φj = (θt+1
1 , . . . , θt+1

j−1, φj, θ
t
j+1, . . . , θ

t
p).

2. Evaluate the acceptance probability

α = min(1, A), where A =
p(φj|x)q(θtj|φj)
p(θtj|x)q(φj|θtj)

=
p(φj|θt(j),x)q(θtj|φj)
p(θtj|θt(j),x)q(φj|θtj)

3. Draw u ∼ U [0, 1]. If u < α, set θt+1
j = φj, otherwise set θt+1

j = θtj.

5.4.3 MCMC diagnostics

The Markov chain is only guaranteed to converge to the stationary distribution asymptoti-
cally so it is natural to ask how many samples are needed before the sample is representative
of the posterior. The first issue to address is burn-in. A Markov chain retains some mem-
ory of its initial state for a number of iterations. If the initial sample is in a region of low
probability in the stationary distribution, then the first samples will typically not be very
characteristic of the stationary distribution. These initial samples should be discarded and
samples only retained after the initial burin-in period used for inference. Typically between a
few hundred and a few thousand burn-in samples are required and it can be diagnosed using
a trace plot, which is a plot of the parameter value in the chain as a function of iteration
number. Initially the trace plot will show a trend as the chain moves toward parameter
values with high posterior support. Once the chain is sampling properly, the values will
oscillate back and forth. This is illustrated in Figure 18. The trace plot allows the burn-in
period to be identified and removed, and is also a useful diagnostic of the performance of
the algorithm. Chains that are moving back and forth rapidly are sampling well from the
posterior.

MCMC samples are used to produce Monte Carlo estimates of parameters of interest. If
the samples were independent draws from the posterior then these estimates are unbiased
and would have a variance that scales like σ2/M , where σ2 is the variance of a single sample
and M is the number of samples. This could in principle be used to estimate how many
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Figure 18: Trace plot for burn-in period of a chain. Initially the chain moves form the
starting point to the region of high probability density, so there is a tendency to move in a
particular direction. Once the chain reaches the correct region it oscillates back and forth
in the region of high posterior support.
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samples are needed to achieve a certain target precision on a quantity of interest. However,
MCMC samples are not independent. This modifies the variance estimate to

σ2 = varp(θ) + 2
∞∑

k=2

cov(θ1, θk).

This is difficult to compute in practice, so what is usually done is to generate m different
chains of length M , estimate the value of the quantity of interest in each one, f̄1, . . . , f̄m,
compute the value using the pooled samples from all chains, f̄ , and then construct the batch
means estimate

σ̂2 =
T

m− 1

m∑

i=1

(f̄i − f̄)2.

The estimated Monte Carlo error in f is then σ̂2/n.

Correlation in MCMC samples can also be estimated using the autocorrelation func-
tion (ACF). The lag-k autocorrelation coefficient or autocorrelation at lag-k is cov(θi, θi+k)
and computed via

ρk =

∑N−k
i=1 (θi − θ̄)(θi+k − θ̄)∑M

i=1(θi − θ̄)2

where θ now denotes one parameter of the target distribution, and θ̄ is the mean of that
parameter in the chain. Looking at ACF plots is another useful diagnostic of MCMC per-
formance. Examples of good, bad and normal ACF plots are given in Figure 19.

If MCMC chains have very high lags, most likely they are not taking big enough jumps
in parameter space and so the size of proposed jumps should be increased. It is typical
to monitor acceptance rates when using the Metropolis-Hastings algorithm and a target
acceptance rate is used to adjust proposed jump sizes. If proposed jumps are too small, the
acceptance rate will be high but there will also be high autocorrelation between samples. If
the proposed jumps are too large, the acceptance rate will be low, but those samples that
are accepted will show very low autocorrelation.Ultimately we care about maximising the
rate at which we obtain new independent samples. This can be estimated by tracking the
effective sample size

ESS =
M

1 + 2
∑∞

k=1 ρk

where M is the number of samples in the chain. It has been shown that, under certain
assumptions, the optimal rate of obtaining new effective samples is achieved by aiming to
have an acceptance rate around 23.4%.

The final diagnostic we will mention here is the use of multiple chains. For complex
probability distributions that have many modes it is possible for Markov chains to get stuck
sampling from only one of them. Chains starting from different points in parameter space
may end up exploring different modes. As a diagnostic of this kind of behaviour, it is good
practice to run a handful of runs, starting at different points in parameter space. We can
be confident in the final results once the different chains are producing samples that are
consistent with one another. This consistency can be quantified using the Gelman-Rubin
statistic.

Suppose we have m independent chains and have discarded the initial burn-in samples
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Figure 4: Posterior distributions and trace plots for the Bayesian model fit to the rock permeability data.
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Figure 5: Autocorrelation function plots for the fit to the rock permeability data.

9

Figure 19: Examples of plots of the autocorrelation function. This should decline to numbers
close to 0 for short lags. In the left hand plot, the ACF is still above 0.8 at a lag of 100,
indicating highly correlated samples, which is not desirable. In the middle plot we show an
ideal example where the ACF is already close to zero at lag of 1, indicating a high level of
independence in the samples. The right hand plot is a typical example of MCMC chains
that are sampling well. The ACF falls to low values for lags of a few.
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to leave chains of length N . We calculate the within chain variance

W =
1

m

m∑

j=1

1

N − 1

N∑

i=1

(θij − θ̄j)2

where θij is the i’th sample in the j’th chain. We similarly define the between chain variance

B =
N

m− 1

m∑

j=1

(θ̄j − ¯̄θ)2, where ¯̄θ =
1

m

m∑

j=1

θ̄j.

Note that we are assuming that θ is a one-dimensional parameter, which could be one
component of a multi-dimensional parameter vector. The variance in this parameter can be
computed as

var(θ) =

(
1− 1

N

)
W +

1

N
B

from which the potential scale-reduction factor can be computed

R̂ =

√
var(θ)

W
.

Values of R greater than about 1.1 or 1.2 indicate that the chains are not yet converged.

5.4.4 Speeding up MCMC

MCMC can be made faster by a good choice of the proposal distribution. Proposal distribu-
tions that are well approximated to the form of the target distribution are to be preferred.
As well as tuning the proposal distribution, accelerated convergence can be achieved using
annealing. The idea of annealing is to transform the posterior surface as

p(θ|x)→ [p(θ|x)]β , where β =
1

kT
.

As T →∞ the new distribution becomes flatter and flatter, so the contrast in probabilities
between different points is reduced. This means that moves proposed in a Metropolis-
Hastings algorithm are more likely to be accepted. Figure 20 shows the effect of the annealing
transformation on the probability distribution being sampled as the temperature increases.

There are two common applications of annealing. In simulated annealing the tem-
perature is gradually changed as the initial phase of the run progresses, according to some
scheme, for example, a linear decrease with iteration number. The idea is that in the early
phase the chain explores the parameter space widely and rapidly, identifying areas of higher
posterior density. As the temperature decreases the chain gets trapped in a region of high
posterior probability, hopefully the primary mode of the distribution. The simulated anneal-
ing phase does not produce useful samples, since detailed balance is satisfied, but after the
simulated annealing phase, the chain will evolve as normal and return valid samples from
the posterior.

The other use of annealing is parallel tempering. In parallel tempering, a number
of chains are evolved simultaneously at different temperatures. At each iteration, a given
chain will update its parameters as normal, but with a certain probability an interchange
is proposed, in which the states of two chains (usually neighbouring in temperature) will
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Figure 20: Effect of annealing on the target probability distribution.

be exchanged. If the two chains are labelled i and j, have temperatures Ti and Tj, and
current parameter values θi and θj, then the appropriate acceptance probability for the
swap θi ↔ θj is

α = min

(
1,

[
p(θj|x)

p(θi|x)

] 1
Ti
[
p(θi|x)

p(θj|x)

] 1
Tj

)
.

The idea of parallel tempering is that higher posterior density regions of the parameter
space that the widely-exploring high temperature chains identify, propagate down to lower
temperature chains, which explore them thoroughly. Efficiency is dependent on the difference
in the temperatures of neighbouring chains, so the number of chains and their spacing must
be tuned for each given problem.

5.5 Posterior computation: variable model dimension

In some circumstances we might be interested in fitting multiple different models to the
data simultaneously. the most common situation is when the total number of parameters
needed to describe the data is unknown. In a gravitational wave context this arises when the
total number of sources present in the data set is unknown, e.g., for the LISA gravitational
wave detector. In these circumstances one can still construct Markov chains, but now these
chains can move between different models. The fraction of samples that the chain spends in
each model is proportional to the evidence for that model and, in the case of models that
differ only in the total number of sources, the evidences give the relative probabilities for the
unknown number of sources in the data.

The most widely used algorithm for fitting multiple models is reversible jump Markov
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chain Monte Carlo (RJMCMC). RJMCMC generates a Markov chain such that at each
step either an update within the model is proposed, or, with a certain probability, a jump
to an alternative model is proposed. Usually the jumps are between models that differ by
only one source if that is the type of model hierarchy being considered. When proposing a
jump to a new model, with parameters θ′, the values of the parameters of that model must
also be proposed. This is achieved by generating a set of random numbers u from some
distribution q(u). In order to ensure reversibility we imagine that these random numbers
are part of the parameters of the model, but because they are random we only need to
generate them when they are used in a between-model jump. Similarly we may need some
random variables u′ to propose jumps back form the new model space to the original model
parameters θ. The dimensionality of the joint space (θ,u) must equal that of (θ′,u′) and
there will be a deterministic, invertible mapping between the two. In the case of nested
model, the reverse jump might just delete a set of parameters and so the dimensionality of
u′ is 0. However, if the particular source is deleted at random rather than, say, the lowest
SNR source always being deleted, a random variable that selects which source to delete is
required. The generalisation of the acceptance probability for RJMCMC is

α = min

(
1,
p(θ′|x)q(θ′)

p(θ|x)q(θ)

∣∣∣∣
∂(θ′,u′)

∂(θ,u)

∣∣∣∣
)

where the last term is the Jacobian for the transformation between the two sets of variables.

Example: mixture of Gaussians Suppose that model M1 is a single Gaussian with
mean θ1 and unit variance and model M2 is a mixture of two Gaussians with means θ′1 and
θ′2 and both of unit variance. We have random variables u = (u1, u2) with u1 ∼ N(0, σ2

0)
and u2 ∼ U [0, 1] in the M1 model space and u′ = u′1 ∼ U [0, 1] in the M2 model space. The
random variable u1 gives the value of the mean of the new Gaussian to be added, while u′1
selects which Gaussian to delete in the reverse step. The second random variable u2 ensures
the dimensionality is consistent. We can define the mapping between the parameter spaces
via

θ′1 =

{
θ1 if u2 < 0.5
u1if u2 ≥ 0.5

θ′2 =

{
u1 if u2 < 0.5
θ1if u2 ≥ 0.5

u′1 = u2.

and the reverse mapping

θ1 =

{
θ′1 if u2 < 0.5
θ′2if u′1 ≥ 0.5

u1 =

{
θ′2 if u2 < 0.5
θ′1if u′1 ≥ 0.5

u2 = u′1.

The Jacobian for this transformation is 1 and so the acceptance probability is just

α = min

(
1,
p(θ′|x)q(θ′)

p(θ|x)q(θ)

)
.
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5.6 Evidence computation

As described earlier, the Bayesian evidence is required for model comparison and Bayesian
model selection, but it is difficult to compute accurately using standard MCMC methods.
Nested sampling (Skilling 2004) was developed as an alternative approach, specifically
tuned for evidence computation. It calculates the evidence by transforming the multi–
dimensional evidence integral into a one–dimensional integral that is easy to evaluate nu-
merically. This is accomplished by defining the prior volume X as dX = π(Θ)dDΘ, so
that

X(λ) =

∫

L(Θ)>λ

π(Θ)dNΘ, (86)

where the integral extends over the region(s) of parameter space contained within the iso-
likelihood contour L(Θ) = λ. The evidence integral, Eq. (??), can then be written as

Z =

∫ 1

0

L(X)dX, (87)

where L(X), the inverse of Eq. (86), is a monotonically decreasing function of X. Thus, if
one can evaluate the likelihoods Li = L(Xi), where Xi is a sequence of decreasing values,

0 < XM < · · · < X2 < X1 < X0 = 1, (88)

as shown schematically in Fig. 21, the evidence can be approximated numerically using
standard quadrature methods as a weighted sum

Z =
M∑

i=1

Liwi, (89)

where the weights wi for the simple trapezium rule are given by wi = 1
2
(Xi−1 − Xi+1).

An example of a posterior in two dimensions and its associated function L(X) is shown in
Fig. 21.

5.6.1 Evidence Evaluation

The summation in Eq. (89) is performed as follows. The iteration counter is first set to i = 0
and N ‘active’ (or ‘live’) samples are drawn from the full prior π(Θ), so the initial prior
volume is X0 = 1. The samples are then sorted in order of their likelihood and the smallest
(with likelihood L0) is removed from the active set (hence becoming ‘inactive’) and replaced
by a point drawn from the prior subject to the constraint that the point has a likelihood
L > L0. The corresponding prior volume contained within this iso-likelihood contour will be
a random variable given by X1 = t1X0, where t1 follows the distribution P(t) = NtN−1 (i.e.,
the probability distribution for the largest of N samples drawn uniformly from the interval
[0, 1]). At each subsequent iteration i, the removal of the lowest likelihood point Li in the
active set, the drawing of a replacement with L > Li and the reduction of the corresponding
prior volume Xi = tiXi−1 are repeated, until the entire prior volume has been traversed. The
algorithm thus travels through nested shells of likelihood as the prior volume is reduced. The
mean and standard deviation of log t, which dominates the geometrical exploration, are:

E[log t] = −1/N, σ[log t] = 1/N. (90)

Since each value of log t is independent, after i iterations the prior volume will shrink down
such that logXi ≈ −(i±

√
i)/N . Thus, one takes Xi = exp(−i/N).
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(a) (b)

Figure 21: Cartoon illustrating (a) the posterior of a two dimensional problem; and (b) the
transformed L(X) function where the prior volumes Xi are associated with each likelihood
Li.

5.6.2 Stopping Criterion

The nested sampling algorithm should be terminated on determining the evidence to some
specified precision. One way would be to proceed until the evidence estimated at each
replacement changes by less than a specified tolerance. This could, however, underestimate
the evidence in (for example) cases where the posterior contains any narrow peaks close to
its maximum. Skilling provides an adequate and robust condition by determining an upper
limit on the evidence that can be determined from the remaining set of current active points.
By selecting the maximum–likelihood Lmax in the set of active points, one can safely assume
that the largest evidence contribution that can be made by the remaining portion of the
posterior is ∆Zi = LmaxXi, i.e. the product of the remaining prior volume and maximum
likelihood value. We choose to stop when this quantity would no longer change the final
evidence estimate by some user–defined value (we use 0.5 in log–evidence).

5.6.3 Posterior Inferences

Once the evidence Z is found, posterior inferences can be easily generated using the final
live points and the full sequence of discarded points from the nested sampling process, i.e.,
the points with the lowest likelihood value at each iteration i of the algorithm. Each such
point is simply assigned the probability weight

pi =
Liwi
Z . (91)

These samples can then be used to calculate inferences of posterior parameters such as
means, standard deviations, covariances and so on, or to construct marginalised posterior
distributions.

5.6.4 MultiNest Algorithm

The most challenging task in implementing the nested sampling algorithm is drawing sam-
ples from the prior within the hard constraint L > Li at each iteration i. Employing a
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(a) (b)

Figure 22: Illustrations of the ellipsoidal decompositions performed by MultiNest. The
points given as input are overlaid on the resulting ellipsoids. 1000 points were sampled
uniformly from: (a) two non-intersecting ellipsoids; and (b) a torus.

naive approach that draws blindly from the prior would result in a steady decrease in the
acceptance rate of new samples with decreasing prior volume (and increasing likelihood).
The MultiNest algorithm tackles this problem through an ellipsoidal rejection sampling
scheme by enclosing the live point set within a set of (possibly overlapping) ellipsoids and a
new point is then drawn uniformly from the region enclosed by these ellipsoids. The num-
ber of points in an individual ellipsoid and the total number of ellipsoids is decided by an
‘expectation–maximization’ algorithm so that the total sampling volume, which is equal to
the sum of volumes of the ellipsoids, is minimized. This allows maximum flexibility and
efficiency by breaking up a mode resembling a Gaussian into a relatively small number of
ellipsoids, and if the posterior mode possesses a pronounced curving degeneracy so that it
more closely resembles a (multi–dimensional) ‘banana’ then it is broken into a relatively
large number of small ‘overlapping’ ellipsoids (see Fig. 22).

The ellipsoidal decomposition scheme described above also provides a mechanism for
mode identification. By forming chains of overlapping ellipsoids (enclosing the live points),
the algorithm can identify distinct modes with distinct ellipsoidal chains, e.g., in Fig. 22 panel
(a) the algorithm identifies two distinct modes while in panel (b) the algorithm identifies
only one mode as all the ellipsoids are linked with each other because of the overlap between
them. Once distinct modes have been identified, they are evolved independently.

Another feature of the MultiNest algorithm is the evaluation of the global as well as
the ‘local’ evidence values associated with each mode. These evidence values can be used in
calculating the probability that an identified ‘local’ peak in the posterior corresponds to a
real object.

There are many other nested sampling algorithms around today, including Polychord,
which obtains samples from within the iso-likelihood surface through slice sampling, cp-
nest and dynesty. The latter two samplers form part of the Bilby parameter estimation
software suite for LIGO.
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6 Stochastic processes and sensitivity curves

In both frequentist and Bayesian approaches to statistical analysis, the likelihood plays a
key role. This is the probability distribution from which the observed data has been drawn.
In a gravitational wave context, we are typically concerned with analysing data from a noisy
detector. The output from the detector, or detectors, is one or more real time series of
measurements, si(t). These measurements are a combination (usually assumed to be linear)
of a signal part, hi(t), and a noise part, ni(t). The signal part is deterministic, depending only
on the (unknown) parameters of the system, while the noise part is random. The likelihood
is therefore a statement about the probability distribution from which the noise is drawn.
The usual assumption is that the noise is generated by a stationary, Gaussian random
process. In this section we will first define what this means, and discuss various approaches
that are commonly used to summarise the noise properties and represent sensitivities to
sources of different types.

6.1 Properties of random processes

A random process is a random sequence (often infinite in length) of values. Future values
are not uniquely determined by current values, but by probability distributions that may be
conditional on past values of the sequence. The observed random sequence is assumed to be
drawn from an ensemble of random processes characterised by probability distributions

pN(nN , tN ;nN−1, tN−1; . . . ;n2, t2;n1; t1)dnNdnN−1 . . . dn2dn1.

The probability distribution could be anything, but it is usual to make some simplifying
assumptions, which are well motivated by observed random processes, to make computa-
tions plausible. The most commonly made assumptions are that the random process is
stationary, Gaussian and ergodic.

A stationary random process is one for which the joint probability distributions for
finite sets of samples depend only on time differences, not absolute time. In other words

pN(nN , tN + τ ; . . . ;n2, t2 + τ ;n1; t1 + τ) = pN(nN , tN ; . . . ;n2, t2;n1; t1) ∀ τ.

A random process is Gaussian if and only if all of its absolute probability distributions
are Gaussian. In other words, for any set of N times, {t1, . . . , tN}, we have

pN(nN , tN ; . . . n1; t1) = A exp

[
−1

2

N∑

j=1

N∑

k=1

αjk(nj − n̄j)(nk − n̄k)
]
.

A ensemble of random process is ergodic if for any process, n(t), drawn from the ensem-
ble, the new ensemble defined by {n(t+KT ) : k ∈ Z} has the same probability distributions.

To understand random processes, we are interested in both their mean values and the
size of random fluctuations about the mean. We assume in the following (without loss of
generality) that the mean of the random process is zero. Fluctuations about the mean can be
characterised by the noise power (or variance), over a certain time interval −T/2 < t < T/2

∫ T/2

−T/2
|n(t)|2dt.
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This quantity increase with time, linearly for stationary random processes. Therefore, it
is more useful to work with the average value, referred to as the mean power or mean
square fluctuations

Pn = lim
T→∞

1

T

∫ T/2

−T/2
|n(t)|2dt.

It is useful to analyse quantities in the Fourier domain, and so we define

nT (t) = n(t)I [|t| < T/2] ,

which is just the full series truncated to the interval of interest. This notation allows us to
use Parseval’s Theorem

∫ T/2

−T/2
[n(t)]2dt =

∫ ∞

−∞
[nT (t)]2 =

∫ ∞

−∞
|ñT (f)|2df = 2

∫ ∞

0

|ñT (f)|2df

and we see that the mean square fluctuations are given by

Pn = lim
T→∞

1

T

∫ T/2

−T/2
[n(t)]2 = lim

T→∞

2

T

∫ ∞

0

|ñT (f)|2df.

This motivates the definition of the spectral density, Sn(f), via

Sn(f) = lim
T→∞

2

T

∣∣∣∣∣

∫ T/2

−T/2
n(t) exp(2πift)dt

∣∣∣∣∣

2

.

This is the one-sided spectral density, which assumes that the time series is real and
hence we only need to consider positive frequencies. The two-sided spectral density,
which is is also defined for negative frequencies, is one half of this.

The spectral density represents the power in the process at a particular frequency since
we have

Pn =

∫ ∞

0

Sn(f)df.

Suppose we are interested in the properties of the process in time intervals of length ∆t,
with corresponding bandwidth ∆f = 1/∆t. The mean square fluctuations at frequency f
in intervals of length ∆t, and averaged over all intervals of that length, are

[∆n(∆t, f)]2 ≡ lim
N→∞

2

N

N/2∑

n=−N/2

∣∣∣∣∣
1

∆t

∫ (n+1)∆t

n∆t

n(t) exp(2πift)dt

∣∣∣∣∣

2

=
Sn(f)

∆t
= Sn(f)∆f.

Hence we see that the root mean square fluctuations at frequency f and measured over
a time ∆t are just ∆n(∆t, f)rms =

√
Sn(f)∆f . The spectral density can be interpreted in

this way as the size of mean square fluctuations at the specified frequency.
A property of a random process that is closely linked to the spectral density is the auto-

correlation function. This is defined in the standard way

C(τ) = lim
T→∞

1

T

∫ T/2

−T/2
n(t)n(t+ τ)dt.
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For random processes that are ergodic (which implies they are also stationary), the
averaging over time is equivalent to averaging over the ensemble

C(τ) = 〈n(t)n(t+ τ) 〉.

The auto-correlation function is the Fourier transform of the spectral density (the Wiener-
Khinchin Theorem). A consequence of this result is that the expectation value of noise
products can be written

〈ñ∗(f)ñ(f ′)〉 = Sn(f)δ(f − f ′).
which is a statement that fluctuations of a stationary random process at different frequencies
are uncorrelated with one another.

The spectral densities of a number of common noise processes are as follows

white noise spectrum Sn(f) = const.
flicker noise spectrum Sn(f) ∝ 1/f
random walk spectrum Sn(f) ∝ 1/f 2

.

We conclude this section by noting that it is also possible to define a cross-spectral
density between two separate random processes. This is defined via

Snm(f) = lim
T→∞

2

T

[∫ T/2

−T/2
n(t) exp(−2πift)dt

][∫ T/2

−T/2
m(t) exp(2πift′)dt′

]

and is the related via Fourier transform to the cross-correlation function of the two time
series

Cnm(τ) = lim
T→∞

1

T

∫ T/2

−T/2
n(t)m(t+ τ)dt.

6.2 Sensitivity curves

For a Gaussian, stationary random process the spectral density conveys all the information
about the statistical properties of the process. For gravitational wave detectors, it is therefore
natural to plot the spectral density to characterise the detector sensitivity. But - how should
sources be presented on the same diagram? There is no unique way to do this. Different
types of source are best represented in different ways.

6.2.1 Burst signals

Burst signals are by definition compact in time duration, and usually also in frequency
duration. It is rare that burst signals can be represented by parametric models, and so they
are quite like random processes. We can characterise the burst by its frequency, f , duration,
∆t, bandwidth, ∆f , and its mean square amplitude, a proxy for the signal power

P̄h =
1

∆t

∫ ∆t

0

|h(t)|2dt = h2
c .

The square root of the mean square amplitude is called the characteristic amplitude of
the burst. The power of the noise in the same bandwidth is ∆fSn(f). The ratio of the
power in the signal to the power in the noise is a measure of the detectability of the burst,
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relative to random fluctuations in the instrument. This ratio is the signal-to-noise ratio
squared of the burst (

S

N

)2

=
P̄h

∆fSh(f)
=

h2
c

∆fSh(f)
.

If the data is windowed and bandpassed in the vicinity of the burst, then we maximise the
contribution of the burst to the data and the signal-to-noise ratio is the ratio of the root-
mean-square (rms) signal contribution to the rms noise contribution. For a broad-band burst
with ∆f ∼ f we have (

S

N

)2

=
h2
c

fSh(f)
.

This motivates representing the sensitivity of a detector to bursts by plotting the quantity
fSh(f) instead of the power spectral density. The detectability of a burst source with
characteristic strain hc can then be assessed by the height of h2

c above the curve.

6.2.2 Continuous sources

If instead of a burst we had a monochromatic gravitational wave source

h(t) = h0 exp(2πif0t)

then the signal power is constant over time

Ph = lim
T→∞

1

T

∫ T/2

−T/2
|h(t)|2dt =

1

2
h2

0.

This power is concentrated at f0. When observing a finite time series of length T , we can
resolve frequencies to a precision ∆f ∼ 1/T . The noise power in that bandwidth is Sn(f)/T ,
which motivates representing the detector sensitivity curve by plotting

√
Sn(f)/T or ρthresh

√
Sn(f)/T

where ρthresh is the threshold signal-to–noise ratio needed for detection. This is called the
strain spectral density. The advantage of rep[resenting sensitivity in this way is that the
detectability of a source can be directly assessed by seeing if the source amplitude h0 lies
above or below the curve. The height above the curve is a direct estimate of the signal to
noise ratio of the source. The disadvantage of this way of representing sensitivity is that it
varies with the length of observation, so this must be specified. In the case of LIGO, this is
not a problem, as the detectors take periodic breaks from observation. After each observing
run, the length of observation is known and so the strain spectral density can be evaluated
for each observing run after the fact, and used to represent the results.

An example of a strain spectral density curve is given in Fig. 23.
Finally, we note that rescaling the sensitivity according to the detection threshold is

not the only type of rescaled spectral density that is encountered in the literature. The
amplitude of a gravitational wave signal in a gravitational wave detector depends on the
orientation of the source relative to the detector plane. The same source placed at different
sky locations and orientations will have different signal-to-noise ratios. To avoid having
to specify which particular choices are being made, it is useful to produce a sky-averaged
sensitivity curve. To assess detectability of a source, its amplitude should then be assessed
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Figure 1.3 The signal levels and frequencies are given for a few known galactic
sources, along with the expected LISA threshold sensitivity and an estimate
of the binary confusion noise level. In addition, the range of levels for 90%
of the expected thousands of resolvable close white dwarf binary signals from
our galaxy is shown.

as 1/
√
T . In a 1-year observation, the frequency resolution is 3×10−8Hz, and there are

(1 Hz)/(3×10−8Hz) = 3×107 resolvable frequencies in the LISA band.

For expected signals due to binaries in our galaxy, the intrinsic wave amplitude h is
essentially constant during a 1-year observation. Such sources are placed in the diagram
to show this h on the vertical scale. But because of LISA’s motion, LISA almost never
responds to this maximum amplitude; rather, the full signal-to-noise ratio SNR over a
year is lower by a factor which depends on the exact position of the source relative to
LISA’s orbit. We can approximate this effect by assuming a reduction by the rms value of
the antenna sensitivity of an interferometer averaged over the entire sky, which is a factor
of 1/

√
5 [4]. This means that, if a source lies above the 1-σ noise level by a certain factor s,

the expected SNR will be typically s/
√

5. To be specific, the threshold sensitivity curve
in Figure 1.3 is drawn to correspond to a SNR of 5 in a 1-year observation. (Accordingly,
it is drawn at a factor of 5

√
5 ≈ 11 above the 1-year, 1-σ noise level.) This SNR of 5 is a

confidence level: for a 1-year observation, the probability that Gaussian noise will fluctuate
to mimic a source at 5 standard deviations in the LISA search for sources over the whole
sky is less than 10−5, so one can be confident that any source above this threshold curve
can be reliably detected. To estimate the expected SNR for any long-lived source in the
diagram, one multiplies the factor by which it exceeds the threshold curve by the threshold
level of 5. The threshold curve is drawn on the assumption that the dominant noise is
the 1-σ instrumental noise level. If any of the random gravitational-wave backgrounds

3-3-1999 9:33 Corrected version 2.08

Figure 23: Strain spectral density curve for a 1 year observation with LISA and a detection
threshold of s/N = 5. Reproduced from the LISA pre-phase A report.

for optimal orientation and sky location. The height of this optimal source above the sky
averaged sensitivity is the average signal-to-noise ratio squared of a source of this type. For
LIGO the sky averaged sensitivity is

〈Sh(f)〉LIGOSA ≈ 5Sh(f)

while for LISA we have

〈Sh(f)〉LISASA ≈ 20

3
Sh(f).

The difference arises because of the 60◦ opening angle of the LISA arms (sin2 60 = 3/4).

6.2.3 Inspiralling sources

Inspiraling sources have to be treated differently to continuous sources. This is because they
emit a finite amount of power in each frequency band and hence the Fourier transform at
each frequency is also finite. Therefore

1√
T
h̃(f)⇒ 0 as T →∞

and so the strain spectral density of an inspiraling source is zero averaged over all time.
Band-passing and windowing the data can recover some signal-to-noise ratio, as in the burst
source case, but we can do better than that using filtering.

A filtered time series is defined from a kernel K(t− t′) via convolution

w(t) =

∫ ∞

−∞
K(t− t′)s(t′)dt′.

In the previous cases we considered signal-to-noise ratio as the ratio of the rms power in the
presence of a signal to the rms power in the noise. We use an analogous definition for filtered
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data, but now compare the amplitude of the filter output due to the signal only, to the rms
amplitude of the filtered data in the presence of noise only

(
S

N

)
(t) =

∫∞
−∞K(t− t′)h(t′)dt′

√〈∣∣∣
∫∞
−∞K(t− t′)n(t′)dt′

∣∣∣
2 〉 .

The rms output of the filter is the signal amplitude, S, to within a fractional error of N/S,
which is the reciprocal of the signal-to-noise ratio.

The choice of the kernel is arbitrary, but it makes sense to choose the kernel that is
“best” in some sense. The best kernel is the one that maximises the signal-to-noise ratio.
This is most easily found by working in the Fourier domain. We use the Fourier transform
definition

x̃(f) =

∫ ∞

−∞
x(t) exp [−2πift] dt.

From the convolution theorem, the Fourier transform of the filter output is

w̃(f) = K̃(f)h̃(f)

where K̃(f) and h̃(f) are the Fourier transform of the kernel and waveform respectively. We
have also

w(t) =

∫ ∞

−∞
x̃(f) exp [2πift] df ⇒ w(0) =

∫ ∞

−∞
x̃(f) df.

Similarly

N2(0) =
〈 ∣∣∣∣
∫ ∞

−∞
K(−t′)n(t′)dt′

∣∣∣∣
2 〉

=
〈∫ ∞

−∞
K̃(f)ñ(f)df

∫ ∞

−∞
K̃∗(f ′)ñ∗(f ′)df ′

〉

=

∫ ∞

−∞

∫ ∞

−∞
K̃(f)K̃∗(f ′)

〈
ñ∗(f ′)ñ(f)

〉
dfdf ′ =

∫ ∞

−∞

∫ ∞

−∞
K̃(f)K̃∗(f ′)δ(f − f ′)Sh(f)dfdf ′

=

∫
|K̃(f ′)|2Sh(f ′)df ′. (92)

We deduce that the signal-to-noise ratio at zero lag is

S

N
=

∫
K̃(f)h̃(f)df√∫
|K̃(f ′)|2Sh(f ′)df ′

which can also be written as
S

N
=

(ShK|h)√
(ShK|ShK)

by introducing the noise-weighted inner product

(h1|h2) = 2

∫ ∞

0

h̃1(f)h̃2
∗
(f) + h̃1

∗
(f)h̃2(f)

Sh(f)
df.

This is of the form ê · b, for a unit vector ê to be found. The inner product of two vectors
of fixed length is maximised when they are parallel, i.e., ê ∝ b. We therefore deduce that
the choice which maximises the inner product is

Sh(f)K̃(f) ∝ h̃(f) ⇒ K̃(f) ∝ h̃(f)

Sh(f)
.
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This is the Weiner optimal filter. In the frequency domain the optimal filter is equal to
the signal, weighted by the spectral density of the noise. A search using the optimal filter
amounts to taking the inner product (s|h) of the data stream, s, with a template of the
signal, h. This is matched filtering. In practice we don’t know exactly what the signal is,
but the parameters of the signal must be estimated from the data. In LIGO/Virgo this is
done by computing the output of the optimal filter for a large number of source parameter
choices which define a template bank.

The signal-to-noise ratio of the matched filtering search that uses the optimal filter is

S

N
[h] =

(h|h)√
〈(h|n)(h|n)〉

= (h|h)1/2

which follows from the fact that

〈(h1|n)(h2|n)〉 = (h1|h2). (93)

This result is proved as follows

〈(h1|n)(h2|n)〉 =
〈∫ ∞

−∞

h̃1(f)ñ∗(f) + h̃∗1(f)ñ(f)

Sh(f)
df

∫ ∞

−∞

h̃2(f ′)ñ∗(f ′) + h̃∗2(f ′)ñ(f ′)

Sh(f ′)
df ′
〉

=

∫ ∞

−∞

∫ ∞

−∞

h̃1(f)h̃∗2(f ′)〈ñ∗(f)ñ(f ′)〉+ h̃∗1(f)h̃2(f ′)〈ñ(f)ñ∗(f ′)〉
Sh(f)Sh(f ′)

dfdf ′

+

∫ ∞

−∞

∫ ∞

−∞

h̃1(f)h̃2(f ′)〈ñ∗(f)ñ∗(f ′)〉+ h̃∗1(f)h̃∗2(f ′)〈ñ(f)ñ(f ′)〉
Sh(f)Sh(f ′)

dfdf ′.

(94)

The terms on the final line vanish because 〈ñ(f)ñ(f ′)〉 = 0, i.e., the size of fluctuations in
the real and imaginary components of the noise are the same. The terms on the first line
are simplified using 〈ñ∗(f)ñ(f ′)〉 = Sh(f)δ(f − f ′)

〈(h1|n)(h2|n)〉 =

∫ ∞

−∞

∫ ∞

−∞

[h̃1(f)h̃∗2(f ′) + h̃∗1(f)h̃2(f ′)]δ(f − f ′)
Sh(f ′)

dfdf ′

=

∫ ∞

−∞

[h̃1(f)h̃∗2(f) + h̃∗1(f)h̃2(f)]

Sh(f)
df, (95)

giving the result stated above.
The matched filtering signal-to-noise ratio simplifies to

(
S

N

)2

= 4

∫ ∞

0

|h̃(f)|2
Sh(f)

df

which can also be written as

(
S

N

)2

= 4

∫ ∞

0

f |h̃(f)|2
Sh(f)

d ln f = 4

∫ ∞

0

f 2|h̃(f)|2
fSh(f)

d ln f.

Plotting Sh(f) and f |h̃(f)|2 on a logarithmic frequency plot, the integral of the ratio of the
two curves “by eye” gives an estimate of the signal-to-noise ratio squared.
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For a source that has amplitude h0 at frequency f , at which point the frequency derivative
is ḟ , then the stationary phase approximation gives us the scaling

h̃(f) ∼ h0√
ḟ
.

The analogy with the broad-band burst case described above motivates defining a character-
istic strain, hc, such that the signal-to-noise ratio squared is h2

c/(fSh(f)). The appropriate
definition is

hc = h0

√
2f 2

df/dt
∼ fh̃(f).

Note also that since
√
Ė ∼ ...

I and h ∼ Ï/D, we have
√
Ė ∼ Dfh and hence

hc ∼
1

D

√
Ė

ḟ

and this is an equality for monochromatic signals.
The characteristic strain is a measure of the signal-to-noise ratio accumulated while the

frequency sweeps through a bandwidth equal to frequency. If we plot as a sensitivity curve
the rms noise in a bandwidth equal to frequency, which is

hn(f) ≡
√
f〈Sh(f)〉SA〉

then the signal-to-noise ratio accumulated as the inspiral proceeds from f to 2f is

(
S

N

)2

f→2f

=

[
hc(f)

hn(f)

]2

.

Therefore, plotting characteristic strain on the same plot gives a quick way to see how the
signal-to-noise ratio of an inspiraling source builds up over the evolution. Note that plotting
the characteristic strain only makes sense if the detector sensitivity is represented by fSh(f).
If the detector sensitivity is represented by Sh(f) then the quantity hc/

√
f should be used

to represent the signal.

In the definition of characteristic strain, hc = h0

√
2f 2/ḟ , the term inside the square

root is the number of cycles the inspiral spends in the vicinity of the frequency f . Papers
that discuss matched filtering often include the statement that the signal to noise ratio is
enhanced by the number of cycles spent in the vicinity of a certain frequency. This is what
they are referring to.

In Fig. 24 we give an example of a plot of the characteristic strain, reproduced from Finn
and Thorne (2000). The figure shows the characteristic strain of various extreme-mass-ratio
inspiral sources detectable by LISA.

6.2.4 Stochastic backgrounds

Stochastic backgrounds are characterised by a spectral density, so it is natural to compute
the power spectral density and plot it on the same axes as the detector PSD. However,
there are two caveats. Firstly, the “power” we have been talking about so far has not been
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Figure 24: Characteristic strain for a number of typical extreme-mass-ratio inspiral sources
observed by the classic (5 km arm length) LISA interferometer. All inspirals are circular,
with 106M� central black holes and observed at a distance of 1Gpc. Curves are labelled by
the spin of the central black hole, a, and the mass of the inspiraling object, m. Points on
the curve correspond to 1 year, 1 month and 1 day prior to merger. The numbers above the
points are the radius of the orbit (in units of M) at that time, and the number of gravitational
wave cycles remaining until plunge. Reproduced from Finn and Thorne (2000).
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a power in a physical sense since we have not specified any units for the time series (and
indeed for GW strain this is dimensionless). When comparing to the noise power spectral
density which is an energy density, it would be preferable to use something that represents a
physical energy density if possible. Secondly, plotting two power spectral densities does not
convey any information about their distinguishability. It would be preferable to represent a
background in a way that conveys the detectability of the background at a glance.

The energy density carried by a gravitational wave is given by

dE

dtdA
∝ ḣ2

+ + ḣ2
×.

Therefore, to obtain a physical energy density we should consider the time derivative of
the strain. Differentiation with respect to time brings down a factor of frequency and so
the energy spectral density is f 2Sh(f). Fluctuations of the energy spectral density in a
bandwidth equal to frequency are then f 3Sh(f).

The energy density of an astrophysical or cosmological stochastic background, per log-
arithmic frequency interval, is often expressed as a fraction of the closure density of the
Universe via

ΩGW =
8πG

3H2
0

dEGW

d ln f
∝ f 2h2

c(f).

The last equality defines the characteristic strain for a background, since, as argued above, a
plane wave of frequency f and amplitude hc carries an energy density fhc. In the examples
below we will show how to calculate the energy density for an astrophysical population of
sources.

To represent backgrounds in a way that conveys their detectability directly, one can use
power-law sensitivity curves (Thrane and Romano 2013). These are not uniquely defined, as
they require some assumptions to be made about data analysis procedures and the threshold
required for a detection using the defined procedure. However, given these assumptions, the
procedure is as follows.

• For a given assumed power-law slope of a background, ΩGW ∝ fβ, compute the mini-
mum amplitude, Amin(β), such that the background would be detectable by the defined
procedure.

• Define the power-law sensitivity curve, Spl(f), via

Spl(f) = max{Amin(β)fβ : β ∈ [−∞,∞]}.

The power-law sensitivity curve is the envelope of the minimal-detectable power-law back-
grounds. It is a useful object to assess background detectability, since drawing a background
of interest on the same figure gives an immediate indication of detectability. If the curve
lies above the power-law sensitivity curve then it will be detectable (via the designated
procedure) and otherwise it will not. An illustration of such a curve is given in Fig. 25.

6.3 Examples

We now estimate the leading order scaling of the quantities introduced above for some
common astrophysical sources. Throughout we will make the usual choice of units to set
G = c = 1.



108 Introduction to Statistics for GWs

2

10−1810−1610−1410−1210−1010−8 10−6 10−4 10−2 100 102 104 106 108 1010

10−14

10−12

10−10

10−8

10−6

10−4

CMB Large
Angle

Pulsar
Limit

LIGO S4

AdvLIGO

BBNCMB & Matter
Spectra

Planck

Inflation

LISA
Pre−Big−Bang

Cosmic Strings

LIGO S5

Frequency (Hz)

Ω
gw

FIG. 2: Plot showing strengths of predicted gravitational-
wave backgrounds in terms of Ωgw(f) and the corresponding
sensitivity curves for different detectors, taken from [2]. Up-
per limits from various measurements, e.g., S5 LIGO Hanford-
Livingston and pulsar timing, are shown as horizontal lines
in the analysis band of each detector. The upper limits take
into account integration over frequency, but only for a single
spectral index.

spectral index is assumed, making it difficult to compare
published limits with arbitrary models. In other cases,
limits are given as a function of spectral index, but the
constrained quantity depends on an arbitrary reference
frequency; see Eq. 7.

To illustrate the improvement in sensitivity that comes
from integrating over frequency, consider the simple case
of a white gravitational-wave background signal in white
uncorrelated detector noise. In this case, ρ increases by
precisely

√
Nbins compared to the single bin analysis. For

ground-based detectors like LIGO, typical values2 of ∆f
and δf are ∆f ≈ 100 Hz and δf ≈ 0.25 Hz, leading to
Nbins ≈ 400, and a corresponding improvement in ρ of
about 20; see, e.g., [2]. For colored spectra and non-
trivial detector geometry the improvement will be less,
but a factor of ∼5-10 increase in ρ is not unrealistic.

In this paper, we propose a relatively simple way to
graphically represent this improvement in sensitivity for
gravitational-wave backgrounds that have a power-law
frequency dependence in the sensitivity band of the de-
tectors. An example of such a “power-law integrated
sensitivity curve” is given in Fig. 3 for a correlation mea-
surement between the Advanced LIGO detectors in Han-
ford, WA and Livingston, LA. Details of the construction

though this is not always depicted in sensitivity curves.
2 The 0.25 Hz bin width typical of LIGO stochastic analyses is

chosen to be sufficiently narrow that one can approximate the
signal and noise as constant across the width of the bin, yet
sufficiently wide that the noise can be approximated as stationary
over the duration of the data segment.
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FIG. 3: Ωgw(f) sensitivity curves from different stages in a po-
tential future Advanced LIGO Hanford-LIGO Livingston cor-
relation search for power-law gravitational-wave backgrounds.
The top black curve is the single-detector sensitivity curve, as-
sumed to be the same for both H1 or L1. The red curve shows
the sensitivity of the H1L1 detector pair to a gravitational-
wave background, where the spikes are due to zeros in the
Hanford-Livingston overlap reduction function (see left panel,
Fig. 5). The green curve shows the improvement in sensitivity
that comes from integration over an observation time of 1 year
for a frequency bin size of 0.25 Hz. The set of black lines are
obtained by integrating over frequency for different power law
indices, assuming a signal-to-noise ratio ρ = 1. Finally, the
blue power-law integrated sensitivity curve is the envelope of
the black lines. See Sec. III, Fig. 7 for more details.

and interpretation of these curves will be given in Sec III,
Fig. 7. We show this figure now for readers who might
be anxious to get to the punchline.

In Sec. II, we briefly review the fundamentals of cross-
correlation searches for gravitational-wave backgrounds,
defining an effective strain noise power spectral density
Seff(f) for a network of detectors. For simplicity, we
consider cross-correlation searches for unpolarized and
isotropic stochastic backgrounds using two or more de-
tectors. In Sec. III we present a graphical method for con-
structing sensitivity curves for power-law backgrounds
based on the expected signal-to-noise ratio for the search,
and we apply our method to construct new power-law in-
tegrated sensitivity curves for correlation measurements
involving second-generation ground-based detectors such
as Advanced LIGO, space-based detectors such as the Big
Bang Observer (BBO), and a pulsar timing array. For
completeness, we also construct a power-law integrated
sensitivity curve for an autocorrelation measurement us-
ing LISA. We conclude with a brief discussion in Sec. IV.

II. FORMALISM

In this section, we summarize the fundamental prop-
erties of a stochastic background and the correlated re-

Figure 25: Power law sensitivity curve (in blue) for backgrounds detectable by ground-based
interferometers, assuming the search is based on cross-correlation of the H1 and L1 detectors
and the threshold for detection is a signal-to-noise ratio of 1. The solid black lines show the
set of minimally-detectable power-laws that are used to generate the power-law sensitivity
curve. The other curves show the detector strain spectral density instantaneously (red) and
for a one year observation (green). Reproduced from Thrane and Romano (2013).
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6.3.1 Single inspiraling compact binary

We consider first the case of compact binary coalescence. We assume that we have a circular
binary with component masses M1 and M2 and separation r. We work in the Newtonian
regime where the binary components are on Keplerian orbits. We denote the total mass, M ,
and reduced mass, µ, by

M = M1 +M2, µ =
M1M2

M1 +M2
.

In the Newtonian two-body problem, the two objects each orbit around the centre of mass
of the system. The two objects are distances r1 and r2 from the centre of mass respectively,
where

r1M1 = r2M2 = µr.

The motion is also equivalent to that of a single body of mass µ orbiting in a fixed Newtonian
potential of an object with mass M at a distance r. The orbital frequency is given by Kepler’s
laws

ω2 =

(
2π

T

)2

= (2πf)2 =
M

r3
.

To estimate the scaling of the gravitational wave emission we need to estimate the quadrupole
moment of the binary. This can be estimated from

I ∼ µr2 cos 2ωt ∼ M1M2

(M1 +M2)
1
3

ω−
4
3 .

At leading order, the gravitational wave strain scales like the second time derivative of the
quadrupole moment divided by the distance to the source

h ∼ Ï

D
∼ 1

D

M1M2

(M1 +M2)
1
3

ω
2
3 .

The rate of energy loss scales like the third time derivative of I squared and so this has the
scaling

Ė ∼ −...
I

2 ∼ −µ2M
4
3ω

10
3 .

Finally, we need to know how the energy relates to the orbital separation or equivalently the
orbital frequency. In the Newtonian limit this follows from

E = −Mµ

2r
= −µ(Mω)

2
3

2

from which we deduce
Ė ∼ −µM 2

3ω−
1
3 ω̇. (96)

Combining this with expression (6.3.1) we obtain

ω̇ ∼ µM
2
3ω

11
3 =

M1M2

(M1 +M2)
1
3

ω
11
3 = M

5
3
c ω

11
3

where we have introduced the chirp mass

Mc =
M

3
5

1 M
3
5

2

(M1 +M2)
1
5

.



110 Introduction to Statistics for GWs

We can now determine the scaling of the various quantities introduced in the previous section.
From Eq. (6.2.3) and recalling ω = 2πf , we obtain the Fourier domain amplitude

h̃(f) ∼ h0√
ḟ
∼ 1

D

M
5
3
c f

2
3

M
5
6
c f

11
6

=
1

D
M

5
6
c f
− 7

6 .

We can also deduce the characteristic strain

hc(f) ∼ 1

D
M

5
6
c f
− 1

6 .

6.3.2 Eccentric binaries

Eccentric binaries have gravitational wave emission at multiple harmonics of the orbital
frequency (Peters and Matthews 1963). The flux of radiation at frequency nf , where n is
the orbital frequency, is

Ėn =
32

5
µ2M

4
3 (2πf)

10
3 g(n, e)

where g(n, e) is given by

g(n, e) =
n4

32

{[
Jn−2(ne)− 2eJn−1(ne) +

2

n
Jn(ne) + 2eJn+1(ne)− Jn+2(ne)

]2

+(1− e2) [Jn−2(ne)− 2Jn(ne) + Jn+2(ne)]2 +
4

3n2
[Jn(ne)]2

}
(97)

where Jn(x) is the Bessel function of the first kind. The characteristic strain for an individual
harmonic is therefore

hc,n(f) =
1

πD

√
2Ėn(f/n)

nḟ(f/n)
∼M

5
6
c f
− 7

6n
2
3

√
g(n, e)

where the argument (f/n) indicates that in order to get the contribution at frequency f from
the n’th harmonic, it must be evaluated when the orbital frequency had the lower value of
f/n.

It is normal to represent the contributions form individual waveform harmonics on a
“waterfall plot”. An example is shown in Figure 26 which is reproduced from Barack and
Cutler (2004).

6.3.3 Stochastic backgrounds

The energy density in a gravitational wave background was defined in equation (6.2.4). If
this background is generated by a population of individual sources, the total background
can be estimated by integrating the contribution from each component in the background.
The quantity of relevance is the total energy density in gravitational waves today, EGW. If
the sources are identical, have number density n(z) and each generate a differential energy
density dE/df , then we have

EGW =

∫ ∞

0

ρcc
2ΩGWd ln f =

∫ ∞

0

∫ ∞

0

N(z)
1

(1 + z)

dE

df
f

df

f
dz,
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FIG. 5. Same as in Fig. (4), but for inspiral of a 1M! CO into a 106M! MBH. The orbital eccentricity 10, 5, 2, and 1 years
before plunge is 0.46, 0.40, 0.35, and 0.32, respectively. The orbital frequency ν 10, 5, 2, and 1 years before plunge is 0.94,
1.16, 1.39, and 1.51 mHz, respectively. The frequency at the LSO is 1.65 mHz.
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FIG. 6. Same as in Fig. (4), but for inspiral of a 10M! CO into a 107M! MBH. The orbital eccentricity 10, 5, 2, and 1 years
before plunge is 0.324, 0.313, 0.305, and 0.303, respectively. The orbital frequency 10, 5, 2, and 1 years before plunge is 0.151,
0.158, 0.162, and 0.164 mHz, respectively. The frequency at the LSO is 0.165 mHz.
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Figure 26: Characteristic strain of each harmonic in a the extreme-mass-ratio inspiral of a
1M� black hole into a 106M� black hole with eccentricity of 0.3 at plunge. Figure reproduced
from Barack and Cutler (2004).
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where the factor of (1 + z) accounts for the fact that the energy density today is redshifted
relative to the energy density at emission. We deduce

ρcc
2ΩGW =

π

4

c2

G
f 2h2

c(f) =

∫ ∞

0

N(z)

1 + z

(
fr

dE

dfr

)

|fr=f(1+z)

dz (98)

where the latter quantity is evaluated at the rest frame frequency, fr = (1 + z)f .
For a stochastic background generated by inspiraling binary sources, from Eq. (96), we

have at leading order

f
dE

df
∼M

5
3
c f

2
3 .

Plugging this into Eq. (98) we obtain

ΩGW(f) ∼M
5
3
c f

2
3

∫ ∞

0

N(z)

(1 + z)
1
3

dz. (99)

We see that the energy spectral density of the background is

Sh(f) ∼ ΩGW(f)/f 3 ∼M
5
3
c f
− 7

3

and the characteristic strain is

hc(f) ∼
√

ΩGW(f)/f ∼M
5
6
c f
− 2

3 .

In this case the characteristic strain scales like f−2/3, while in the case of a single compact
binary coalescence we had a scaling that was f−1/6. This difference arises because the
definition of characteristic strain relates to the signal to noise ratio that can be obtained in
a search for the source of interest. For individual sources, we can perform matched filtering
and enhance the signal to noise ratio coherently by the square root of the number of cycles
(approximately

√
f , which explains the difference between f−2/3 and f−1/6). This is not

possible for incoherent backgrounds where we can only predict the power at each frequency,
not the phase.
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7 Examples of frequentist statistics in gravitational wave

astronomy

In this section we will describe some of the applications of frequentist statistical methods
to gravitational wave detection. Fundamental to frequentist statistics is the likelihood. As
described in the previous chapter, for gravitational wave detectors, we assume that the
output of the detector, s(t), is a linear combination of a signal, h(t|~λ), determined by a finite

set of (unknown) parameters, ~λ, and instrumental noise, n(t). We assume in addition that
the noise is Gaussian with a (usually known) power spectral density Sh(f)

s(t) = n(t) + h(t|~λ), 〈ñ∗(f)ñ(f ′)〉 = Sh(f)δ(f − f ′).

The signal is deterministic, but the noise is a random process. The likelihood, for parameters
~λ, is therefore the probability that the observed noise realisation would take the value n(t) =

s(t)− h(t|~λ), which can be seen to be

L(s|~λ) = p(n(t) = s(t)− h(t|~λ)) ∝ exp

[
−1

2
(s− h(~λ)|s− h(~λ))

]
(100)

where the noise weighted overlap is as given in the last lecture

(a|b) =

∫ ∞

−∞

ã∗(f)b̃(f) + ã(f)b̃∗(f)

Sh(f)
df.

7.1 The Fisher Matrix

We introduced the Fisher Matrix in the discussion of the Cramer-Rao bound on the variance
of an estimator, which, for a multivariate unbiased estimator, λ̂, is given by

cov(λ̂i, λ̂j) ≥ [Γλ]
−1
ij

where

(Γλ)ij = E
[
∂l

∂λi

∂l

∂λj

]
.

In the above l denotes the log-likelihood. For the gravitational wave log-likelihood in
Eq. (100), the derivative is

∂l

∂λi
=

(
∂h

∂λi

∣∣∣∣∣s− h(~λ)

)
=

(
∂h

∂λi

∣∣∣∣∣n
)
.

It therefore follows, from the result given in Eq. (93), that

(Γλ)ij = E
[
∂l

∂λi

∂l

∂λj

]
=

〈(
∂h

∂λi

∣∣∣∣∣n
)(

∂h

∂λi

∣∣∣∣∣n
)〉

=

(
∂h

∂λi

∣∣∣∣∣
∂h

∂λj

)
.

The Fisher Matrix gives a lower bound on the variance of any unbiased estimator of the
parameters of the signal, and hence it provides a guide to how accurately the parameters can
be measured. We know that the maximum likelihood estimator is asymptotically efficient,
i.e., it achieves this Fisher Matrix bound, which is why it might be expected to provide a
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good guide to parameter measurement precision. However, asymptotic efficiency refers to
making many repeated measurements of the same parameter, which we do not typically do
in gravitational wave observations. But it can be seen that the Fisher Matrix provides a
good guide to measurement precision even for a single observation, as follows. We suppose
that the true parameters of the signal are given by ~λ0, and expand to leading order about
those parameters

~λ = ~λ0 + ∆~λ, h(t|~λ) = h(t|~λ) + ∂ih(t|~λ)∆λi

where ∂i denotes the derivative with respect to λi and the last term employs Einstein sum-
mation convention. This approximation is known as the linear signal approximation.
The likelihood can then be expanded as

L(s|~λ) ∝ exp

[
−1

2
(n− ∂ih(t|~λ)∆λi|n− ∂jh(t|~λ)∆λj)

]

= exp

{
−1

2

[
(n|n)− 2(n|∂ih(t|~λ))∆λi + (∂ih(t|~λ)|∂jh(t|~λ))∆λi∆λj

]}

= exp

[
−1

2
(n|n)

]
exp

[
−1

2

(
∆λi − (Γ−1)ik(n|∂kh(t|~λ))

)
Γij

(
∆λj − (Γ−1)jl(n|∂lh(t|~λ))

)]

× exp

[
−1

2
(n|∂ih(t|~λ))(Γ−1)ij(n|∂jh(t|~λ))

]
. (101)

The latter term is sub-dominant since it is O(1) compare to the middle term which is of
order of the signal amplitude, or SNR. The middle term is a Gaussian, centred at ∆λi =
(Γ−1)ik(n|∂kh(t|~λ)), and with covariance matrix given by the Fisher Matrix. The latter
therefore provides an estimate of the width of the likelihood distribution and hence can be
used as a guide to the uncertainty. In addition, the maximum likelihood estimator

∆̂λ
i

= (Γ−1)ik(n|∂kh(t|~λ))

has mean and variance

E
(

∆̂λ
i
)

= 0, cov
(

∆̂λ
i
, ∆̂λ

j
)

= Γ−1
ij ,

which again confirms the interpretation of the Fisher Matrix as the uncertainty in the pa-
rameter estimate. The fractional corrections to the Fisher Matrix estimate scale like the
inverse of the signal-to-noise ratio and therefore the Fisher Matrix is a good approximation
in the high signal-to-noise ratio limit.

The Fisher Matrix has been widely used in a gravitational wave context to assess the
measurability of parameters using observations with present or future detectors. While the
Fisher Matrix is only an approximation, it can be directly calculated by evaluating a small
number of waveforms, rather than requiring samples to be obtained all over the waveform
parameter space, and so it is much cheaper computationally. This makes it a good tool for
Monte Carlo simulations over parameter space, to survey parameter estimation accuracies
over a wide parameter range.

7.2 Matched filtering

In the previous chapter we introduced the idea of matched filtering, motivated by maximising
the signal to noise ratio of a filtered data stream. The optimal filter has a frequency-domain
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kernel K̃(f) ∝ h̃(f)/Sh(f). The use of the output of the optimal filter as a test statistic for
a search can also be motivated by the frequentist concepts that we encountered in previous
chapters. Suppose that we write h(λ) = Aĥ(λ), where (ĥ(λ)|ĥ(λ)) = 1, to separate out the
amplitude of the gravitational wave source from the other parameters. The log-likelihood
can be written

l(λ) = −1

2
(s− Aĥ(λ)|s− Aĥ(λ)) = −1

2

[
(s|s)− 2A(s|ĥ) + A2

]

= −1

2

[
(s|s) + (A− (s|ĥ))2 − (s|ĥ)2

]
. (102)

Fora given λ, this is maximized by the choice A = (s|ĥ), for which the log-likelihood ∝
(s|ĥ)2 − (s|s). The maximum likelihood estimator for parameters other than the amplitude
is thus given by the maximum of the optimal filter output over the parameter space. So,
optimal filtering is just maximum likelihood estimation. To do this in practice, the optimal
filter must be evaluated over the whole parameter space. In the analysis of gravitational
wave data, from LIGO in particular, this is achieved using a template bank, which is a set
of templates that cover the whole parameter space. The overlap of each template with the
detector data is evaluated, and the maximum of those template overlaps is used as a test
statistic to identify whether or not there is a signal in the data.

The question that we want to ask is “Is there a gravitational wave signal in the data?”.
Assuming that the parameters λ are fixed, this can formulated as a hypothesis test on the
signal amplitude

H0 : A = 0, vs. H1 : A > 0.

From the Neyman-Pearson lemma the optimal statistic for testing the simple hypothesis
A = 0 versus A = A1 is the likelihood ratio, which is

exp

[
A1(s|ĥ(λ))− 1

2
A2

1

]
.

This is large for large values of the optimal filter (s|ĥ(λ)) and so we deduce that the optimal
filter is also the most powerful detection statistic. As the detection statistic does not depend
on A1, this test is uniformly most powerful for the composite hypothesis A > 0. In the more
usual case that λ is unknown, although the maximum of the optimal filter statistic is still the
maximum likelihood estimator, this is no longer a uniformly most powerful test, although it
remains quite close to being so.

LIGO matched filtering searches typically use a large number of templates, distributed
throughout the parameter space in a template bank. The matched filter output is evaluated
for all of these templates, and the maximum filter output over the template bank is used as
a detection statistic. Template banks are typically characterised by their minimal match,
MM. This is defined as the minimum over all possible signals of the maximum overlap of
that signal with one of the templates in the bank

min
~λ

[
max

htemp,i:i=1,...,N
(h(~λ)|htemp,i)

]
& MM

where {htemp,i : i = 1, . . . , N} are the N templates in the template bank. The minimal match
is the worst possible detection statistic that a randomly chosen signal could have. Setting
this minimal match to some value close to 1 ensures that very few signals will be missed. A
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typical value of the minimal match used in practice would be 0.97. For a uniform distribution
of sources in a Euclidean Universe, the fraction of sources that would be missed is 1−0.973 =
0.087.

Template banks can be constructed analytically using the Fisher Matrix as a metric. This

follows from expanding the overlap of two normalised templates, ĥ(~λ) = h(~λ)/

√
(h(~λ)|h(~λ)),

(ĥ(~λ)|ĥ(~λ+∆~λ)) = (ĥ(~λ)|ĥ(~λ))+

(
ĥ(~λ)

∣∣∣∣∣
∂ĥ

∂λi
(~λ)

)
∆λi+

1

2

(
ĥ(~λ)

∣∣∣∣∣
∂2ĥ

∂λi∂λj
(~λ)

)
∆λi∆λj+· · · .

The first term is 1 because of the normalisation. The second term vanishes since

(ĥ(~λ)|ĥ(~λ)) = 1 ⇒ ∂

∂λi
(ĥ(~λ)|ĥ(~λ)) = 0 ⇒

(
ĥ(~λ)

∣∣∣∣∣
∂ĥ

∂λi
(~λ)

)
= 0.

The third term can be simplified using

∂

∂λj

(
ĥ(~λ)

∣∣∣∣∣
∂ĥ

∂λi
(~λ)

)
= 0 ⇒

(
∂ĥ

∂λi
(~λ)

∣∣∣∣∣
∂ĥ

∂λj
(~λ)

)
+

(
ĥ(~λ)

∣∣∣∣∣
∂2ĥ

∂λi∂λj
(~λ)

)
= 0

⇒
(
∂ĥ

∂λi
(~λ)

∣∣∣∣∣
∂ĥ

∂λj
(~λ)

)
= −

(
ĥ(~λ)

∣∣∣∣∣
∂2ĥ

∂λi∂λj
(~λ)

)
. (103)

We deduce

(ĥ(~λ)|ĥ(~λ+ ∆~λ)) = 1− 1

2
Γij∆λ

i∆λj.

The Fisher Matrix (of normalised templates) thus provides a metric on parameter space,
which can be used to place templates. This is only practical in low numbers of dimensions. In
higher numbers of dimensions, it is easier to use stochastic template banks. A stochastic
bank is constructed as follows

1. At step 1, choose the first template, ĥ(λ1), randomly from parameter space. Add it to
the template bank, T .

2. At step i ≥ 2, set the counter to 1 and then repeat the following steps:

(a) Draw a random set of parameter values, ~λi, and evaluate the match, M , with the
current template bank

M =

[
max

htemp∈T
(h(~λi)|htemp)

]
.

(b) If M < MM , add h(~λi) to the template bank and advance to step i+1. Otherwise,
increment the counter. If the counter has reached Nmax, stop. Otherwise return
to step (a).
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7.3 LIGO searches

LIGO employs two different matched filtering algorithms to search for signals, pycbc and
gstlal. They differ in various details, including how the template overlaps are computed. We
will not discuss these in detail here, but refer the interested reader to relevant publications.
For gstlal these are

• Cannon, K., Cariou, R., Chapman, A., et al. (2012), Astrophys. J. 748, 136, doi:
10.1088/0004-637X/748/2/136.

• Privitera, S., Mohapatra, S. R. P., Ajith, P., et al. (2014), Phys. Rev. D 89, 024003,
doi: 10.1103/PhysRevD.89.024003

• Messick, C., Blackburn, K., Brady, P., et al. (2017), Phys. Rev. D 95, 042001, doi:
10.1103/PhysRevD.95.042001

• Sachdev, S., Caudill, S., Fong, H., et al. (2019), arXiv:1901.08580

• Hanna, C., Caudill, S., Messick, C., et al. (2019), arXiv:1901.02227

For pycbc the relevant references are

• Nitz, A., Harry, I., Brown, D., et al. (2019), gwastro/pycbc: PyCBC Release v1.15.2,
doi: 10.5281/zenodo.3596447

• Nitz, A. H., Dal Canton, T., Davis, D., & Reyes, S. (2018), Phys. Rev. D 98, 024050,
doi: 10.1103/PhysRevD.98.024050

• Usman, S. A., Nitz, A. H., Harry, I. W., et al. (2016), Class. Quantum Grav. 33,
215004, doi: 10.1088/0264-9381/33/21/215004

Both searches adopt a traditional frequentist framework, in that the output of the pipeline
is used as a detection statistic. If the detection statistic exceeds a threshold then the data
is flagged as interesting, i.e., potentially containing a signal. The threshold is determined
based on the behaviour of the search pipeline in the absence of any signals in the data. This
background distribution is estimated using time slides. Both searches rely on consistency
between triggers in two or more detectors. Any astrophysical gravitational wave signal must
pass through both detectors within an interval of 10ms. If the data of one detector is time
shifted relative to the other by more than this amount, then any coincident triggers in the
two instruments must be due to instrumental noise only. By doing many different time
shifts in this way, the background distribution can be estimated for much longer effective
observation times.

In hypothesis testing, we discussed the notion of a significance or p-value. This makes
sense if the size of the data set is fixed, but gravitational wave detectors are continuously
taking data. Therefore it makes sense to quantify significance instead by a false alarm rate
or FAR, which is the frequency at which triggers as extreme as the one observed, or more
extreme, occur in the data. LIGO quotes FARs for all events that are distributed publicly.

We will now give an overview of a few techniques that are used in LIGO searches to
improve their speed and efficiency.
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7.3.1 Waveform consistency

The assumptions that lead to the optimal filter assume that the noise is stationary. This
is approximately true for gravitational wave detectors, but they are also observed to have
large glitches quite often. While the glitches do not match any of the templates well, there
is often sufficient power in the glitch that they can trigger the detection statistic to exceed
the threshold. To mitigate for this problem, LIGO searches use waveform consistency
checks. These verify that after subtracting the best-fit template signal from the data, the
resulting time series is consistent with being stationary Gaussian noise with the estimated
PSD. If the template ĥ coincides with the true signal, the quantity

χ2 =
N∑

k=1

|ŝk − ĥk|2
Sh(fk)

is the sum of squares of N(0, 1) distributed random variables, and hence follows a chi-squared
distribution with N degrees of freedom. The mean of a χ2

N random variable is N , so χ2/N
should be expected to be close to 1 if the template is a good match to the data, and much
bigger otherwise. LIGO uses something called effective SNR as a detection statistic. This is
defined as

ρ̂ =
ρ

(1 + (χ2/N)3)
1
6

.

For real signals, this is close to the true SNR, while for glitches it is much smaller. The
effective SNR is used as the detection statistic by pycbc.

7.3.2 Marginalisation over phase and time

A template bank requires templates in all parameters, so it is useful to reduce the dimen-
sionality of the parameter space whenever possible. This can be done straightforwardly for
the initial phase and time of coalescence. For a monochromatic signal

h(t|A, f0, tc, φ0) = A cos(2πf0(t−tc)+φ0) = A cos(2πf0(t−tc)) cosφ0−A sin(2πf0(t−tc) sinφ0

the matched filter overlap is

(s|h) = A cosφ0Oc−A sinφ0Os, where Oc = (s| cos(2πf0(t−tc))), Os = (s| sin(2πf0(t−tc))).

Differentiating with respect to φ0 and equating it to zero, we find that the value of φ0 that
maximises the overlap is

tanφ0 = −Os

Oc

⇒ max
φ0

(s|h)2 = A2(O2
c +O2

s).

If this is used instead of the standard overlap, then the template bank automatically max-
imises over phase and this parameter direction does not need to be covered by templates.

To maximize over the unknown coalescence time we use

h̃(f |A, f0, tc, φ0) = h̃(f |A, f0, 0, φ0) exp(−2πiftc)

and observe that

(s|h(t|A, f0, tc, φ0)) = 2<
∫ ∞

−∞

s̃∗(f)h̃(f |A, f0, 0, φ0)

Sh(f)
exp(−2πiftc)df.
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This is just the inverse Fourier transform of

s̃∗(f)h̃(f |A, f0, 0, φ0)

Sh(f)
.

Inverse Fourier transforms can be computed cheaply (in n log n time) using the fast Fourier
transform. Therefore, the time of coalescence can be efficiently maximized over by computing
the quantity above, taking its inverse fast Fourier transform, and then finding the maximum
of the components of the resulting vector.

7.3.3 The F-statistic

The F -statistic is an extension of the above ideas to more of the extrinsic parameters of the
signal. It is not used so much for LIGO, but has been used extensively in LISA data analysis
work (see for example Cornish & Porter (2007), Phys. Rev. D75, 021301; Class. Quantum
Grav. 24, 5729). The idea is to write the signal as a sum of modes, such that the coefficients
depend only on a (subset of) the extrinsic parameters, and then analytically maximise over
those coefficients. For SMBH binaries in LISA the decomposition takes the form

h(t) =
4∑

i=1

ai(ι, ψ,DL, φc)A
i(t|Mc, µ, tc, θ, φ)

where

a1 = Λ[(1 + cos2 ι) cos 2ψ cosφc − 2 cos ι sin 2ψ sinφc]

a2 = −Λ[(1 + cos2 ι) sin 2ψ cosφc + 2 cos ι cos 2ψ sinφc]

a3 = Λ[(1 + cos2 ι) cos 2ψ sinφc + 2 cos ι sin 2ψ cosφc]

a4 = −Λ[(1 + cos2 ι) sin 2ψ sinφc − 2 cos ι cos 2ψ cosφc]

A1 = Mηx(t)D+ cos(Φ)

A2 = Mηx(t)D× cos(Φ)

A3 = Mηx(t)D+ sin(Φ)

A4 = Mηx(t)D× sin(Φ). (104)

Here the waveform parameters are inclination ι, polarization angle, ψ, luminosity distance,
DL, phase at coalescence, φc, chirp mass, Mc, reduced mass ratio, µ, time of coalescence, tc,
colatitude, θ, and azimuth, φ. We denote the waveform phase by Φ(t) and x = (GMω/c3)2/3,
where ω is the orbital frequency and M = m1 + m2 is the total mass. The quantities D+

and Dx are the two components of LISA’s time-dependent response function.
Writing N i = (s|Ai), the matched filter overlap is

(s|h) = ajN
j

and we want to maximise this subject to the constraint that the waveform is normalised
which becomes

aiM
ijaj = 1,′ where M ij = (Ai|Aj).

This is a standard optimisation problem with solution

ai = (M−1)ijN
j = MijN

j.
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The maximized value of the log-likelihood is the F-staistic

F =
1

2
MijN

iN j.

This can be used to automatically maximise over extrinsic parameters in a search, reducing
the dimensionality of the parameter space to just that of the intrinsic parameters. Note
that in the above we have taken the coefficients, ai, to be independent of one another and
unconstrained, while in practice they are correlated and take a potentially limited range
of values because they all depend on the same set of four extrinsic parameters. Thus, we
are finding the maximum over a space that is somewhat larger than the true space, and
contains some unphysical values. If there is a signal in the data, then the maximization
must nonetheless still give the right extrinsic parameter values (in the absence of noise).

7.3.4 Power spectral density estimation

The likelihood contains the spectral density of noise in the detector, which is usually not
known precisely. LIGO searches (and parameter estimation codes) need to use a PSD that
has been estimated from the data. This is accomplished by considering a number of other
sections of data, distributed either side of the section of data that is of interested because it
is believed to contain a signal. The power spectrum (i.e., the norm squared of the Fourier
transform) is computed for each of the empty segments, σ2

i (f), and then these can be com-
bined to give an estimate of the PSD in the segment of interest. The averaging can be done
by taking the mean

σ2
0(f) =

1

2N

N∑

k=1

(s2
k + s2

−k)

but in LIGO analyses it is more usual to use the median. The median is less susceptible to
outliers in the data arising from non-stationary features in the noise.

7.4 Unmodelled searches

For burst sources matched filtering cannot be used, as it is not possible to build templates of
potential signals. LIGO uses a number of different searches for unmodelled sources. Again,
we won’t describe these in detail, but refer to papers that give full details on the algorithms:

• Coherent Wave Burst (CWB):

– S. Klimenko et al. (2016), Phys. Rev. D 93, 042004, arXiv:1511.05999.

• MBTA:

– Adams, T., Buskulic, D., Germain, V., et al. (2016), Class. Quantum Grav. 33,
175012, doi: 10.1088/0264-9381/33/17/175012

• SPIIR:

– Luan, J., Hooper, S., Wen, L., & Chen, Y. (2012), Phys. Rev. D 85, 102002, doi:
10.1103/PhysRevD.85.102002

– Hooper, S., Chung, S. K., Luan, J., et al. (2012), Phys. Rev. D 86, 024012, doi:
10.1103/PhysRevD.86.024012
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Figure 27: Example of a time-frequency spectrogram. Reproduced from Wen & Gair (2005).

– Chu, Q. (2017), PhD thesis, University of Western Australia

– Guo, X., Chu, Q., Chung, S. K., et al. 2018, Co. Phys. C 231, 62, doi:
10.1016/j.cpc.2018.05.002

• X-pipeline:

– Sutton, P. J., Jones, G., Chatterji, S., et al. (2010), N J Phys. 12, 053034

– Was, M., Sutton, P. J., Jones, G., & Leonor, I. (2012), Phys. Rev. D 86, 022003

All of these algorithms search for clusters in time-frequency spectrograms of the data.
The full data stream is divided into (usually overlapping) time segments, windowed and
Fourier-transformed to obtain a frequency-domain representation of that chunk of data.
The norm of these spectra is computed and they are then arranged next to one another in
a grid. An example of a spectrogram is shown in Figure 27. Real astrophysical sources tend
to produce coherent groups of bright pixels, or tracks, in these spectrograms. The patterns
will be similar in different detectors in the network. The various time-frequency algorithms
typically first evaluate bright pixels in the spectrograms, by thresholding on the power or
some derived quantities. Then they cluster the pixels into groups, apply consistency criteria
for the location of groups in two or more detectors in the network, and hence identify triggers
of interest.

Time-frequency methods have also been applied to analysis of simulated LISA data, in
the context of the LISA Mock Data Challenges (e.g., Gair, J.R. and Jones, G.J. (2007), Class.
Quantum Grav. 24, 1145; Gair, J.R., Mandel, I. and Wen, L. (2008), Class. Quantum Grav.
25, 184031; Gair, J.R. and Wen, L. (2005), Class. Quantum Grav. 22, S1359; Wen, L. and
Gair, J.R. (2005), Detecting extreme mass ratio inspirals with LISA using time-frequency
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methods, Class. Quantum Grav. 22, S445.). While these algorithms were successful in
simplified situations (i.e., with many fewer sources in the data than we would expect to see
in practice) they are unlikely to be very effective when applied to real LISA data, due to the
very large number of expected sources that will be overlapping in both time and frequency.

7.5 Semi-coherent searches

For continuous gravitational wave signals, e.g., rotating neutron stars in LIGO data, or
very long-lived inspiral signals, e.g., extreme-mass-ratio inspirals in LISA data, matched
filtering is possible in the sense that templates of the signals can be generated. however, it
is computationally impossible, because the number of templates required to ensure a dense
coverage of parameter space is extremely large. In these cases, it is possible to use semi-
coherent search methods. These involve dividing the data stream into shorter segments,
analysing each of those segments with matched filtering, and them adding up the power
in the matched filter outputs along trajectories through the segments that correspond to
physical inspirals. This approach is summarised in Figure 28. The semi-coherent approach
is more computationally efficient, because the number of templates required to densely cover
the parameter space for shorter observation times is much smaller.

A discussion of the use of a semi-coherent technique for detection of extreme-mass-ratio
inspirals may be found in Gair, J.R. et al. (2004), Class. Quantum Grav. 21, S1595. In that
context, the coherent phase used 2 week segments of data, out of 1 year long LISA data sets.
The coherent phase also employs the F -statistic described above to automatically maximize
over some of the extrinsic parameters.The impact of using the semi-coherent method rather
than fully coherent matched filtering is to increase the estimated matched-filtering signal-
to-noise ratio threshold for detection from ρ = 14 to ρ = 30.

In the context of the ground-based detectors, similar methods are used to search for
continuous gravitational wave signals from rotating pulsars. The most recent LIGO results
from the O2 science run are described in this paper

• Abbott, B.P. et al. (2019), All-sky search for continuous gravitational waves from
isolated neutron stars using Advanced LIGO O2 data, Phys. Rev. D 100, 024004.

LIGO uses two primary search methods. The time-domain F-statistic uses the same
technique as the EMRI search described above. In fact, the latter was based on the former.
Further details can be found in

• Aasi, J. et al. (2014), Class. Quantum Grav. 31, 165014

• Jaranowski, P., Królak, A. and Schutz, B.F. (1998), Phys. Rev. D 58, 063001

• Astone, P., Borkowski, K.M., Jaranowski, P., Pietka M. and Królak, A. (2010), Phys.
Rev. D 82, 022005

• Pisarski, A. and Jaranowski, P. (2015), Class. Quantum Grav. 32, 145014

LIGO also employs a second method, called the Hough transform. The first stage of this
algorithm is the same as the stack-slide method, i.e., coherent matched filtering on shorter
segments of data. The second stage is slightly different, using the Hough transform, which
is a technique for edge-detection in images, to identify tracks through the coherent template
overlaps that might correspond to true signals. Further details can be found in
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Figure 28: Illustration of the semi-coherent search method. The data is divided into shorter
segments, which are searched coherently using waveform templates. The power in the tem-
plates is then summed incoherently along trajectories through the templates that correspond
to EMRI inspiral trajectories. Reproduced from Gair et al. (2005).
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• Astone, P., Colla, A., D?Antonio, S., Frasca, S. and Palomba, C. (2014), Phys. Rev.
D 90, 042002

• Antonucci, F., Astone, P., D?Antonio, S., Frasca, S. and Palomba, C. (2008), Class.
Quantum Grav. 25, 184015

• Krishnan, B., Sintes, A.M., Papa, M.A., Schutz, B.F., Frasca, S. and Palomba, C.
(2004), Phys. Rev. D 70, 082001

7.6 Searches for stochastic backgrounds

Stochastic backgrounds require different search techniques again. It is difficult to identify
a background in a single detector, as it is essentially a noise source which is therefore chal-
lenging to distinguish from instrumental noise. Instead, background searches make use of
multiple detectors and cross-correlate them to identify the common component of the noise.
A typical detection statistic takes the form

YQ =

∫ T

0

dt1

∫ T

0

dt2 s1(t1)Q(t1 − t2)s2(t2)

=

∫ ∞

−∞
df

∫ ∞

−∞
df ′ δT (f − f ′)s̃∗1(f)Q̃(f ′)s̃2(f ′). (105)

In the above, Q(t) is a filter, which is analogous to the filter introduced in the single source
detection case discussed earlier. The function δT (f) is a finite time approximation to the
Dirac delta function

δT (f) =

∫ T/2

−T/2
e−2πiftdt =

sin(πfT )

πf
.

A generic gravitational wave background can be decomposed into a superposition of plane
waves and a sum over polarisation states

hij(t, ~x) =

∫ ∞

−∞
df

∫

S2

dΩ
k̂

e2πif(t−k̂·~x)HA(f, k̂)eAij(k̂).

Here A labels the polarisation state, which for gravitational waves in general relativity is
either plus or cross, A = {+,×}, but in general metric theories could also include scalar
and vector modes. The quantities eAij(k̂) are the polarisation basis tensors for the individual
polarisation modes

e+
ij(k̂) = l̂il̂j − m̂im̂j, e×ij(k̂) = l̂im̂j + m̂il̂j

where

k̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ

l̂ = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ

m̂ = − sinφ x̂+ cosφ ŷ (106)

are the standard spherical-polar coordinate basis vectors on the sky at colatitude θ and
longitude φ. The quantities HA(f, k̂) are the amplitudes of the various modes. For an unpo-
larised, stationary and statistically isotropic gravitational wave background, the expectation
value of pairs of these amplitudes is given by

〈
HA(f, k̂)HA′∗(f ′, k̂′)

〉
= H(f)δ(f − f ′)δ2(k̂, k̂′)δAA′ , (107)
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where H(f) is a real-valued function that depends on the energy density in the gravitational
wave background and can be related to ΩGW(f), as introduced in the previous chapter, by

H(f) =
3H2

0

32π3

ΩGW(f)

|f |3 .

The response of a particular gravitational wave detector, labelled by I, to a gravitational
wave field can be written in the form

sI(t) =

∫ ∞

−∞
dτ

∫

R3

d3~y hij(t− τ, ~x− ~y)Rij
I (τ, ~y)

= (2π)3

∫ ∞

−∞
df

∫

R3

d3~k h̃ij(f,~k)R̃ij
I (f,~k)ei(2πft−

~k·~xI ) (108)

where Rij(t, ~x) is the impulse response of the detector, and the integral is over the spatial
extent of the detector. Combining Eq. (108) with Eq. (107) we obtain

〈YQ〉 =
T

2

∫ ∞

−∞
γ12(|f |)Q̃(f)H(f)df

where γ(|f |) is the overlap reduction function, which depends on the relative separation
and orientation of the two detectors and is defined by

γ12(|f |) =

∫

S2

dΩk̂ R̃
A
1 (f, k̂)R̃A∗

2 (f, k̂)e−2πifk̂·(~x1−~x2)

where
R̃A
I (f, k̂) = (2π)eeAij(k̂)R̃ij

I (f, 2πfk̂).

The overlap reduction function for various combinations of ground-based interferometers
and resonant bar detectors is shown in Figure 29. Stochastic backgrounds generated by
large numbers of supermassive black hole binary inspirals are also the primary source for
pulsar timing arrays. In that case, the “detector” is the measured redshift of a pulsar. The
overlap reduction function for the detection of an isotropic stochastic background by cross-
correlation of the measured redshifts of two different pulsars must be a function of only the
angular separation between the pulsars on the sky. The resulting overlap reduction function
curve is called the Hellings and Downs curve and is shown in Figure 30. Overlap reduction
functions for non-isotropic backgrounds, for example anisotropic or correlated backgrounds,
of backgrounds with non-GR polarisations, look different, providing a diagnostic for these
physical properties of any observed stochastic background.

As in the case of the optimal filter, it is possible to maximise the signal-to-noise ratio of
the filtered output. This takes a similar form to the optimal filter result

Q̃(f) ∝ γ(|f |)ΩGW(|f |)
|f |3S1(|f |)S2(|f |)

where S1(|f |) and S2(|f |) are the power spectral densities of the noise in the two detectors.
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Figure 29: Overlap reduction function of the LIGO Livingston detector with LIGO Hanford
(lower purple curve), Virgo (red curve), GEO (upper purple curve), TAMA (now obsolete)
(blue curve) and the resonant bar detector Allegro (green curve), which was also sited in
Louisiana. This was the network of detectors operating at the time of initial LIGO’s science
runs.



Introduction to Statistics for GWs 127

Figure 30: Overlap reduction function for the cross-correlation of the redshifts of two pul-
sars observed in a pulsar timing array, as a function of the angular separation of the two
pulsars on the sky. This is known as the Hellings and Downs curve and the observation of a
cross-correlation pattern that matches with this expectation is critical for the pulsar timing
detection of gravitational waves.
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8 Examples of Bayesian statistics in gravitational wave

astronomy

In this section we will provide some examples of the application of Bayesian statistics in
gravitational wave astronomy. In most cases we will briefly outline what is done, and provide
references where further information can be obtained.

8.1 LIGO Parameter Estimation

Parameter estimation results for sources detected by the LIGO interferometers are obtained
and summarised as posterior distributions using the Bayesian techniques described earlier in
this course. Typically, LIGO parameter estimation results are quoted as posterior medians
and symmetric credible intervals. Figure 31 gives an example of this, showing the summary
of parameter estimation results for all of the events observed by LIIGO and Virgo during
the O1 and O2 observing runs (Abbott et al. (2019), Phys. Rev. X 9 031040).

LIGO/Virgo parameter estimation results in O1 and O2 were computed using the LAL-
Inference software suite, which includes two separate parameter estimation codes. LALIn-
ferenceMCMC is a Markov Chain Monte Carlo code, which generates posterior distributions
using the Metropolis-Hastings algorithm and proposal distributions that are tuned to features
expected in the likelihood for gravitational wave observations of compact binary inspirals.
Further details can be found in

• Röver, C., Meyer, R., and Christensen, N., Bayesian Inference on Compact Binary In-
spiral Gravitational Radiation Signals in Interferometric Data, Class. Quantum Grav.
23, 4895 (2006).

• van der Sluys, M., Raymond, V., Mandel, I., Röver, C., Christensen, N., Kalogera, V.,
Meyer, R., and Vecchio, A., Parameter Estimation of Spinning Binary Inspirals Using
Markov-Chain Monte Carlo, Class. Quantum Grav. 25, 184011 (2008).

LALInferenceNest is a nested sampling algorithm, which obtains candidate values for updates
to the live point set by carrying out short MCMC chains originating at the current lowest
likelihood point in the live point set. Further details can be found in

• Veitch, J., and Vecchio, A., Phys. Rev. D 81, 062003 (2010).

A summary of the LALInference package can be found in

• Veitch, J., et al., Parameter Estimation for Compact Binaries with Ground-Based
Gravitational-Wave Observations Using the LALInference Software Library, Phys. Rev.
D 91, 042003 (2015).

and the version used in the analysis of the O2 events can be downloaded from

• https://git.ligo.org/lscsoft/lalsuite/tree/lalinference o2 .

From O3 onwards, an additional parameter estimation code, Bilby, has been developed
and used to obtain posterior distributions for LIGO/Virgo detections. This code uses generic
freely available Bayesian sampling codes to draw samples from the posterior distribution,
such as dynesty and ptmcmc. The rest of the code consists of wrappers and functions to
compute the correct likelihood to feed to the sampling codes. The description of the software
can be found in
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and calibration have not changed, a reanalysis is valuable
for the following reasons: (i) Parameter estimation analyses
use an improved method for estimating the power spectral
density of the detector noise [53,54] and frequency-depen-
dent calibration envelopes [98]; (ii) we use two waveform
models that incorporate precession and combine their
posteriors to mitigate model uncertainties.
Key source parameters for the ten BBHs and one BNS are

shown in Table III. We quote the median and symmetric 90%
credible intervals for inferred quantities. For BBH coales-
cences, parameter uncertainties include statistical and sys-
tematic errors from averaging posterior probability
distributions over the two waveform models, as well as
calibration uncertainty. Apart from GW170817, all posterior
distributions of GW events are consistent with originating
from BBHs. Posterior distributions for all GW events are
shown in Figs. 4–8. Mass and tidal deformability poste-
riors for GW170817 are shown in Fig. 9. For BBH
coalescences, we present combined posterior distributions
from an effective precessing spin waveform model
(IMRPhenomPv2) [25,26,49] and a fully precessing
model (SEOBNRv3) [27,28,30]. For the analysis of
GW170817, we present results for three frequency-
domain models IMRPhenomPv2NRT [25,26,32,49,99],
SEOBNRv4NRT [29,32,77,99], and TaylorF2 [35,36,
38,100–112] and two time-domain models SEOBNRv4T
[31] and TEOBResumS [33,113]. Details on Bayesian
parameter estimation methods, prior choices, and wave-
form models used for BBH and BNS systems are provided
in Appendix B, B 1, and B 2, respectively. We discuss an

analysis including higher harmonics in the waveform in
Appendix B 3 and find results broadly consistent with the
analysis presented below. The impact of prior choices on
selected results is discussed in Appendix C.

A. Source parameters
The GW signal emitted from a BBH coalescence

depends on intrinsic parameters that directly characterize
the binary’s dynamics and emitted waveform, and extrinsic
parameters that encode the relation of the source to the
detector network. In general relativity, an isolated BH is
uniquely described by its mass, spin, and electric charge
[114–118]. For astrophysical BHs, we assume the electric
charge to be negligible. A BBH undergoing quasicircular
inspiral can be described by eight intrinsic parameters, the
two masses mi, and the two three-dimensional spin vectors
S⃗i of its component BHs defined at a reference frequency.
Seven additional extrinsic parameters are needed to
describe a BH binary: the sky location (right ascension
α and declination δ), luminosity distance dL, the orbital
inclination ι and polarization angle ψ , the time tc, and phase
ϕc at coalescence.
Since the maximum spin a Kerr BH of mass m can

reach is ðGm2Þ=c, we define dimensionless spin vectors
χ⃗i ¼ cS⃗i=ðGm2

i Þ and spin magnitudes ai ¼ cjS⃗ij=ðGm2
i Þ. If

the spins have a component in the orbital plane, then the
binary’s orbital angular momentum L⃗ and its spin vectors
precess [119,120] around the total angular momentum
J⃗ ¼ L⃗þ S⃗1 þ S⃗2.

TABLE III. Selected source parameters of the 11 confident detections. We report median values with 90% credible intervals that
include statistical errors and systematic errors from averaging the results of two waveform models for BBHs. For GW170817, credible
intervals and statistical errors are shown for IMRPhenomPv2NRTwith a low spin prior, while the sky area is computed from TaylorF2
samples. The redshift for NGC 4993 from Ref. [94] and its associated uncertainties are used to calculate source-frame masses for
GW170817. For BBH events, the redshift is calculated from the luminosity distance and assumed cosmology as discussed in
Appendix B. The columns show source-frame component masses mi and chirp massM, dimensionless effective aligned spin χeff , final
source-frame massMf , final spin af , radiated energy Erad, peak luminosity lpeak, luminosity distance dL, redshift z, and sky localization
ΔΩ. The sky localization is the area of the 90% credible region. For GW170817, we give conservative bounds on parameters of the final
remnant discussed in Sec. V E.

Event m1=M⊙ m2=M⊙ M=M⊙ χeff Mf=M⊙ af Erad=ðM⊙c2Þ lpeak=ðerg s−1Þ dL=Mpc z ΔΩ=deg2

GW150914 35.6þ4.7
−3.1 30.6þ3.0

−4.4 28.6þ1.7
−1.5 −0.01þ0.12

−0.13 63.1þ3.4
−3.0 0.69þ0.05

−0.04 3.1þ0.4
−0.4 3.6þ0.4

−0.4 × 1056 440þ150
−170 0.09þ0.03

−0.03 182

GW151012 23.2þ14.9
−5.5 13.6þ4.1

−4.8 15.2þ2.1
−1.2 0.05þ0.31

−0.20 35.6þ10.8
−3.8 0.67þ0.13

−0.11 1.6þ0.6
−0.5 3.2þ0.8

−1.7 × 1056 1080þ550
−490 0.21þ0.09

−0.09 1523

GW151226 13.7þ8.8
−3.2 7.7þ2.2

−2.5 8.9þ0.3
−0.3 0.18þ0.20

−0.12 20.5þ6.4
−1.5 0.74þ0.07

−0.05 1.0þ0.1
−0.2 3.4þ0.7

−1.7 × 1056 450þ180
−190 0.09þ0.04

−0.04 1033

GW170104 30.8þ7.3
−5.6 20.0þ4.9

−4.6 21.4þ2.2
−1.8 −0.04þ0.17

−0.21 48.9þ5.1
−4.0 0.66þ0.08

−0.11 2.2þ0.5
−0.5 3.3þ0.6

−1.0 × 1056 990þ440
−430 0.20þ0.08

−0.08 921

GW170608 11.0þ5.5
−1.7 7.6þ1.4

−2.2 7.9þ0.2
−0.2 0.03þ0.19

−0.07 17.8þ3.4
−0.7 0.69þ0.04

−0.04 0.9þ0.0
−0.1 3.5þ0.4

−1.3 × 1056 320þ120
−110 0.07þ0.02

−0.02 392

GW170729 50.2þ16.2
−10.2 34.0þ9.1

−10.1 35.4þ6.5
−4.8 0.37þ0.21

−0.25 79.5þ14.7
−10.2 0.81þ0.07

−0.13 4.8þ1.7
−1.7 4.2þ0.9

−1.5 × 1056 2840þ1400
−1360 0.49þ0.19

−0.21 1041

GW170809 35.0þ8.3
−5.9 23.8þ5.1

−5.2 24.9þ2.1
−1.7 0.08þ0.17

−0.17 56.3þ5.2
−3.8 0.70þ0.08

−0.09 2.7þ0.6
−0.6 3.5þ0.6

−0.9 × 1056 1030þ320
−390 0.20þ0.05

−0.07 308

GW170814 30.6þ5.6
−3.0 25.2þ2.8

−4.0 24.1þ1.4
−1.1 0.07þ0.12

−0.12 53.2þ3.2
−2.4 0.72þ0.07

−0.05 2.7þ0.4
−0.3 3.7þ0.4

−0.5 × 1056 600þ150
−220 0.12þ0.03

−0.04 87

GW170817 1.46þ0.12
−0.10 1.27þ0.09

−0.09 1.186þ0.001
−0.001 0.00þ0.02
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Figure 31: Parameter estimation results summary from the first Gravitational Wave Tran-
sient Catalogue published by the LIGO/Virgo collaboration (Phys. Rev. X 9 031040 (2019)).
Results are presented as the median and 90% symmetric credible interval of the Bayesian
posterior distribution.

• Ashton, G., et al. (2019), Astrophys. J. Supp. 241, 27

and the software can be downloaded from

• https://git.ligo.org/lscsoft/bilby

As well as providing tables summarising the median and symmetric credible intervals
for the observed sources, LIGO papers typically include plots of the full Bayesian posterior
distributions. These take various forms. Two-dimensional joint posterior distributions are
often given for pairs of parameters that are correlated, such as the chirp mass and mass
ratio or the final mass and spin of the remnant black hole produced by the merger or the
sky location of the merger event. Examples of two-dimensional posterior distributions are
shown in Figure 32 and Figure 33. One dimensional posteriors are often plotted as “violin
plots” to allow comparison between the results for multiple events. The violin plot plots the
parameter value on the y-axis and the posterior density on the x-axis, which is opposite to the
usual convention. Additionally, the posterior is reflected in the y-axis so that it is symmetric
about that axis for each event. The width of the resulting violin plot is proportional to the
posterior probability for the corresponding value of the parameter. An example is shown
in Figure 34. Posteriors in the spins of the black holes, which is fundamentally a three-
dimensional quantity, are typically represented by semi-circular density plots such as those
shown in Figure 35. The full 3D posterior is marginalised over the (poorly constrained)
azimuthal direction of the spin, and the resulting 2D posterior is represented on a semi-circle
with the spin-magnitude as the radial direction and the angle between the spin vector and
the orbital angular momentum as the angular direction. The density of the colour in these
plots is proportional to the posterior density for the corresponding spin vector.

LALInference is also used to obtain posterior deviations on parameters characterising
deviations from general relativity, to facilitate tests of GR. More details can be found, along
with results from analysis of the O1 and O2 events, in Abbott, B.P., et al., Phys. Rev. D
100, 104036.
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Figure 32: Joint two dimensional posterior on mass and mass ratio (left) and on final mass
and spin (right) for all of the events observed by LIGO/Virgo during the O1 and O2 observing
runs. Reproduced from Abbott et al. (2019), Phys. Rev. X 9 031040.

Figure 33: Sky location posterior distribution for all events observed by LIGO/Virgo during
the O1 and O2 observing runs. Reproduced from Abbott et al. (2019), Phys. Rev. X 9
031040.
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Figure 34: One-dimensional marginalised posteriors on the mass ratio (left) and effective
spin (right) for all the events observed by LIGO/Virgo during the O1 and O2 observing
runs. The one-dimensional posteriors are represented as “violin plots” as described in the
text. Reproduced from Abbott et al. (2019), Phys. Rev. X 9 031040.

Figure 35: Posteriors on the spins of the two components in the binary for all of the events
observed by LIGO/Virgo during the O1 and O2 observing runs. The distance from the
origin represents the magnitude of the spin, and the angle represents the direction of the
spin. The two halves of the plot are for the primary (left) and secondary (right) object in
the binary. The density of colour is proportional to the posterior density for that spin value.
Reproduced from Abbott et al. (2019), Phys. Rev. X 9 031040.
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8.2 Reduced order modelling

LIGO parameter estimation codes are computationally expensive, primarily due to the cost of
evaluating models of the gravitational waveforms to compute likelihoods. To make inference
more efficient, it is advantageous to have models of the signals that are quicker to evaluate.
This has been achieved by building reduced order models and surrogate models. The
principle of both approaches is quite similar. First, a basis for the space of waveforms is
found that has lower dimensionality than the number of samples in the original waveforms.
Then either a fast interpolant is constructed to map physical parameters to the weights of
the basis functions (in the case of some surrogate models, the interpolant is built directly
for the waveform itself) or a reduced order quadrature representation of the likelihood
is constructed. In the latter approach, a projection of the target waveform onto the reduced
basis is obtained not by using overlaps to find the best projection, but instead by requiring
the target waveform to exactly match a linear combination of basis waveforms at a number
of points, called quadrature interpolation points, equal to the number of functions in
the basis. This allows the likelihood quadrature to be reduced to a sum over the target
waveform evaluated at the quadrature points weighted by data-dependent constants that
can be computed prior to running inference from overlaps of the basis functions with the
data

(
h(~λ)|d

)
= 4<

∫ ∞

0

h̃(~λ)d̃∗(f)

Sh(f)
df

≈ 4<



N/2∑

k=0

d∗(fk)~e
T (fk)∆fA−1


~h(~λ)

= 4<
m∑

k=1

ωkh(Fk;~λ). (109)

Reduced order quadrature approximations to likelihoods are the state of the art in LIGO
parameter estimation, but they require being able to evaluate the target waveform at certain
frequencies quickly and so can only really be used with frequency-domain waveform approx-
imants. Surrogate models can be used to accelerate inference with time-domain waveform
models.

8.3 Population inference

Inference on the properties of the population of sources form which the observed LIGO
events are drawn also uses Bayesian methods, specifically Bayesian hierarchical modelling.
We encountered one example of this in Section 4.9, which is the inference of cosmological
parameters using gravitational wave observations of binary neutron star mergers with coun-
terparts. Other examples include inference on the rate of mergers of different types of source
in the Universe, and on the distributions of masses and spins of black holes and neutron
stars. Full details on the range of population analyses carried out for the O1 and O2 events
can be found in Abbott, B.P., et al., Astrophys. J. Lett. 882, L24 (2019) and references
therein, but we summarise some of the key analyses here.
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8.3.1 Rate estimation

Accurate estimation of the rate of events in the Universe is complicated by confusion with
detector noise, i.e., identifying which events are real gravitational wave events and which
are instrumental artefacts, and by the need to make assumptions about the distribution of
parameters of sources in the population. The first problem was tackled in Farr, W., Gair,
J.R., Mandel, I., and Cutler, C., Phys. Rev. D 91, 023005 (2014). If the output of the
detector is represented by a sequence of values of a detection statistic, x, and any statistic
value that exceeds some threshold, xmin, is regarded as a detection, then the observed data
is a set of detection statistic values above threshold, {xi}. Some of these events correspond
to real foreground events, while others arise due to noise fluctuations in the detector and are
background. We introduce an (unobserved) parameter fi for each event such that fi = 1 is
it is a foreground event and fi=0 if it is background. The foreground and background events
are assumed to be generated by independent Poisson processed with rates

dNf

dx
= Rf f̂(x, θf ),

dNb

dx
= Rbb̂(x, θb)

and corresponding cumulative distributions F̂ (x, θf ), B̂(x, θb). Here Rf and Rb are the fore-
ground and background rates respectively and θf and θb represent any unknown parameters
that characterise the foreground and background distributions. The combined posterior for
the rates, event flags and distribution parameters is

p(fi, Rf , Rb, θ|dto, N) =
α

p(dto, N)N !


 ∏

i|fi=1

Rf f̂(xi, θ)




 ∏

i|fi=0

Rbb̂(xi, θ)


 exp[−(Rf+Rb)]

p(θ)√
RfRb

where p(θ) is the prior on the posterior parameters and we are using a Jeffreys’ prior p(R) ∝
1/
√
R on the rates. The subscript on dto indicates that we are using time-ordered data. The

data could also be analysed ordered by ranking statistic. This posterior can be marginalised
over the unknown flags to give posteriors on the rates, or over the rates to give posterior
probabilities for fi = 1 for each event.

One complication with this approach is that it relies on a model for the foreground and
background distributions. These can be estimated by injections and time-slides, but, since
LIGO is not equally sensitive to all types of CBC event, the former requires imposing some
model of the astrophysical population from which the events are drawn. One approach to
this is to assume that all events in the Universe are the same as the one that has been
observed. This approach was used in Kim, Kalogera and Lorimer (Astrophys. J. 584, 985
(2003)) to estimate the rate of double neutron star mergers and so is often referred to as the
“KKL method”. In the first LIGO detection paper, for GW150914, the combination of the
rate estimation accounting for confusion (FGMC) and the KKL method was used to infer
the rate of binary black hole mergers. The application of this “alphabet soup” method was
complicated by the fact that the data being analysed to infer the background for GW150914
contained a second CBC trigger, LVT151012. The parameters of this event were completely
different to GW150914, so the KKL method could still be applied, but generalising to the
case where all events in the Universe were either like GW150914 or LVT151012. Further
details can be found in Abbott, B.P., et al. Astrophys. J. Lett. 833, 1 (2016) and Abbott,
B.P., et al. Astrophys. J. Supp. 227, 14 (2016).

One additional trigger, GW151226, was present in the LIGO O1 data, and that again
had sufficiently distinct parameters that the KKL approach could be used. In O2, the events
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began to have much more posterior overlap and so this method could no longer be used.
Now, a model of the population is assumed in event rate estimation. Recent analyses have
used both a power-law mass distribution or a flat in log-mass distribution in an attempt
to bound the range of possible rate, but future results are likely to shift towards a single
combined analysis of the population parameters and rate.

8.3.2 Black hole mass distribution

The mass distribution of stellar-origin black holes in binaries can be inferred from LIGO/Virgo
observations in a hierarchical analysis by placing a prior on the mass of individual events
that depends on some unknown parameters that can be constrained from analysing the full
set of events. In Abbott, B.P., et al., Astrophys. J. Lett. 882, L24 (2019) three different
models of the mass function were used. Models A and B assumed a power law distribution
on mass and mass ratio

p(m1,m2|mmin,mmax, α, βq) ∝
{
C(m1)m−α1 qβq if mmin ≤ m2 ≤ m1 ≤ mmax

0 otherwise
.

In model A, mmin = 5M�, βq = 0 and the only free parameters are mmax and α. In model
B, all four parameters are allowed to vary. The third model mixes a power-law component
of the above form, with a Gaussian component, designed to fit any excess of events near the
lower mass limit of the pair-instability supernova mass gap. The model is

p(m1|θ) =

[
(1− λm)A(θ)m−α1 Θ(mmax −m1) + λmB(θ) exp

(
−(m1 − µm)2

2σ2
m

)]
S(m1,mmin, δm)

p(q = m2/m1|m1, θ) = C(m1, θ)q
βqS(m2,mmin, δm). (110)

The mass distribution obtained by fitting these models to the O1 and O2 data is shown in
Figure 36.

8.3.3 Black hole spin distribution

A hierarchical analysis of LIGO/Virgo events can also provide insight into the spin distribu-
tion. This can be done either parametrically or non-parametrically and both analyses were
done for the O1 and O2 events in Abbott, B.P., et al., Astrophys. J. Lett. 882, L24 (2019).
The parametric approach models the spin magnitude using a Beta distribution

p(ai|αa, βa) =
aαa−1
i (1− ai)βa−1

B(αa, βa)

while the non-parametric analysis models the spin-magnitude distribution as a set of heights
of a binned distribution, with the bin heights free parameters to be determined by the obser-
vations. For example, a three-bin distribution (Farr, B., Holz, D., and Farr, W., Astrophys.
J. 854, L9 (2018))

p(a) =





A1/3 0 ≤ a ≤ 1/3
A2/3 1/3 ≤ a ≤ 2/3
1− (A1 + A2)/3 2/3 ≤ a ≤ 1

.

The posteriors obtained from applying these models to the O1 and O2 events are shown in
Figure 37.
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15

Mass Parameters Spin Parameters

Model ↵ mmax mmin �q �m µm �m �m E[a] Var[a] ⇣ �i

A [-4, 12] [30, 100] 5 0 0 N/A N/A N/A [0, 1] [0, 0.25] 1 [0, 10]

B [-4, 12] [30, 100] [5, 10] [-4, 12] 0 N/A N/A N/A [0, 1] [0, 0.25] 1 [0, 10]

C [-4, 12] [30, 100] [5, 10] [-4, 12] [0, 1] [20, 50] (0, 10] [0, 10] [0, 1] [0, 0.25] [0, 1] [0, 4]

Table 2. Summary of models used in Sections 3, 4, and 5, with the prior ranges for the population parameters. The fixed
parameters are in bold. Each of these distributions is uniform over the stated range. All models in this Section assume rates
which are uniform in the comoving volume (� = 0). The lower limit on mmin is chosen to be consistent with Abbott et al.
(2018).

Figure 1. Inferred di↵erential merger rate as a function of primary mass, m1, and mass ratio, q, for three di↵erent assumptions.
For each of the three increasingly complex assumptions A, B, C described in the text we show the PPD (dashed) and median
(solid), plus 50% and 90% symmetric credible intervals (shaded regions), for the di↵erential rate. The results shown marginalize
over the spin distribution model. The fallo↵ at small masses in models B and C is driven by our choice of the prior limits on
the mmin parameter (see Table 2). All three models give consistent mass distributions within their 90% credible intervals over
a broad range of masses, consistent with their near-unity evidence ratios (Table 3); in particular, the peaks and trough seen in
Model C, while suggestive, are not identified at high credibility in the mass distribution.

constraints on the presence or absence of a mass gap at

low black hole mass.

Models B and C also allow the distribution of mass ra-

tios to vary according to �q. In these cases the inferred

mass-ratio distribution favors comparable-mass binaries

(i.e., distributions with most support near q ' 1), see

panel two of Figure 1. Within the context of our pa-

rameterization, we find �q = 6.7+4.8
�5.9 for Model B and

�q = 5.8+5.5
�5.8 for Model C. These values are consistent

with each other and are bounded above zero at 95% con-

fidence, thus implying that the mass ratio distribution

is nearly flat or declining with more extreme mass ra-

tios. The posterior on �q returns the prior for �q & 4.

Thus, we cannot say much about the relative likelihood

of asymmetric binaries, beyond their overall rarity.

The distribution of the parameter controlling the frac-

tion of the power law versus the Gaussian component in

Model C is �m = 0.4+0.3
�0.3, which peaks away from zero,

implying that this model prefers a contribution to the

mass distribution from the Gaussian population in ad-

Figure 36: Black hole mass function inferred from LIGO/Virgo events observed in the O1
and O2 observing runs. Figure reproduced from Abbott, B.P., et al., Astrophys. J. Lett.
882, L24 (2019).
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23

Mass Model Spin Parameters

Model E[a] Var[a] ↵a,�a ⇣ �i

Gaussian (G) C [0, 1] [0, 0.25] � 1 1 [0, 4]

Mixture (M) C [0, 1] [0, 0.25] � 1 [0, 1] [0, 4]

Table 6. Summary of spin distribution models examined in Section 5.1, with prior ranges for the population parameters
determining the spin models. The fixed parameters are in bold. Each of these distributions is uniform over the stated range,
with boundary conditions such that the inferred parameters ↵a,�a must be � 1. Details of the mass model listed here is
described in Table 2.

Figure 7. Inferred distribution of spin magnitude for
a parametric (top) and non-parametric binned model (bot-
tom). The solid lines show the median and the dashed line
shows the PPD. The shaded regions denote the 50% and 90%
symmetric intervals. In the bottom panel, the distribution
of spin magnitude is inferred over five bins, assuming either
perfectly aligned (green) or isotropic (blue) population. The
solid lines denote the median, and the shaded regions denote
the central 90% posterior credible bounds. In both cases,
the magnitude is consistent within the uncertainties with the
parametric results.

et al. (2018). We show in the bottom panel of Figure 7

that under the perfectly aligned scenario there is pref-
erence for small black hole spin, inferring 90% of black
holes to have spin magnitudes below 0.6+0.24

�0.28. However,

when spins are assumed to be isotropic the distribution

is relatively flat, with 90% of black hole spin magni-
tudes below 0.8+0.15

�0.24. Thus, the non-parametric analy-
sis produces conclusions consistent with our parametric

analyses described above. These conclusions are also
reinforced by computing the Bayes factor for a set of
fixed parameter models of spin magnitude and orienta-
tion in Appendix B. There we find that the very low

spin magnitude model is preferred in all three orienta-
tion configurations tested (see Figure 11 and Table 7 for
details).

Figure 8 shows the inferred distribution of the pri-
mary spin tilt for the more massive black hole. These
results were obtained without including the e↵ects of

component spins on the detection probability: see Ap-
pendix A for further discussion. In the Gaussian model
(⇣ = 1), all black hole spin orientations are drawn from
spin tilt distributions which are preferentially aligned

and parameterized with �i. In that model, the �i dis-
tributions do not di↵er appreciably from the their flat
priors. As such, the inferred spin tilt distribution are in-

fluenced by large �i and the result resembles an isotropic
distribution. The Mixture distribution does not return
a decisive measurement of the mixture fraction, obtain-

ing ⇣ = 0.5+0.4
�0.5. Since the Gaussian model is a subset of

Figure 8. Inferred distribution of cosine spin tilt for
the more massive black hole for two choices of prior (see
Section 2.4). The dash-dotted line denotes a completely
isotropic distribution (see Appendix B). The solid lines show
the median. The shaded regions denote the 50% and 90%
symmetric intervals and the dashed line denotes the PPD.

Figure 37: Black hole spin distribution inferred from LIGO/Virgo events observed in the O1
and O2 observing runs, using a parametric (top panel) or non-parametric (bottom panel)
approach. Figures reproduced from Abbott, B.P., et al., Astrophys. J. Lett. 882, L24
(2019).
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The spin direction is also a parameter of interest astrophysically, as different formation
scenarios predict either isotropically distributed spin directions, or a preference for spins to
be aligned with the angular momentum of the binary. To capture this, the analysis of the
O1 and O2 data used a mixture model

p(cos t1, cos t2|σ1, σ2, ζ) =
(1− ζ)

4
+

2ζ

π

∏

i∈{1,2}

exp(−(1− cos ti)
2/2σ2

1)

σierf(
√

2/σi)
.

At present, LIGO measurements are not sufficiently informative about spins to strongly
constrain the parameters of the model.

8.3.4 Rate evolution

The FGMC+KKL method described earlier assumes that the rate of mergers is constant,
but in principle this could evolve over cosmic history (the FGMC framework can handle this,
but the interpretation of Rf is different, as the average rate over the sensitive volume of the
detector). An evolution of the rate can be explicitly included and constrained by introducing
an extra parameter into the rate density

dR

dξ
(z|θ) = R0p(ξ|θ)(1 + z)λ.

The analysis of the O1 and O2 events provided weak evidence for an evolution in rate with
redshift, but this was mostly due to the event GW170729, which was the most marginal
detection. The rate evolution will be better constrained by the order of magnitude increase
in events expected in O3 and future observing runs.

8.4 Model selection

Bayesian methods are also applied to model selection using the LIGO/Virgo observations,
through the evaluation of evidence ratios or Bayes factors for pairs of alternative hy-
potheses for the data. Some examples of applications to gravitational wave data are

• Test for the presence of a signal in the data after the end of the merger of the two
neutron stars in GW170817. Such a signal might be evidence that the merger project
was a hypermassive neutron star rather than a black hole. For GW170817 the Bayes
factor for the noise model over the signal model was 256.79 (Abbott, B.P. ,et al., Phys.
Rev. X 9 011001 (2019)), providing strong evidence that no such signal was present.

• Test of the polarisation state of gravitational waves. Possible models are that the
gravitational waves have tensor polarisation, as expected in GR, or have scalar polar-
isation or vector polarisation. The analysis of GW170818 gave Bayes factors of 12 for
tensor versus vector polarisation and 407 for tensor versus scalar, while the analysis of
GW170814 gave Bayes’ factors of 30 and 220 respectively (Abbott, B.P. ,et al., Phys.
Rev. D 100 104036 (2019)).

• Tests of the no-hair property of the remnant black hole formed in a merger, by compar-
ing the properties of the observed ringdown radiation to that predicted by GR (Brito,
Buonanno and Raymond, Phys. Rev. D 98, 084038 (2018)).
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• Probing alternative theories of gravity. For example, looking for evidence for dynamical
gravity with the polarisation of continuous gravitational waves (Isi et al., Phys. Rev.
D 96, 042001 (2017)).

8.5 Source reconstruction

Although Bayesian inference relies on the existence of models, it is also possible to use these
methods to recover “unmodelled” sources. One such implementation is the BayesWave
algorithm. The method works by modelling the noise and signals in the data from the
various detectors as a superposition of simple components. BayesWave represents the
noise as a combination of a smooth PSD component, described by a cubic spline, lines
represented by Lorentzians and glitches modelled by wavelets. Signals in the data are also
modelled by wavelets, but with parameters that are common across the detectors, as opposed
to the noise components which are independent in different detectors. Wavelets are simple
functions that are compact in both time and frequency. We will encounter these again in the
non-parametric regression section of this course. There are many different wavelet families,
but the wavelets used in BayesWave are known as the Morley-Gabor basis.

BayesWave fits itsmodel using reversible jump MCMC. The reversible jump element is
required to add or remove wavelet or line components, as the number of these required is
not known a priori. Further details on the BayesWave algorithm can be found in

• Cornish, N.J., and Littenberg, T.B., Class. Quantum Grav. 32, 135012 (2015).

• Littenberg, T.B., and Cornish, N.J., Phys. Rev. D 91, 084034 (2015).

BayeWave is used in LIGO analyses for PSD estimation, glitch removal and for non-
parametric waveform reconstruction. The good agreement between the BayesWave recon-
structed waveform and the best fit model found by parameter estimation for GW150914 (see
Figure 38) provided extra support to the fact that this was a true signal.

8.6 Rapid localisation

Since the start of the O1 observing run, LIGO/Virgo have been sending out triggers to
facilitate follow-up of gravitational wave events by electromagnetic telescopes. To avoid
delays to these alerts, it is necessary to rapidly estimate the sky location of the triggers so
that astronomers know where to point their telescopes. Bayesian techniques are also used
for this purpose. Full Bayesian parameter estimation is not possible in low-latency, so the
rapid localisation algorithms are not truly Bayesian, but make approximations in evaluating
the posterior that allow it to be computed quickly.

The Bayestar algorithm replaces the full likelihood by the autocorrelation likelihood,
which is the likelihood evaluated at the maximum likelihood parameter values, as returned
by the online search algorithms. This autocorrelation likelihood takes the form

exp

[
−1

2

∑

i

ρ2
i +

∑

i

ρi<
{

e−iγiz∗i (τi)
}
]

where ρi denotes the signal to noise ratio in detector i, γi and τi are the phase and time of
arrival of the trigger in detector i and zi(t) is the time-series of the matched filter overlap
in detector i. The marginalisation of this integral over all parameters except sky location is
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Figure 38: BayesWave reconstruction of GW150914 (labelled “unmodelled”), compared to
the waveform corresponding to the maximum a posteriori parameters obtained by param-
eter estimation (labelled “modelled”) and a numerical relativity waveform with consistent
parameters. Figure reproduced from Abbott, B.P., et al., Phys. Rev. Lett. 116, 061102
(2016).
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accelerated using approximations to the marginalisation integrals and by employing look-up
tables. The result of running the algorithm is a sky map probability density, i.e., a weighting
of pixels on the sky by their relative probability of being the true location of the observed
transient.

More details on the Bayestar algorithm can be found in

• Singer, L., and Price, L., Phys. Rev. D 93, 024013 (2016).

Another rapid localisation algorithm used in LIGO is LALInferenceBurst or LIB.
In this case, computational savings in the model are obtained by representing an arbitrary
signal as a single sine-Gaussian

h+(t) = cos(α)
hrss√

Q(1 + cos(2φ0)e−Q2)/4f0

√
π

sin(2πf0(t− t0) + φ0)e−(t−t0)2/τ2 .

While this simple model cannot accurately describe all signals, it does represent the rela-
tive amplitudes of the signal in different detectors correctly and that is enough to obtain
reasonable sky-localisation accuracies.

There is also an online version of LIB, called oLIB, that uses Bayesian evidences com-
puted by LIB to assess triggers identified in a time-frequency analysis. The evidences for the
triggers being noise versus signal and being coherent in different detectors versus incoherent
are used to identify potentially interesting candidate events for follow-up. oLIB was running
at the time of GW150914 and, along with CWB, was the first algorithm to identify this
signal in the data.

More details on the LALInferenceBurst algorithm and on oLIB, can be found in

• Essick, R., Vitale, S., Katsavounidis, E., Vedovato, G., and Klimenko, S., Astrophys.
J. 800, 81 (2015).

• Lynch, R., Vitale, S., Essick, R., Katsavounidis, E., and Robinet, F., Phys. Rev. D
95, 104046 (2017).

8.7 LISA parameter estimation

Bayesian methods have also been used in the context of data analysis development for LISA,
mostly in the framework of the sequence of Mock LISA Data Challenges (MLDCs) that took
place between 2006 and 2010. Bayesian techniques, with some frequentist simplifications
such as the use of the F -statistic, were used not only to characterise the identified sources,
but also to search for sources in the data set. A variety of techniques were employed,
including Markov Chain Monte Carlo algorithms, genetic algorithms and nested sampling.
These methods were successfully able to find and characterise sources in the sample data sets,
although these were somewhat simplified, containing only Gaussian instrumental noise with
known PSD and a reduced number of astrophysical sources. In Figure 39 we show a table of
parameter measurement precisions of supermassive black hole mergers for all submissions to
the third round of the MLDC. The final two columns of the table show the fitting factor, i.e.,
overlap, of the submitted entry with the true source in each of the two independent LISA
data channels, A and E.

The use of Bayesian techniques for searches as well as parameter estimation in the LISA
context is motivated by the nature of the data. In the LIGO/Virgo context, most sources are
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Figure 39: Summary of the fractional errors in the recovery of parameters of the supermassive
black hole binary mergers in the third MLDC data challenge. The final two columns, labelled
FFA and FFE, give the overlap (or “fitting factor”) of the waveform corresponding to the
recovered parameters with the true injected waveform. Each row represents a separate entry
from one of the groups responding to the challenge. Table reproduced from Babak, S., et
al., Class. Quantum Grav. 27, 084009 (2010).
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Figure 40: Maximum a posteriori parameter values (labelled “Found”) recovered for all five
EMRIs in the MLDC data set 1B (upper rows) and two additional random chosen sources.
These are compared to the “Ture” parameters which were used ot generate the injected
signals. Table reproduced from Babak, S., Gair, J.R., and Porter, E.K., Class. Quantum
Grav.26, 135004 (2009).

of short duration relative to the time between signals, and so it is necessary to efficiently sift
through large amounts of data to find candidate sources of interest. In the LISA context, the
source duration is comparable to the length of the data stream and so the entire data stream
is relevant for the analysis of all sources. It is natural therefore to find and characterise
sources simultaneously.

While the MLDCs demonstrated the effectiveness of the use of Bayesian methods to find
and characterise most source types, several open questions remain, in particular related to
the impact of non-stationary noise and instrumental artefacts such as gaps, the full extent of
source confusion and the detection and characterisation of extreme-mass-ratio inspirals (EM-
RIs). While the EMRI sources in the MLDC data sets were successfully characterised under
simplified assumptions (see Figure 41), the likelihood for an EMRI is very complicated, with
many secondary maxima in parameter space. The successful algorithms relied on knowledge
of the structure of the likelihood surface, which was specific to the simplified model of the
EMRI employed in the MLDC, and the fact that all identified secondaries were generated by
the same EMRI signal. While the structure of the likelihood surface can probably be learned
for more accurate waveform models, the correct grouping of secondary modes will be much
more challenging for real LISA data which could contain many hundreds of EMRIs.

Nested sampling has also been used in the context of LISA data analysis. In fact, the first
application of the MultiNest nested sampling algorithm in a gravitational wave context
was to the characterisation of supermassive black hole mergers in LISA data (Feroz, F., Gair,
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Figure 41: Left panel: posterior on the parameters characterising one of the cosmic string
cusp gravitational wave bursts in the MLDC round 3 cosmic string data set. Right panel:
evidence ratio in favour of the true (cosmic string cusp) model versus an alternative (sine-
Gaussian) model for the burst, as a function of the burst signal-to-noise ratio. Figures
reproduced from Feroz, F., Gair, J.R., Graff, P., Hobson, M.P., and Lasenby, A., Class.
Quantum Grav. 27, 075010 (2010).

J.R., Hobson, M.P., and Porter, E.K., Class. Quantum Grav. 26, 215003). MultiNest was
also used to find and characterise supermassive black hole mergers and gravitational wave
bursts from cosmic string cusps in MLDC data. In the latter case, the computed Bayesian
evidences were used to test the hypothesis that the burst signals were consistent with a
cosmic string cusp as opposed to a generic sine-Gaussian burst model (see Figure ?? and
Feroz, F., Gair, J.R., Graff, P., Hobson, M.P., and Lasenby, A., Class. Quantum Grav. 27,
075010 (2010)).

Further details on LISA data analysis can be found in the MLDC papers, and references
therein:

• Arnaud, K.A., et al. The Mock LISA Data Challenges: An overview, AIP Conf. Proc.
873, 619 (2006).

• Arnaud, K.A., et al., A How-To for the Mock LISA Data Challenges, AIP Conf. Proc.
873, 625 (2006).

• Arnaud, K.A., et al., Report on the first round of the Mock LISA Data Challenges,
Class. Quantum Grav. 24, S529 (2007).

• Arnaud, K.A., et al., An overview of the second round of the Mock LISA Data Chal-
lenges, Class. Quantum Grav. 24, S551 (2007).

• Babak, S., et al., Report on the second Mock LISA Data Challenge, Class. Quantum
Grav. 25, 114037 (2008).

• Babak, S., et al., The Mock LISA Data Challenges: from Challenge 1B to Challenge
3, Class. Quantum Grav. 25, 184026 (2008).
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• Babak, S., et al., The Mock LISA Data Challenges: from Challenge 3 to Challenge 4,
Class. Quantum Grav. 27, 084009 (2010).
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9 Time Series

We encountered the notion of a time series, or stochastic process, in Section 6 when we
discussed modelling of the noise in gravitational wave detectors. In this section we will
described some more general properties of time series, and several families of time series that
might be encountered when analysing data. The basic idea of a time series if that it is an
ordered sequence of random variables, such that each subsequent value depends on (in the
sense of being correlated with) previous values. There are two main types of time series

• Available data are part of a random sequence {Xt}, which is only defined at integer
values of the time t.

• Available data are values of a random function, X(t), that is defined for arbitrary
t ∈ R, but is only observed at a finite number of times.

Random functions can be represented as random sequences, e.g., by integrating or averaging,
but in general this throws away information, so where possible it is better to treat the function
as continuous when performing an analysis.

We conclude this preamble with some definitions. Let {Xt}t∈T be a stochastic process,
then

1. if E(Xt) <∞, then the mean (or expectation) of the process is

µt = E(Xt).

If µt is non-constant, i.e., it depends on t, then µt is sometimes called the trend.

2. if var(Xt) < ∞ for all t ∈ T , then the (auto)covariance function of the random
process is defined as

γ(s, t) = cov(Xs, Xt) = E {(Xs − µs)(Xt − µt)} , s, t ∈ T

and the (auto)correlation function of the process is defined by

ρ(s, t) =
γ(s, t)

{γ(s, s)γ(t, t)}1/2
, s, t ∈ T .

Note that var(Xt) =cov(Xt, Xt) = γ(t, t) and |ρ(s, t)| ≤ 1 for all s, t ∈ T from the
Cauchy-Schwarz inequality. In addition, the function γ(s, t) is semi-positive definite,
i.e., ∑

aiajγ(ti, tj) ≥ 0

for any {a1, . . . , ak} ∈ R and any {t1, . . . , tk}.

9.1 General properties of time series

9.1.1 Stationarity

If S is a set, then we use u+ S to denote the set {u+ s : s ∈ S}, and XS to denote the set
of random variables {Xs : s ∈ S. A stochastic process is said to be

• strictly stationary if for any finite subset S ⊂ T and any u such that u + S ⊂ T ,
the joint distributions of XS and XS+u are the same;
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• second-order stationary (or weakly stationary) if the mean is constant and the
covariance function γ(s, t) depends only on |s− t|.

When T = Z = {0,±1,±2, . . .} and the process is stationary

γ(t, t+ h) = γ(0, h) = γ(0,−h) ≡ γ|h| = γh, h ∈ Z,

where h is called the lag. Similarly ρ(t, t + h) ≡ ρ|h| = ρh for h ∈ Z. So, in the stationary
case the covariance and correlation functions are symmetric around h = 0.

In practice, it is impossible to verify strict stationarity and many computations require
only second-order stationarity. Elsewhere in this chapter when we refer to “stationarity” we
will mean second-order stationarity. Third and higher-order stationarity is defined analo-
gously, by extending the definition to third or higher correlation moments. In cases where
there is a trend or seasonality in the data, the time series will often be preprocessed to remove
the trend and leave a stationary stochastic process that can be analysed using methods that
assume stationarity. One way to do this is to use differencing.

9.1.2 Examples of stochastic processes

1. A stochastic process is called white noise if its elements are uncorrelated, E(Xt) = 0
and variance var(Xt) = σ2. If the elements are normally distributed then it is a
Gaussian white noise process, Xt ∼iid N(0, σ2). As all elements of the series are
independent, this is clearly a stationary stochastic process.

2. A random walk is defined by

Xt = Xt−1 + wt, t = 1, 2, . . . .

The expectation value of this process is 0, and the autocorrelation is γh = 1 for all h.
However, it is not a stationary process because var(Xt) is infinite.

9.1.3 Differencing

We define the backshift operator B by BXt = Xt−1 and the first difference of the series
{Xt} by {∇Xt}, where

∇Xt = (I −B)Xt = Xt −Xt−1

and higher-order differences, such as the second difference {∇2Xt} by

∇2Xt = ∇(∇Xt) = ∇(Xt −Xt−1) = Xt − 2Xt−1 +Xt−2

and so on. If Xt = p(t) +wt, where p(t) is a polynomial of degree k and {wt} is a stationary
stochastic process, then {∇kXt} is stationary, i.e., k’th order differencing removes the poly-
nomial trend. For example, first-order differencing reduces a random walk to a stationary
process. This procedure will be exploited when discussing ARIMA processes later in this
chapter. When dealing with observed time-series, it is normal to apply successive differences
to the data until the resulting time series appears to be stationary.
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9.1.4 Causal processes

Suppose that the process {Xt} can be written in the linear form

Xt =
∞∑

j=−∞

ψjwt−j

where {wt} is white noise,
∑ |ψj| < ∞, and ψ0 = 1. The process is called causal if

ψ−1 = ψ−2 = · · · = 0, so the linear expression for Xt does not involve the future values of
wt.

Using the backshift operator B we can write wt−j = Bjwt, so

Xt =
∞∑

j=−∞

ψjB
jwt = ψ(B)wt,

where

ψ(u) =
∞∑

j=−∞

ψju
j

is an infinite series and ψ(B) the corresponding operator. The properties of the polyno-
mial defined here are crucial for determining properties of stationary time series such as
invertibility, as we will see in the following sections.

9.2 Moving-average (MA) processes

One of the most commonly encountered types of stationary stochastic process is a moving
average process. Let {wt} ∼ (0, σ2) be a white noise process for t ∈ Z. Then the time series
{Xt} is said to be a moving average process of order q (denoted MA(q)) if

Xt = wt + θ1wt−1 + · · ·+ θqwt−q

where θ1, . . . , θq are real valued constants.
The mean of Xt is

E[Xt] = E[wt + θ1wt−1 + · · ·+ θqwt−q]

= E[wt] + θ1E[wt−1] + · · ·+ θqE[wt−q] = 0. (111)

Setting θ0 = 1 the autocovariance is

γ(k) = cov(Xt, Xt+k) = E[XtXt+k]− 02

= E[(θ0wt + · · ·+ θqwt−q)(θ0wt+k + · · ·+ θqwt+k−q)]

=

q∑

r=0

q∑

s=0

θrθsE[wt−rwt+k−s]. (112)

This can be simplified by noting

E[wt−swt+k−r] =

{
σ2 if t− r = t+ k − s
0 otherwise (since wt are uncorrelated).
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When r, s ≤ q then t− r 6= t+ k − s for any r, s if |k| > q and so

γ(k) =

{
0 if |k| > q

σ2
∑q−|k|

r=0 θrθr+|k| if |k| ≤ q.

Since the mean is constant and γ(k) does not depend on t, we see that MA(q) is a stationary
stochastic process. The variance is

var(Xt) = γ0 = σ2

q∑

r=0

θ2
r

and the autocorrelation function is

ρ(k) =

{
0 if |k| > q∑q−|k|

r=0 θrθr+|k|/
∑q

r=0 θ
2
r if |k| ≤ q.

Note that ρ(k) = 0 for |k| > q. This fact is useful when detecting MA(q) processes in
observed data.

The moving average process is a weighted sum of a finite number of white noise events.
Applications within economics include modelling the effects of strikes on economic output
(the white noise events are the strikes, but the impact on economic output at any given
time is not only due to any current strikes, but also previous strikes), or modelling the sales
of white goods (people replace white goods when they break, and those breakages are the
white noise processes, but people might not all replace immediately, so there will be some
influence of lags).

The autocorrelation function does not convey all information about a moving average
process, since two different moving average processes may have the same auto-correlation
function. This is most easily seen by an example. Consider the two processes

Xt = wt + θwt−1 and Xt = wt +
1

θ
wt−1.

The autocorrelation function of both of these processes is

ρ(1) = ρ(−1) =
θ

1 + θ2
, ρ(k) = 0 for |k| > 1.

However, we can rearrange the first process to give

wt = Xt − θXt−1 + θ2Xt−2 − · · ·

while rearranging the second process we obtain

wt = Xt −
1

θ
Xt−1 +

1

θ2
Xt−2 − · · · .

If |θ| < 1 the series of coefficients converges for the first model and not the second, and vice
versa for |θ > 1. This ambiguity leads to the notion of invertibility.
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9.2.1 Invertible moving average processes

A general MA(q) process {Xt} is said to be invertible if it can be written as a convergent
sum of present and past values of Xt of the form

wt =
∞∑

j=0

πjXt−j

where
∑ |πj| <∞. There is only one invertible MA(q) process associated with each autocor-

relation function ρ(k) and so this notion eliminates the ambiguity identified in the previous
example. To determine if a MA(q) process is invertible we can use the backshift operator
introduced above to write

Xt = wt + θ1wt−1 + · · ·+ θqwt−q

= (1 + θ1B + θ2B
2 + · · ·+ θqB

q)wt

= θ(B)wt (113)

where θ(B) is the polynomial

θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q.

Although this polynomial defines an operator, it can be manipulated in the same way as
standard polynomials. In this way, it can be seen that the process is invertible if the roots
of θ(B) all lie outside the unit circle, i.e., all (possibly complex) solutions to θ(z) = 0
have |z| > 1.

Example: The MA(1) model Xt = wt + θ1wt−1 can be written as

Xt = (1 + θ1B)wt ⇒ θ(B) = 1 + θ1B

which has a single root at B = −1/θ1. Therefore the process is invertible if |θ1| < 1.

9.3 Autoregressive (AR) processes

Another commonly encountered type of stationary stochastic process is an auto-regressive
process. Let wt ∼ (0, σ2) for t ∈ Z as in the previous section. The time series {Xt} is said
to be an autoregressive process of order p (denoted AR(p)) if

Xt = α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + wt

where α1, α2, . . . , αp are constants. Autoregressive models assume current values of a time
series depend on a fixed number of previous values (plus some random noise). An example
from forensic science is the concentration of cocaine on bank notes in a bundle. Cocaine
transfers between the notes and therefore there will be a correlation between consecutive
notes in the bundle (ordering of the notes in the bundle is a proxy for time in this example).

Example: The autoregressive process of order one is

Xt = α1Xt−1 + wt
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which is closely related to the random walk process defined earlier. Through repeated sub-
stitution we see

Xt = α1(α1Xt−2 + wt−1) + wt = wt + α1wt−1 + α2
1wt−2 + · · ·

so an AR(1) process can be written as in infinite order moving average process. The mean
is

E[Xt] = E[wt + α1wt−1 + α2
1wt−2 + · · · ] = 0

and the autocovariance function is

γ(k) = cov(Xt, Xt+k) = E

[(
∞∑

i=0

αi1wt−i

)(
∞∑

j=0

αj1wt+k−j

)]

= σ2

∞∑

i=0

αi1α
k+i
1 for k ≥ 0 since E[wt−iwt+k−j] = 0 unless j = k + i

=
σ2αk1

(1− α2
1)

if |α1| < 1. (114)

Hence an AR(1) process with |α1| < 1 is stationary, with var(Xt) = γ(0) = σ2/(1− α2
1) and

autocorrelation ρ(k) = γ(k)/γ(0) = α
|k|
1 .

For the general AR(p) process, we can write

Xt − α1Xt−1 − α2Xt−2 − . . .− αpXt−p = wt

(1− α1B − α2B
2 − . . .− αpBp)Xt = wt

φ(B)Xt = wt. (115)

Recall that a time series is causal if there exists ψ(B) = 1 + ψ1B + ψ2B
2 + . . . such that∑∞

i=0 |ψi| <∞ and Xt = ψ(B)wt. From the above result, any such ψ(B) must be the inverse
of φ(B). We deduce that the AR(p) process is causal if and only if all of the roots of the
polynomial φ(u) lie outside the unit circle. If this is true, then the coefficients ψi can be
found from the expansion of the function 1/φ(B) in the usual way.

The mean and covariance of a causal AR(p) process can be found from the decomposition
Xt =

∑
ψiwt−i The mean is clearly zero and the covariance can be found from

γ(k) = cov(Xt, Xt+k)

= E

[(
∞∑

i=0

ψiwt−i

)(
∞∑

j=0

ψjwt+k−j

)]

= σ2

∞∑

i=0

ψiψi+k for k ≥ 0. (116)

The auto-covariance function converges (and hence {Xt} is weakly stationary) if
∑ |ψi|

converges, which was the condition for the series to be causal. So an AR(p) process is
weakly stationary if it is causal.

Example: consider the AR(1) process

Xt = α1Xt−1 + wt.
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This may be written

φ(B)Xt = wt, where φ(B) = (1− α1B).

The root of φ(B) is B = 1/α1, which lies outside the unit circle if |α1| < 1. Therefore, AR(1)
models are causal (and weakly stationary) if |α1| < 1. If this is true then we can write

Xt =
1

φ(B)
wt

= (1− α1B)−1wt

= (1 + α1B + (α1B)2 + . . .)wt

= ψ0wt + ψ1wt−1 + ψ2wt−2 + . . . (117)

with ψi = αi1 for i ∈ {0, 1, 2, . . .}. This agrees with the result obtained previously by repeated
substitution of the original equation.

9.4 Estimating properties of stationary time series

9.4.1 Estimation

Suppose we have observed values x1, . . . , xn of a time series {Xt} at times t = 1, 2, . . . , n.
We suppose that {Xt} is weakly stationary so that E[Xt] = µ, γ(k) and ρ(k) exist. These
three quantities can be estimated as follows

• We estimate µ by the sample mean

x̄ =
1

n

n∑

t=1

xi.

• We estimate γ(k) at lag k by

ck =
1

n− k − 1

n−k∑

t=1

(xt − x̄)(xt+k − x̄).

The estimator ck is called the sample autocovariance coefficient at lag k.

• We estimate ρ(k) at lag k by

rk =
ck
c0

,

and this estimator is referred to as the sample autocorrelation coefficient at lag
k. A plot of rk against k is called a correlogram.

The latter two formulas are only valid if k is small relative to n, roughly k < n/3.
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9.4.2 Tests for a white noise process

If {Xt} is a white noise process (plus possibly a constant mean), then for large n

rk∼̇N(0, 1/n).

To test the hypothesis H0 that the process {Xt} is white noise we can use the values of the
rk’s. Rather than treating each r+k as an independent test statistic, it is better to count the
number of rk’s that exceed a relevant threshold. For example, for a 5% significance test we
compare each |rk| to 1.96/

√
n and count the number, b say, that exceed this value. Under

H0

b∼̇Bin(m, 0.05)

where m is the number of rk’s being computed. Roughly speaking, if b exceeds m/20 then
we would reject H0.

Another test for white noise is the portmanteau test (Box and Pierce 1970; Ljung and
Box 1978). If m� n and n� 1, then

Qm = n(n+ 2)
m∑

h=1

(n− h)−1ρ̂2
h∼̇χm.

The sensitivity of Qm to different types of departure from white noise depends on m. If m is
too large, sensitivity is reduced because some of the ρ̂h will contribute no information about
the lack of fit. If m is too small then sensitivity is reduced because some of the ρ̂h that
convey information about the lack of fit are missing.

9.4.3 Testing for stationarity

One common test for stationarity is based on fitting the model

Xt = ξt+ ηt + εt, ηt = ηt−1 + wt, wt ∼iid (0, σ2
w)

where {εt} is assumed to be stationary. If σ2
w > 0 then the sequence is a random walk. If

σw = 0 and ξ = 0 then the series is called level stationary since {Xt} is stationary. If
σw = 0 but ξ 6= 0 it is called trend stationary as then {Xt − ξt} is stationary.

The KPSS test for stationarity is based on a score test for the hypothesis that σ2
w = 0,

leading to

C(l) = σ̂(l)−2

n∑

t=1

S2
t , where St =

t∑

j=1

ej, t = 1, . . . , n,

where e1, . . . , en are the residuals from a straight-line regression to the data, Xt = α+βt+εt,
and σ̂(l)2 is the estimated variance based on residuals truncated at lag l. Under certain
assumptions, C(l) has a tractable asymptotic distribution (integral of a squared Brownian
bridge).

9.4.4 Detection of MA(q) processes

As discussed earlier, ρ(k) = 0 for |k| > q for an MA(q) process. Hence if {Xt} are from a
MA(q) process, we would expect

1. r1, r2, . . . , rq will be fairly close to ρ(1), ρ(2), . . . , ρ(q) (and hence not close to 0).
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2. rq+1, rq+2, . . . will be randomly distributed about zero.

Inspection of the sample autocorrelation coefficients can thus identify moving average pro-
cesses. For example, if |r1| was large but r2, r3, . . . are close to zero, there would be evidence
that is was a MA(1) process.

9.4.5 Detection of AR(p) processes

In an AR(1) process Xt = α1Xt−1 + wt, the autocorrelation function is given by

ρ(k) =
γ(k)

γ(0)
= α

|k|
1 .

Therefore, the sample autocorrelation coefficient, r1, gives an estimate of α1, and the other
sample autocorrelation coefficients should scale like r

|k|
1 . Note that, unlike the MA(q) model,

the coefficients, rk, do not drop to zero above some threshold.
For a general AR(p) process, detecting the order of the process by inspection of the

coefficients is difficult. Instead, to fit the general AR(p) model

Xt =

p∑

i=1

αiXt−i + wt

we can find the coefficients that minimize

1

n

n∑

t=p+1

(
xt −

p∑

i=1

αixt−i

)2

.

The resulting estimates α̂1, α̂2, . . . , α̂p are known as least squares estimates for obvious rea-
sons. The estimate α̂p is also called the sample partial autocorrelation coefficient
at lag p. This provides an estimate of the the autocorrelation at lag p that is not ac-
counted for by the autocorrelation at smaller lags, hence the term “partial”. A plot of the
sample partial autocorrelation coefficients versus lag is called the partial autocorrelation
function (pacf) and is analogous to the correlogram. For an AR(p) process, the partial
autocorrelation coefficients α̂p+1, α̂p+2, . . . should drop to around zero. Hence, they can be
used to estimate the order of an AR process in the same way that the correlogram can be
used to estimate the order of a MA process. The partial autocorrelation coefficient at lag
k is significantly different from zero at the 5% significance level if it is outside the range
(−2/

√
n, 2/

√
n).

9.4.6 Time series residuals

The residuals of a time series are defined as

ŵt = observation − fitted value.

For example, for an AR(1) model, Xt = αXt−1+wt, with observations {xt}, t ∈ {1, 2, . . . , n},
the residuals are given by

ŵt = xt − α̂xt−1,
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where α̂ is the estimate of the parameter α, obtained for example from the least squares
estimation procedure described above. The fitted value at time t is the forecast of xt, made
at time t− 1.

For a model that fits well, the residuals {wt} will be approximately white noise, with
constant variance. There are three standard approaches to assessing time series residuals

1. Plotting the residuals versus time. The residuals should be uncorrelated and randomly
distributed about zero. Any patterns in the data, or significant outliers suggest that
the model is not well fitted.

2. Use the Ljung-Box statistic defined above.

3. Looking at the correlogram of the residuals. Any autocorrelation coefficients lying
outside the range ±2/

√
n can be said to be significantly different from zero at the 5%

significance level.

Note that the residuals are not exactly white noise, so these tests must not be used precisely,
but are guidelines.

9.5 ARMA processes

An ARMA(p, q) process is a combination of an MA(q) and an AR(p) process. The time
series {Xt} is said to be an ARMA(p, q) process if Xt is given by

Xt = α1Xt−1 + α2Xt−2 + . . .+ αpXt−p + wt + θ1wt−1 + . . .+ θqwt−q

where wt ∼ (0, σ2) is a white noise process as usual. Using the backshift operator we can
write the ARMA(p, q) process as

φ(B)Xt = θ(B)wt

where φ(B) = 1−α1B−α2B
2− . . .−αpBp and θ(B) = 1+θ1B+θ2B

2 + . . .+θqB
q. Moving

average, autoregressive and white noise process are all special cases of ARMA models. An
MA(q) process is an ARMA(0, q) model, an AR(p) process is ARMA(p, 0) and white noise
is an ARMA(0, 0) process.

It is useful for ARMA(p, q) models to be both causal and invertible and the conditions
for this are the same as the conditions for invertibility of the MA(q) process and causality
of the AR(p) process, namely

• For an ARMA(p, q) process to be invertible, the roots of θ(B) must lie outside the
unit circle.

• For an ARMA(p, q) process to be causal, the roots of φ(B) must lie outside the unit
circle.

If an ARMA(p, q) process is both invertible and causal then it can be expressed both as an
infinite order moving average process and as an infinite order autoregressive process.

An ARMA(p, q) process is regular if

1. It is both invertible and causal,

2. θ(B) and φ(B) have no common roots.



Introduction to Statistics for GWs 155

The second condition is necessary because if the two functions have a common root, the
process can be simplified to one with fewer terms.

If an ARMA(p, q) process is regular then it maybe written

Xt =
θ(B)

φ(B)
wt = ψ(B)wt

where

ψ(B) =
θ(B)

φ(B)
= ψ0 + ψ1B + ψ2B

2 + . . . =
∞∑

i=0

ψiB
i

with ψ0 = 1 and
∑∞

i=0 |ψi <∞. In other words

Xt = wt + ψ1wt−1 + ψ2wt−2 + . . .

This is an infinite order moving average process and is known as the Wold decomposition
of Xt.

In the same way, it is also possible to express wt in terms of Xt using

wt =
φ(B)

θ(B)
Xt = π(B)Xt =

∞∑

i=0

πiXt−i

where

π(B) =
φ(B)

θ(B)
= 1 + π1B + π2B

2 + . . . =
∞∑

i=0

πiB
i

with π0 = 1. This inversion formula is used in some forecasting methods.
For a regular ARMA(p, q) process we have

ρ(k) =

∑∞
i=0 ψiψi+k∑∞
i=0 ψ

2
i

for k = 1, 2, . . . .

This can be proved as follows. Firstly we note

γ(k) = cov(Xt, Xt+k) = E[XtXt+k]− 0

= E

[(
∞∑

i=0

ψiwt−i

)(
∞∑

j=0

ψjwt+k−j

)]

=
∞∑

i=0

∞∑

j=0

ψiψjE(wt−iwt+k−j). (118)

Now

E[wt−iwt+k−j] =

{
σ2 if j = i+ k
0 otherwise (since wt are uncorrelated.

Therefore

γ(k) = σ2

∞∑

i=0

ψiψi+k

and

γ(0) = σ2

∞∑

i=0

ψ2
i .
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Taking the ratio ρ(k) = γ(k)/γ(0) we deduce the result quoted above.

Example: Consider an ARMA(1,1) process defined by

Xt = αXt−1 + wt + βwt−1

where α, β 6= 0 and {wt} is a Gaussian white noise process. Using the previous notation we
have

φ(B) = (1− αB), θ(B) = (1 + βB).

The process is regular if the roots of φ(B) and θ(B) lie outside the unit circle and there are
no roots in common. This is satisfied if

|α| < 1, |β| < 1 and α 6= −β.
If we now assume that these conditions are satisfied so the process is regular, we can use the
Wold decomposition to obtain the variance and auto-correlation function. First we note

Xt =
1 + βB

1− αBwt
= (1 + αB + α2B2 + . . .)(1 + βB)wt

= [(1 + αB + α2B2 + . . .) + (βB + βαB2 + βα2B3 + . . .)]wt

= [1 + (α + β)B + (α2 + αβ)B2 + (α3 + α2β)B3 + . . .]wt

=
∞∑

i=0

ψiwt−i (119)

where ψi = (α + β)αi−1 for i = 1, 2, . . . and ψ0 = 1. Using this decomposition we can
compute the variance

var[Xt] =
∞∑

i=0

ψ2
i var[wt−i] = σ2

∞∑

i=0

ψ2
i

= [1 + (α + β)2 + (α + β)2α2 + (α + β)2α4 + . . .]σ2

=

[
1 +

(α + β)2

(1− α2)

]
σ2. (120)

The autocorrelation function can be found from the formula

ρ(k) =

∑∞
i=0 ψiψi+k∑∞
i=0 ψ

2
i

.

For example, for k = 1, we have from the variance result
∞∑

i=0

ψ2
i =

[
1 +

(α + β)2

(1− α2)

]
=

1 + 2αβ + β2

1− α2

and note

ψ0ψ1 + ψ1ψ2 + ψ2ψ3 + . . . = (α + β) + [(α + β)2α + (α + β)2α3 + . . .]

= (α + β) +

[
(α + β)2α

1− α2

]
. (121)

Hence we find

ρ(1) =
(α + β)[(1− α2) + (α + β)α]

1 + 2αβ + β2
=

(α + β)[1 + αβ]

1 + 2αβ + β2
.
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9.5.1 ARMA(p, q) with constant mean

The ARMA(p, q) model can be generalised to

Xt = c+ α1Xt−1 + α2Xt−2 + . . .+ αpXt−p + wt + θ1wt−1 + . . .+ θqwt−q

or equivalently
φ(B)Xt = c+ θ(B)wt

where c 6= 0. This is called an ARMA(p, q) model with constant mean. By letting

µ =
c

1− α1 − α2 − . . .− αp
= E[Xt]

the problem may be converted to a model with no constant term by considering

Yt = Xt − µ.

We can see that

φ(B)Yt = φ(B)(Xt − µ) = φ(B)Xt − φ(B)µ

= c+ θ(B)wT − c = θ(B)wt (122)

so Yt ∼ARMA(p, q). If the ARMA process is regular then

Yt =
θ(B)

φ(B)
wt = ψ(B)wt

and Xt = Yt + µ, from which we deduce

Xt = µ+
∞∑

i=0

ψiwt−i.

The autocorrelation function ρ(k) is the same for Xt and Yt, as it does not depend on the
value of µ.

9.6 ARIMA processes

The ARMA(p, q) models describe stationary time series, but often an observed time series
{Xt} is not stationary. To fit a stationary model to the data it is necessary to first remove the
non-stationary behaviour, for example if the trend, E[Xt], is not constant. One approach is
to consider differences of the time series, as these will remove polynomial trends as discussed
earlier.

We denote the backward difference operator, (I − B), by ∇. If {Xt} has a trend which
follows a polynomial of degree ≤ d in time, t, then we consider the d-th order difference
process

Wt = ∇dXt = (I −B)dXt.

If the time series {Wt} generated in this way can be modelled using an ARMA(p, q) pro-
cess, then the series is called an autoregressive integrated moving-averaged (ARIMA)
model and is denoted by ARIMA(p, d, q). The process {Wt}may be a zero mean ARMA(p, q)
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process, in which case the trend of the original series, E[Xt], is a polynomial of degree ≤ d−1
and we may write

φ(B)Wt = θ(B)wt.

Alternatively, the process {Wt} may have a constant mean, in which case E[Xt] is a polyno-
mial of degree d and we may write

φ(B)Wt = c+ θ(B)wt with c 6= 0.

If the ARMA(p, q) process that models {Wt} is regular then the polynomials φ(B) and θ(B)
have no roots outside the unit circle. Writing

Φ(B) = φ(B)(I −B)d

we have
Φ(B)Xt = φ(B)(I −B)dXt = φ(B)Wt = θ(B)wt.

The process {Xt} is invertible since the roots of θ(B) lie outside the unit circle and so we
may write

wt =
Φ(B)

θ(B)
Xt = Π(B)Xt = Xt + π1Xt−1 + π2Xt−2 + . . . .

In addition we note that
1 + π1 + π2 + . . . = 0.

This follows from the fact that

Π(B)θ(B) = Φ(B) = φ(B)(I −B)d ⇒ Π(1)θ(1) = 0 ⇒ Π(1) = 0.

The last step follows from the fact that θ(1) 6= 0 since by assumption alll of the roots of
θ(B) lie outside the unit circle. While ARIMA(p, q) processes are invertible, they are not
causal, since (I −B)d has d roots on the unit circle and hence so does Φ(B). Thus the Wold
decomposition cannot be used for ARIMA processes.

Example: Consider the model

Xt = Xt−1 + wt − θwt−1, with 0 < |θ| < 1 and E[Xt] = µ.

We can write
Wt = Xt −Xt−1 = wt − θwt−1

so Wt ∼ARMA(0, 1) and hence Xt ∼ARIMA(0, 1, 1). We have

Φ(B)Xt = θ(B)wt, where Φ(B) = (I −B), θ(B) = I − θB.

We can invert this process to obtain

wt = Π(B)Xt =
I −B
I − θBXt

= (1−B)(1 + θB + θ2B2 + . . .)Xt

= [1− (1− θ)B − (1− θ)θB2 − (1− θ)θ2B3 + . . .]Xt

=
∞∑

i=0

πiXt−i (123)
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where πi = −(1− θ)θi−1. We can also confirm

∞∑

i=1

πi = −(1− θ)
∞∑

i=0

θi = −(1− θ) 1

1− θ = −1 ⇒ 1 +
∞∑

i=1

πi = 0.

9.6.1 ARIMA processes with a constant term

Suppose that we have
φ(B)(I −B)dXt = c+ θ(B)wt,

where c 6= 0. This means that {Xt} has a trend term which is a polynomial of degree d. To
work with such a series we define a new series, {Yt}, as

Yt = Xt − Atd, where A =
c

d!(1− α1 − α2 − . . .− αp)
.

The new series is an ARIMA model without a constant term

φ(B)(I −B)dYt = θ(B)wt

and so can be used for forecasting. Forecasts of Xt can be obtained by adding Atd to the
forecasts of Yt.
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10 Nonparametric Regression

The notes in this section are taken from a lecture course on this topic that I gave previously.
We will not cover all of this material in one lecture, but the detailed notes are provided so
that you can learn about more about the topics that interest you.

10.1 Introduction

10.1.1 Difference between parametric and nonparametric regression

The basis for regression is a set of observations of pairs of variables (Xi, Yi), i = 1, . . . , n.
We are interested in finding a connection between X and Y . We assume that Y is random,
but X can be either random or fixed; we focus mostly on the case that the Xi’s are fixed.
In parametric regression we assume a particular type of dependence of Y on X (e.g. linear
regression: EY = AX, log-linear regression log(EY ) = AX, etc). In other words, we
assume a priori that the unknown regression function f belongs to a parametric family
{g(x, θ) : θ ∈ Θ}, where g(·, ·) is a given function, and Θ ⊂ Rk. Estimation of f is the
equivalent to estimation of the parameter vector θ.

In nonparametric regression, by contrast, we do not want to make any assumption about
how EY depends on X, but want to fit an arbitrary functional dependence. We assume that
we observe a function with error:

Yi = f(Xi) + εi, i = 1, . . . , n.

Often the errors are assumed to be normally distributed, εi ∼ N(0, σ2), independently. The
aim is to estimate the unknown function f .

In nonparametric estimation it is usually assumed that f belongs to some large class F
of functions. For example, F can be the set of all the continuous functions or the set of
all smooth (differentiable) functions. For proving certain properties of estimators, we will
consider sets of functions with k derivatives, which are called Hölder spaces of functions.

We will described several different approaches to nonparametric regression — kernel
smoothing, spline smoothing, general additive models and wavelet estimation.

10.1.2 Nonparametric regression model

Throughout this chapter we will assume the following model of nonparametric regression:

Yi = f(Xi) + εi, i = 1, . . . , n.

with independent errors E(εi) = 0, Var(εi) = σ2 and a function f : [0, 1]→ R.
Now suppose that we observe data (xi, yi), i = 1, . . . , n, which is a realisation of iid

random variables (Xi, Yi). The aim is to estimate the unknown function f(x) = E(Yi|Xi = x),

namely to construct an estimator f̂n(x) for all x ∈ [0, 1] which is consistent and efficient,
and to be able to test hypotheses about f(x0) for a fixed x0 and about f(x) for all x
simultaneously.

The maximum likelihood estimator (MLE) of f(x) gives estimates of f only at points xi
where we observe the data: f̂(xi) = yi. Since E[εi] = 0, this estimator is unbiased at xi, as

Ef̂(xi) = EYi = f(xi). However, the MLE (and the model) does not give any information
about f(x) for x 6= xi. The model is not fully identifiable hence some additional assumptions
about f are needed. A key assumption we will make about f that it is smooth.
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10.1.3 Estimators

There are two major approaches to nonparametric estimation.
1. Smoothing: fitting a flexible smooth curve to data. We will consider two methods:

kernel smoothing and spline smoothing. The main question in this context is how smooth
should this curve be, and do we have to decide that in advance, or can we let the data to
decide?

2. Orthogonal projection estimation: represent the regression function f as a series
in an orthogonal basis, and estimate the coefficients from the data. We will consider wavelet
bases. Wavelets can be spiky, so they are well suited for modelling not very smooth functions,
e.g., with jumps or sharp spikes. The main question is how to estimate the coefficients, so
that the function estimate is neither too smooth nor too spiky.

10.1.4 Consistency

The key requirement for any estimator is consistency, that is, the more data we have, the
closer the estimator is to the function of interest. We encountered consistency in the context
of estimators of parameters, and there is a corresponding definition for functions.

Definition 10.1. f̂n is a (weakly) consistent estimator of f in distance d based on n obser-
vations iff

∀ε > 0, P(d(f̂n, f) > ε)→ 0 as n→∞.
In the rest of this chapter, when we refer to consistency we will mean weak consistency.

We consider two distances on function spaces d(f̂n, f).

1) Pointwise at x0 (local): d(f̂n, f) = |f̂n(x0)− f(x0)|, for some x0 ∈ [0, 1].

2) Integrated (global) : d(f̂n, f) = ||f̂n − f ||2 =
√∫ 1

0
(f̂n(x)− f(x))2dx.

Here || · ||2 is defined by

||g||22
def
=

∫ 1

0

[g(x)]2dx.

It is a norm in Hilbert space L2[0, 1] = {g : [0, 1]→ R such that ||g||2 <∞}.
Markov’s inequality is a tool to verify consistency:

P(d(f̂n, f) > ε) ≤ ε−2E[d(f̂n, f)2].

For these distances, E[d(f̂n, f)]2 has particular names.

1) Mean squared error (MSE):

MSE(f̂n(x0)) = E[|f̂n(x0)− f(x0)|2] = v(x0) + [b(x0)]2

2) Mean integrated squared error (MISE):

MISE(f̂n) = E[||f̂n − f ||2] = E
[∫ 1

0

|f̂n(x)− f(x)|2dx
]

=

∫ 1

0

v(x)dx+

∫ 1

0

[b(x)]2dx,

where b(x) = bias(f̂(x)) = E
[
f̂(x)

]
− f(x) and v(x) = Var(f̂(x)) are the bias and the

variance of f̂(x).
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Therefore, M(I)SE(f̂n) → 0 as n → ∞ implies consistency in the corresponding distance.
We will also study the rate of convergence of the estimators, that is, how fast MISE and
MSE decrease to 0 as a function of sample size n.

10.1.5 Notation

The indicator function of a set A is

1A(x) =

{
1, if x ∈ A,
0, if x /∈ A.

Informally, we will also write 1(|x| ≤ 1) for 1|x|≤1(x).
Denote the support of a function g, the set of arguments where g is nonzero, by

supp(g) = {x : g(x) 6= 0}.

10.2 Kernel estimators

10.2.1 Designs

Definition 10.2. A set (X1, . . . , Xn) is called a design

Definition 10.3. A design (X1, . . . , Xn) is called fixed if the values x1, . . . , xn are non ran-
dom

Example 10.1. An equispaced (regular) design x1 < x2 < . . . < xn is a fixed design such
that xi − xi−1 = 1/n, e.g. xi = i/n ;xi = i−1

n
; xi = 1

2n
+ i−1

n
.

Definition 10.4. A design (X1, . . . , Xn) is called random iff X1, . . . , Xn are iid random
variables, Xi ∼ p(x).

Example 10.2. xi ∼ U [0, 1] with p(x) = 1 for x ∈ [0, 1].

10.2.2 Nadaraya-Watson estimator

Definition 10.5. A function K(x) is called a kernel iff
∫∞
−∞K(x)d(x) = 1.

If K(x) ≥ 0, K(x) is a probability density.

Definition 10.6. If K(x) = K(−x), then K(x) is a symmetric kernel.

Definition 10.7. A kernel K has order m iff
∫∞
−∞ x

`K(x)dx = 0 for all ` = 1, 2, . . . ,m− 1

and
∫∞
−∞ x

mK(x)dx 6= 0.

If K is symmetric, then K has order ≥ 2.

Example 10.3. All these kernels are symmetric of order 2, except the last one.

a) Uniform (box, rectangular) kernel K(x) = 1
2
1(|x| ≤ 1).

b) Triangular kernel K(x) = (1− |x|)1(|x| ≤ 1).

c) Gaussian kernel K(x) = 1√
2π
e−x

2/2.
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d) Cosine kernel K(x) = π
4

cos(πx/2)1(|x| ≤ 1).

e) Sinc kernel K(x) = sin(πx)
πx

. This kernel has infinite order, since
∫ +∞
−∞ sin(πx)xm−1dx =

0 for all integer m ≥ 1.

Remark 10.1. If K(x) is a kernel, then Kh(x) = 1
h
K
(
x
h

)
is also a kernel. h is called the

bandwidth.

Example 10.4. If K(x) = 1
2
1(|x| ≤ 1) is a kernel then K(x) = 1

4
1(|x| ≤ 2) is a kernel.

Definition 10.8. The Nadaraya-Watson Estimator

f̂NWn (x) =

∑n
i=1 YiKh(Xi − x)∑n
j=1Kh(Xj − x)

, when
n∑

i=1

Kh(Xi − x) 6= 0,

otherwise f̂NWn (x) = 0.

Motivation for the Nadaraya-Watson estimator.

Recall that f(x) can be written as

f(x) = E(Yi | Xi = x) =

∫
yp(y | x)dy =

∫
yp(x, y)

p(x)
dy.

Consider the following kernel density estimators:

p̂n(x) =
1

n

n∑

i=1

Kh(xi − x), p̂n(x, y) =
1

n

n∑

i=1

Kh(xi − x)Kh(yi − y). (124)

Plugging p̂n(x) and p̂n(x, y) into E(Yi|Xi = x), we have

f̂h(x) =

∫ ∞

−∞

yp̂n(x, y)

p̂n(x)
dy.

Now we simplify the numerator, assuming that the kernel is symmetric
∫ ∞

−∞
yp̂n(x, y)dy =

1

n

∫ ∞

−∞
y

n∑

i=1

Kh(xi − x)Kh(yi − y) =
1

n

n∑

i=1

Kh(xi − x)

∫ ∞

−∞
yKh(y − yi)dy,

and the last integral is

1

h

∫ ∞

−∞
yK

(
y − yi
h

)
dy = [z = (y − yi)/h] =

∫ ∞

−∞
(hz + yi)K(z)dz

= yi

∫ ∞

−∞
K(z)dz + h

∫ ∞

−∞
zK(z)dz = yi

assuming that the order of the kernel K is at least 2.
Therefore, an estimator of f can be written as

f̂NWh (x) =
n−1

∑n
i=1Kh(xi − x)yi

n−1
∑n

i=1 Kh(xi − x)
1

(
n∑

i=1

Kh(xi − x) 6= 0

)

which coincides with the Nadaraya-Watson estimator. Thus, we proved the following
proposition.
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Proposition 10.1. If K(x) is a symmetric kernel of order ≥ 2, under random design,

f̂NWh (x) =

∫ ∞

−∞

yp̂n(x, y)

p̂n(x)
dy 1(p̂n(x) 6= 0),

where p̂n(x) and p̂n(x, y) are kernel density estimators defined by (124).

If we know p(x), then we can write f̂(x) = 1
np(x)

∑n
i=1 yiKh(xi − x)

If Xi ∼ U [0, 1] then p(x) = 1 and f̂(x) = 1
n

∑n
i=1 yiKh(xi−x). This estimator also works

for a regular fixed design.

Example 10.5. Consider the box kernel K(z) = 0.51(z ∈ [−1, 1]). Then, for x and h such
that |xi − x| ≤ h for at least one i, the Nadaraya-Watson estimator can be written as

f̂NW (x) =

∑n
i=1 h

−1YiK(xi−x
h

)

h−1
∑n

i=1
1
n
K(xi−x

h
)

=

∑n
i=1 Yi

1
2h

1(|xi−x
h
| ≤ 1)∑n

i=1
1

2h
1(|xi−x

h
| ≤ 1)

=

∑
i: |xi−x|≤h Yi∑
i: |xi−x|≤h 1

.

The Nadaraya-Watson estimator is an example of a linear estimator.

Definition 10.9. Estimator f̂(x) is called linear if it can be written as a linear function of y,

i.e. f̂(x) =
∑n

i=1Wi(x)Yi = W T (x)Y where Y = (y1, . . . , yn)T , W (x) = (w1(x), . . . , wn(x))T

and W (x) does not depend on y, only on (x1, . . . , xn).

If an estimator is linear, then it is easy to find its distribution, and hence to construct a
confidence interval and a confidence band (see Section 10.2.8).

Now we study the bias and the variance of the Nadaraya-Watson estimator in two frame-
works, asymptotic as the sample size n grows to infinity, and for a fixed sample size.

10.2.3 Asymptotic properties of the Nadaraya-Watson estimator

As we saw in Section 10.1.4, to study consistency of an estimator, it is sufficient to study
the asymptotic behaviour of its bias and variance. Thus, to study consistency of the NW
estimator, we investigate asymptotic expressions for its bias and variance under the following
assumptions.

Assumptions

1. Asymptotic: n→∞, h→ 0, nh→∞,

2. Design x1, . . . , xn is regular deterministic,

3. x ∈ (0, 1),

4. ∃ f ′′,

5. Kernel:

∫ +∞

−∞
xK(x)dx = 0, 0 < µ2(K)

def
=

∫ +∞

−∞
x2K(x)dx <∞,

||K||22 =

∫ +∞

−∞
[K(x)]2dx <∞.
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In particular, we assume that the unknown function f has a bounded second derivative and
the kernel is of order 2.

A key tool to deriving the asymptotic expressions for the bias and the variance is
approximation of a sum by an integral. Since the design (xi) is regular deterministic, i.e.
xi − xi−1 = 1/n, for any function g(x),

1

n

n∑

i=1

g(xi) ≈
∫ 1

0

g(z)dz.

In particular, the denominator of the NW estimator is

1

n

n∑

i=1

Kh(Xi − x) ≈
∫ 1

0

Kh(z − x)dz =

∫ 1

0

K

(
z − x
h

)
d
(z
h

)
=

∫ 1−x
h

0−x
h
→
K(v)dv

≈
∫ +∞

−∞
K(v)dv = 1

since n→∞, −x/h→ −∞ and (1−x)/h→ +∞ as h→ 0. Here it is important that x 6= 0
and x 6= 1, that is, it is not at the boundary.

Asymptotic bias of the NW estimator: b(x) ≈ µ2(K)h2

2
f ′′(x).

b(x) = Ef̂(x)− f(x) =
n∑

i=1

wi(x)[f(Xi)− f(x)] [Taylor Expansion ]

≈
n∑

i=1

wi(x)

[
f(x) + f ′(x)(Xi − x) + f ′′(x)

(Xi − x)2

2
− f(x)

]

=
n∑

i=1

Kh(Xi − x)∑n
j=1Kh(Xj − x)

[
f ′(x)(Xi − x) + f ′′(x)

(Xi − x)2

2

]

≈ 1

n

[
f ′(x)

n∑

i=1

(Xi − x)Kh(Xi − x) + f ′′(x)
n∑

i=1

Kh(Xi − x)
(Xi − x)2

2

]

≈ f ′(x)

∫ 1

0

(z − x)Kh(z − x)dz + f ′′(x)

∫ 1

0

Kh(z − x)
(z − x)2

2
dz

≈ f ′(x)h

∫ (1−x)/h

−x/h
K(v)vdv + f ′′(x)

h2

2

∫ (1−x)/h

−x/h
K(v)v2dv

≈ f ′(x)h

∫ ∞

−∞
K(v)vdv + f ′′(x)

h2

2

∫ ∞

−∞
K(v)v2dv

=
µ2(K)h2

2
f ′′(x).
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Asymptotic variance of the NW estimator: v(x) ≈ σ2

nh
||K||22:

v(x) = σ2

n∑

i=1

[wi(x)]2 = σ2

n∑

i=1

[Kh(Xi − x)]2

[∑n
j=1Kh(Xj − x)

]2

≈{ 1
n

∑n
i=1Kh(Xi−x)≈1}

σ2

n2

n∑

i=1

[Kh(Xi − x)]2

{ 1
n

∑n
i=1→

∫ 1
0 } ≈

σ2

n

∫ 1

0

[Kh(z − x)]2dz =
σ2

nh

∫ 1

0

[
K

(
z − x
h

)]2

d

(
z − x
h

)

{v= z−x
h } =

σ2

nh

∫ (1−x)/h

−x/h
[K (v)]2 dv ≈ σ2

nh

∫ ∞

−∞
[K (v)]2 dv

=
σ2

nh
||K||22.

Therefore, the asymptotic MISE (AMISE) is:

AMISE =

∫ 1

0

[
|b(x)|2 + v(x)

]
dx ≈

∫ 1

0

[
µ2(K)h2

2
f ′′(x)

]2

dx+

∫ 1

0

σ2

nh
||K||22dx

=
||f ′′||22

4
h4[µ2(K)]2 +

σ2

n

||K||22
h

.

We are in general interested in having the “best” estimator of the function. This can be
interpreted as finding h and K that minimise this error. We start with optimising over the
kernel, introducing canonical kernels.

10.2.4 Canonical Kernel

Given a kernel K(x) of order 2, consider a scale family of kernels:

{
Kδ(x) =

1

δ
K
(x
δ

)
, δ > 0

}

Definition 10.10. The canonical bandwidth, δ0, is defined by

δ0 =

( ||K||22
[µ2(K)]2

) 1
5

,

where µ2(K) =
∫ +∞
−∞ x2K(x)dx and ||K||2 =

√∫ +∞
−∞ [K(x)]2dx.

Then, given a scale family of kernels
{
Kδ(x) = 1

δ
K
(
x
δ

)
, δ > 0

}
, the canonical kernel,

Kδ0 , is

Kδ0(x) =
1

δ0

K

(
x

δ0

)
.

Choosing the canonical kernel in the scale family allows comparison across families of
kernels. For example, we shall see that if we choose a canonical kernel, the optimal bandwidth
does not depend on the kernel.
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Lemma 10.1. For a scale family {Kδ, δ > 0}, the canonical bandwidth δ0 satisfies

||Kδ0||22 = [µ2(Kδ0)]
2.

Proof. We show that if ||Kh||22 = [µ2(Kh)]
2 if and only if h = δ0. Consider separately the

right and left hand sides.

||Kh||22 =

∫ ∞

−∞
[Kh(x)]2 dx =

1

h

∫ ∞

−∞

[
K
(x
h

)]2

d
(x
h

)
=

1

h
||K||22

µ2(Kh) =

∫ +∞

−∞
x2Kh(x)dx = h2

∫ +∞

−∞

(x
h

)2

K
(x
h

)
d
x

h
= h2µ2(K)

Therefore, ||Kh||22 = µ2(Kh)
2 ⇔ 1

h
||K||22 = [h2µ2(K)]

2
which implies that

h =

( ||K||22
[µ2(K)]2

) 1
5

= δ0.

10.2.5 Optimal kernel and optimal bandwidth

We are looking for the kernel and the bandwidth that minimise the asymptotic MISE. The
AMISE is given by

AMISE ≈ ||f
′′(x)||22
4

[
h2µ2(K)

]2
+
σ2

n

||K||22
h

.

For a canonical kernel, the AMISE factorises into a term that depends on bandwidth and a
term that depends on the kernel:

AMISE ≈ ||K||22
[
h4 ||f ′′(x)||22

4
+ h−1σ

2

n

]
.

For any kernel, we can also define the optimal bandwidth, hopt, by minimising the
AMISE over h. First, we take a derivative of the AMISE with respect to h:

∂

∂h
AMISE =

[
4h3C1 − h−2C2

n

]
= 0

where C1 = ||f ′′(x)||22µ2(K)2/4, and C2 = σ2||K||22, which is solved by

hopt =

(
C2

4nC1

) 1
5

=

(
σ2||K||22

n||f ′′(x)||22µ2(K)2

) 1
5

which corresponds to the minimum of AMISE. For a canonical kernel we note that ||K||22 =
µ2(K)2 and so the optimal bandwidth does not depend on the kernel but it does depend on
the unknown function.

Using the optimal bandwidth, the AMISE becomes

AMISE =
5σ

8
5 ||f ′′(x)||

2
5
2

4n
4
5

(√
µ2(K)||K||22

) 4
5
.
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Optimal kernel: choose the kernel K to minimize the AMISE. From the preceding
expression, this corresponds to minimising the quantity

√
µ2(K)||K||22. We note that this

is independent of bandwidth, in the sense that
√
µ2(K)||K||22 =

√
µ2(Kδ)||Kδ||22 for all δ.

However, rescaling by δ in this way will change the corresponding optimal bandwidth, so
that the rescaled kernel with its optimal bandwidth is unchanged. We can use this freedom
to set µ2(K) = 1 (which requires rescaling by δ = 1/

√
µ2(K)). For this choice, minimising

the bandwidth-optimised AMISE is equivalent to minimising ||K||22 under the constraints:

∫
K(x)dx = 1,

∫
xK(x)dx = 0,

∫
x2K(x)dx = 1.

The canonical kernel that minimises ||K||2 under these constraints is

Kopt(x) =
3

4

1√
5

(
1− x2

5

)
1(|x| ≤

√
5).

This kernel is called the Epanechnikov kernel. For the Epanechnikov kernel, ||K||22 = 3/5
√

5
and µ2(K) = 1 by construction, so the optimal bandwidth is

hopt =

(
3σ2

5
√

5n||f ′′(x)||22

) 1
5

.

Therefore, the optimal kernel with the optimal bandwidth, Khopt , is given by

Khopt(x) =
1

hopt

K

(
x

hopt

)
=

3

4

1√
5hopt

(
1− x2

5h2
opt

)
1(|x| ≤

√
5hopt),

and the Nadaraya-Watson estimator constructed with this kernel has the smallest AMISE.
The efficiency of a kernel family {Kδ, δ > 0} for a given kernel K is defined as

√
µ2(K) ||K||22√

µ2(Kopt)||Kopt||22
=

√
µ2(Kδ0)||Kδ0||22√
µ2(Kopt

δopt0

)||Kopt

δopt0

||22
=


 µ2(Kδ0)

µ2(Kopt

δopt0

)




5
2

=


 ||Kδ0||22
||Kopt

δopt0

||22




5
4

where δ0 is the canonical bandwidth for this kernel family, Kopt is the Epanechnikov kernel
and δopt

0 is its canonical bandwidth. The efficiency to the fourth fifths power gives the ratio
of the AMISE for this family of kernels relative to the optimal kernel family. For many kernel
families, the efficiencies are close to 1, for instance, it is 0.951 for the Gaussian kernel family,
0.930 for the box kernel family and 0.986 for the triangular kernel family.

Note that since the optimal bandwidth depends on the unknown function, this expression
gives a theoretical bound but it is not applicable in practice. One way to avoid dependency
on the unknown function is to take hopt = Cn−1/5 which gives the same order of MISE in n
but not the optimal constant. Another way to find the best h that is used in practice is to
use another approximation of MISE which results in the approach called cross-validation.

10.2.6 Non-asymptotic properties of the Nadaraya-Watson estimator

Nonasymptotic properties of the Nadaraya-Watson estimator can be found in the form of
upper bounds on the absolute value of the bias and the variance, and hence on the MSE
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and MISE. We shall see that the upper bounds are the same functions of the sample size n.
The constants in the upper bounds inform us how the errors depend on other features of the
model, such as the kernel, the smoothness of the function, design, etc.

Before we state the upper bounds, we will define a class of smooth functions, the Hölder
Class Hβ(M). When the parameter β is an integer, the class Hβ(M) contains functions
with β derivatives whose absolute values are bounded by M . However, the class is defined
for arbitrary values β > 0.

Definition 10.11. The Hölder Class Hβ(M) of functions on [0, 1] with β > 0, M > 0 is
defined as the set of functions f that satisfy the following conditions with k = bβc:

1. |f (k)(x)| ≤M for all x ∈ [0, 1],

2. |f (k)(x)− f (k)(y)| 6M |x− y|β−k, ∀x, y ∈ [0, 1],

where f (k) is the kth derivative of f .

If β ∈ (0, 1), k = 0 and f (0)(x) = f(x).

Example: if β = 1, the Hölder class H1(M) contains functions such that |f ′(x)| ≤ M
for all x ∈ [0, 1].

Example: the function f(x) =
√
|x− 0.5|, x ∈ [0, 1], does not have a derivative for all

x ∈ [0, 1] but it belongs to the Hölder class Hβ(M) with β = 1/2 and M = 1 due to the
inequality

|
√
|z| −

√
|y|| 6

√
|z − y| ∀z, y ∈ [0, 1].

Now we derive upper bounds on the absolute value of the bias and the variance of the
Nadaraya-Watson estimator of a function f that belongs to a Hölder class Hβ(M) with
β ∈ (0, 1).

Proposition 10.2. Suppose that f ∈ Hβ(M) on [0, 1], with β ∈ (0, 1] and M > 0. Let f̂NWn

be the Nadaraya – Watson estimator of f .
Assume also that:

a) the design (X1, . . . , Xn) is regular deterministic;

b) var(εi) = σ2;

c) ∃λ0 > 0 such that ∀x ∈ [0, 1],

1

n

n∑

i=1

Kh (Xi − x) ≥ λ0;

d) supp(K) ⊆ [−1, 1] (i.e. K(x) = 0 for x /∈ [−1, 1]),

and ∃Kmax ∈ (0,∞) such that 0 ≤ K(u) ≤ Kmax, ∀u ∈ R.

Then, for all x0 ∈ [0, 1] and h ≥ 1/(2n),

|b(x0)| ≤Mhβ, v(x0) ≤ σ2Kmax

nhλ0

.
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Proof. 1. The bias of the NW estimator when f ∈ HB(M) with β ∈ (0, 1) is:

bias(f̂NW (x)) = E(f̂NW (x))− f(x) =
n∑

i=1

WNW
i (x) [f(xi)− f(x)] .

Note that ∀x,
∑n

i=1W
NW
i (x) = 1, since

∑
Wi(x) =

∑n
i=1Kh(xi − x)∑n
i=1Kh(xi − x)

1
(∑

Kh(xi − x) 6= 0
)

= 1.

Therefore, the bias is given by

bias(f̂NW (x)) =
n∑

i=1

WNW
i (x)[f(xi)− f(x)].

Since the support of K is [−1, 1], the support of Kh(x) = 1
h
K(x/h) is [−h, h], therefore the

sum is only over those i where |xi − x| ≤ h, that is,

|bias(f̂NW (x))| =

∣∣∑
iK(xi−x

h
)(f(xi)− f(x))

∣∣
∑

iK(xi−x
h

)
=

∣∣∣
∑

i: |xi−x|≤hK(xi−x
h

)[f(xi)− f(x)]
∣∣∣

∑
iK(xi−x

h
)

≤
∑

i :|xi−x|≤hK(xi−x
h

) |f(xi)− f(x)|
∑

iK(xi−x
h

)
≤
∑

i :|xi−x|≤hK(xi−x
h

)M |xi − x|β∑
iK(xi−x

h
)

≤ Mhβ,

usingK(z) ≥ 0 for all z. In particular, the bias is small when h is small, that is, bias(f̂NW (x))→
0 if h→ 0. The extension of the proof to β = 1 is left as an exercise.

2. The variance of the NW estimator can be written as

v(x) = Var(f̂NWn (x)) = Var

(
n∑

i=1

wi(x)(Yi)

)
=

n∑

i=1

[wi(x)]2Var(Yi)

since the Yi’s are independent. From assumptions (a) & (b), we know that Var(Yi) = σ2,
since the xi’s are fixed. Therefore,

v(x) = σ2

n∑

i=1

[Kh(Xi − x)]2

[∑n
j=1Kh(Xj − x)

]2

6 σ2
Kmax

h

∑n
i=1Kh(Xi − x)

[∑n
j=1Kh(Xj − x)

]2

6 σ2
Kmax

h

∑n
i=1Kh(Xi − x)

nλ0

∑n
j=1Kh(Xj − x)

=
σ2Kmax

nhλ0

assumption d) K(z) ≥ 0 for all z

assumption d), ∀u,K(u) 6 Kmax implies
Kh(Xi − x) = 1

h
K
(
Xi−x
h

)
6 Kmax

h

assumption c) ∃λ0 > 0 such that ∀x ∈
[0, 1],∑n

i=1 Kh(Xi − x) > nλ0.
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Now we consider the bounds on the MSE of the NW estimator. Under the conditions of
Proposition 10.2,

MSE(f̂NWn (x0)) = [bias(f̂NWn (x0))]2 + Var(f̂NWn (x0)) ≤M2h2β +
σ2Kmax

nhλ0

.

The upper bound on MSE is the smallest if

h = hn =

(
σ2Kmax

2βM2λ0n

)1/(2β+1)

,

and the corresponding MSE bound is

MSE(f̂NWn,hn (x0)) ≤ M2

(
σ2Kmax

2βM2λ0n

)2β/(2β+1)

+
σ2Kmax

nλ0

(
2βM2λ0n

σ2Kmax

)1/(2β+1)

≤ (1 + 2β)M2/(2β+1)

(
σ2Kmax

2βλ0n

)2β/(2β+1)

→ 0 as n→∞.

Hence, the Nadaraya – Watson estimator with h = hn=
(

σ2Kmax

2βM2λ0n

)1/(2β+1)

and kernel K

satisfying conditions of Proposition 10.2, is consistent for estimating functions from Hölder
class Hβ(M) for β ∈ (0, 1].

Example 10.6. (continued) Derive upper bounds on the absolute value of the bias and
the variance of the NW estimator with the box kernel K(z) = 1

2
1(z ∈ [−1, 1]) under the

nonparametric regression model with σ2 = 1 and xi = i/n. Let f ∈ Hβ(M), M = 5,β = 1/2.
Now we verify the assumptions of Proposition 10.2. Assumptions a), b) are satisfied.

Assumption c) is 1
2n

∑
i:|xi−x|≤h

1
h
≥ λ0, h ≥ 1/2n.

Let’s count the number of integers i between 1 and n such that |i/n− x| ≤ h. Since

|i/n− x| ≤ h⇔ (nx− nh) ≤ i ≤ (nx+ nh),

we need to count the number of integers in the interval [nx− nh, nx+ nh].
In general, in an interval [a, a + b] for some b > 0, the number of of integers is bbc if a

is not integer, and it is bbc +1 if a is integer. Here bbc is the lower integer part of b, that
is, the largest integer that is less than or equal to b, e.g. b5c = 5, b7.3c = 7 and b2.8c = 2.

Therefore, the smallest number of integers in the interval [nx − nh, nx + nh] is b2nhc
which is greater than 2nh− 1 since b2nhc ≤ 2nh < b2nhc+ 1 by the definition of the lower
integer part. Hence, we need h > 1/(2n), and then we can take λ0 = 1− 1/(2nh) > 0 since

1

2n

∑

i:|xi−x|≤h

1

h
≥ 2nh− 1

2nh
= 1− 1/(2nh) = λ0

Assumption d) is satisfied with Kmax = 1/2.
Therefore, by Proposition 10.2, for n = 12 and h > 1/24,

|b(x)| ≤Mhβ = 5
√
h, v(x) ≤ 1

2nh(1− 1/(2nh))
=

1

2nh− 1
=

1

24h− 1
.

The corresponding MSE (and MISE) for f̂NW (x) is bounded by

MSE(f̂NW (x)) = b2(x) + v(x) ≤ 25h+
1

24h− 1
.
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The derivative of the upper bound with respect to h is

25− 24

(24h− 1)2

which is zero for h > 1/24 at

hopt =
1

24

(
1 +

√
24

25

)
= 0.0825.

This corresponds to the minimum of the MSE since the second derivative with respect to h
of the upper bound is 2·242

(24h−1)3
which is positive.

Therefore, the optimal bandwidth is 0.0825.

10.2.7 Rates of convergence

We would like to find the estimator of f which is not only consistent, but also achieves the
best possible rate of convergence over some class of functions F , such as the Hölder class
Hβ(M). Now we determine the rate of convergence of the NW estimator, in both local and
global distances, and address the question whether it is possible to achieve a faster rate of
convergence.

Definition 10.12. φn is the convergence rate of an estimator f̂n at point x0 (local
rate of convergence) over a class of functions F , if

0 < c 6 sup
f∈F

E

[
|f̂n(x0)− f(x0)|

φn

]2

6 C <∞,

where constants c and C do not dependent on n, and the rate φn is only related to n and the
function class F .

Similarly, the global rate of convergence of estimator f̂n over a class of functions F is φn
if

0 < c 6 sup
f∈F

E

[
||f̂n − f ||2

φn

]2

6 C <∞,

where the constants c and C do not depend on n, and the rate φn is only related to n and
the function class F .

Recall that ||f̂n(x)− f(x)||2 =
√∫ 1

0
[f̂n(x)− f(x)]2dx.

Definition 10.13. For a class of functions F , φ?n is the local minimax convergence
rate, if

0 < c 6 inf
f̂n

sup
x0∈(0,1)

sup
f∈F

E

[
|f̂n(x0)− f(x0)|

φ?n

]2

= inf
f̂n

sup
x0∈(0,1)

sup
f∈F

MSE(f̂n(x0))

(φ?n)2
6 C <∞,

where the constants c and C do not depend on n, and the rate φ?n is only related to n and
the function class F .
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Similarly, for a class of functions F , φ?n is the global minimax convergence rate, if

0 < c 6 inf
f̂n

sup
f∈F

E

[
||f̂n − f ||2

φ?n

]2

= inf
f̂n

sup
f∈F

MISE(f̂n)

(φ?n)2
6 C <∞,

where constants c and C do not depend on n, and the rate φ?n is only related to n and the
function class F .

Definition 10.14. An estimator f̂n is said to achieve a minimax rate of convergence (local
or global), if the rate of convergence of this estimator is the corresponding (local or global)
minimax rate of convergence.

Now we investigate whether the local rate of convergence for the Nadaraya-Watson esti-
mator is minimax.

Theorem 10.1. Let assumptions of Proposition 10.2 hold for all x ∈ [0, 1]. Then, the NW

estimator f̂NW (x) with h = αn−1/(2β+1) for same α > 0 satisfies

lim
n→∞

sup
x0∈[0,1]

sup
f∈Hβ(M)

E
[(

(f̂n
NW

(x0)− f(x0))nβ/(2β+1)
)2
]
≤ C <∞,

where constant C depends only on β,M, σ2, λ0, Kmax, α.

Proof. By Proposition 10.2, ∀f ∈ Hβ(M),∀x ∈ [0, 1],

E
[(
f̂n

NW
(x)− f(x)

)2
]
≤ Cn

−2β
2β+1

with C <∞ dependent on Kmax, λ0, β,M, α, σ2 which can be written as

E
[(

(f̂n
NW

(x)− f(x))nβ/2β+1
)2
]
≤C.

Taking supremum over f ∈ Hβ(M), x ∈ [0, 1] and n, as n→∞, we have the statement.

Therefore, the pointwise rate of convergence of the Nadaraya-Watson estimator is n−β/(2β+1).
In fact, it can be shown (Tsybakov, 2009, chapter 2) that this is the local minimax rate of
convergence, so the Nadaraya-Watson estimator achieves this minimax rate and so it is in
this sense the “best” estimator, but there do exist other estimators that achieve this rate of
convergence. It is straightforward to show that the NW estimator also achieves the global
minimax rate of convergence.

The upper bounds being used here apply for the Hölder space with β ∈ (0, 1]. For the
Nadaraya-Watson estimator to achieve the minimax convergence rate for β > 1, one needs
to use kernels of higher order. Local polynomial estimators, which will be discussed in
Section 10.2.12 are locally and globally minimax for β > 1.

10.2.8 Inference using a linear estimator

In this subsection we consider the nonparametric regression model

Yi = f(Xi) + εi, i = 1, . . . , n

with independent errors εi ∼ N(0, σ2) and a deterministic design (x1, . . . , xn). These as-
sumptions imply that E(Yi) = f(Xi) and Var(Yi) = σ2.
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10.2.9 Confidence intervals for f(x0) based on a linear estimator

Denote b(x) = bias(f̂(x)) = E
[
f̂(x)− f(x)

]
and v(x) = Var(f̂(x)). Then, for a linear

estimator f̂(x) =
∑n

i=1 Yiwi(x),

E
(
f̂(x)

)
=

n∑

i=1

f(xi)wi(x) = b(x) + f(x)

Var
(
f̂(x)

)
= σ2

n∑

i=1

[wi(x)]2 = v(x),

therefore f̂(x) ∼ N (b(x) + f(x), v(x)).

The variance depends on the weights wi(x) and σ which are known, so it can be calculated
exactly. If we knew the bias, which depends on the unknown function, we could construct
(1− α)100% confidence interval using the fact that the following inequality

−zα
2
6 f̂(x)− [b(x) + f(x)]√

v(x)
6 zα

2

holds with probability 1− α, that is,

f(x) ∈ [f̂(x)− b(x)− zα
2

√
v(x), f̂(x)− b(x) + zα

2

√
v(x)].

Here zα = Φ−1(1− α) where Φ(x) is the cumulative distribution function of N(0, 1).

However, the bias is unknown, so it is not possible to construct the exact confidence
interval. There are two approaches to addressing this issue. The first one is to construct
an asymptotic confidence interval where the estimator is constructed in such a way that
asymptotically the bias is much smaller than the variance, and therefore may be treated as
0. For the NW estimator, this means choosing a smaller bandwidth. The second one is to
use an upper bound on the bias to construct a conservative confidence interval.

• (1− α)100% Conservative Confidence Interval for f(x).

If |b(x)| 6 b0(x) & v(x) 6 v0(x), then

f(x) ∈ f̂(x)±
(
b0(x) + zα

2

√
v0(x)

)
.

• (1− α)100% Asymptotic Confidence Interval for f(x).

Choose the estimator f̂(x) so that b(x)2 � v(x), thus we can assume b(x) ≈ 0:

f(x) ∈ f̂(x)± zα
2

√
v(x).

The asymptotic expression for the variance is often used in this case.
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10.2.10 Confidence intervals using the Nadaraya-Watson estimator

For a Nadaraya-Watson estimator f ∈ Hβ(M) on x ∈ [0, 1], under the conditions of Propo-
sition 10.2,

v(x) 6 σ2Kmax

nhλ0

, |b(x)| 6Mhβ.

Therefore, a (1− α)100% Conservative Confidence Interval for f(x) is

f̂NW (x)±
(
Mhβ + zα/2σ

√
Kmax/(nhλ0)

)

=
[
f̂NW (x)−Mhβ − zα/2σ

√
Kmax/(nhλ0), f̂NW (x) +Mhβ + zα/2σ

√
Kmax/(nhλ0)

]
.

Alternatively, taking the limit n→∞ and h→ 0,

v(x) ≈ σ2

nh
||K||22, b(x) ≈ µ2(K)h2

2
f ′′(x) ≈ 0.

Therefore, a (1− α)100% Asymptotic Confidence Interval for f(x) is

f̂NW (x)± zα/2σ
√
||K||22/(nh))

=

[
f̂NW (x)− zα/2σ

√
||K||22/(nh), f̂NW (x) + zα/2σ

√
||K||22/(nh)

]
.

10.2.11 Asymptotic Confidence Band for f

Assume that the bias of f̂(x) is much smaller than its standard deviation and is close to 0,
i.e. |b(x)| �

√
v(x) and b(x) ≈ 0. Then, an asymptotic (1−α)100% confidence band based

on the NW estimator is given by
{
f : |f(x)− f̂(x)| 6 cα

√
v(x), ∀x ∈ [a, b]

}

with

cα ≈
√

2 log
( a0

αh

)
, where a0 =

|b− a|
π

||K ′||2
||K||2

,

(see Wasserman, section 5.7). For the NW estimator, we can use v(x) ≈ σ2

nh
||K||22.

Confidence bands can be used to test hypotheses about f , e.g.

H0 : f(x) = constant ∀x ∈ [0, 1].

10.2.12 Local polynomial estimators.

Motivation and definition The Nadaraya-Watson estimator can be viewed as a local
constant least squares approximation of the unknown function. If the kernel K takes only
nonnegative values, then for each x ∈ [0, 1], f̂NWn (x) satisfies

f̂NWn (x) = arg min
θx∈R

{
n∑

i=1

(Yi − θx)2K

(
Xi − x
h

)}

= arg min
θx∈R

{
n∑

i=1

(θ2
x − 2θxYi + Y 2

i )K

(
Xi − x
h

)}

= arg min
θx∈R

{
θ2
x ·

n∑

i=1

K

(
Xi − x
h

)
− θx · 2

n∑

i=1

YiK

(
Xi − x
h

)
+ CXi,Yi(x)

}
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Therefore, if
∑n

j=1Kh(Xj − x) 6= 0, the value of θx that minimises this weighed sum of
squares coincides with the Nadaraya-Watson estimator:

fNWn (x) =

∑n
i=1 YiKh(Xi − x)∑n
j=1 Kh(Xj − x)

.

This estimator can be generalised further by considering a local polynomial rather than
a local constant approximation. For a function f(x), if ∃f (k)(x), then for xi sufficiently close
to x,

f(xi) ≈f(x) + f ′(x)(xi − x) + · · ·+ f (k)(x)

k!
(xi − x)k =

k∑

j=0

f (j)(x)

j!
(xi − x)j

=
k∑

j=0

[
f (j)(x)hj

]
[

1

j!

(
xi − x
h

)j]
= UT

x,iθx

where

θx =
(
f(x), f ′(x)h, f ′′(x)h2, . . . , f (k)(x)hk

)T

Ux,i =

(
1,
xi − x
h

,
1

2!

(
xi − x
h

)2

, . . . ,
1

k!

(
xi − x
h

)k)T

Definition 10.15. A local polynomial estimator of f(x) of order k , denoted LP (k) estima-
tor, is defined by

f̂LPn (x) = θ̂0(x)

where for each x θ̂(x) =
(
θ̂0(x), θ̂1(x), . . . , θ̂k(x)

)T
is the solution of

θ̂(x) = arg min
θx∈Rk+1

{
n∑

i=1

(Yi − UT
x,iθx)

2K

(
Xi − x
h

)}
.

For each m = 1, . . . , k, θ̂m(x)/hm is an estimator of f (m)(x).

Therefore, the local polynomial estimator provides simultaneous estimators not only for
f(x) but also for all existing derivatives of f .

This estimator can be written explicitly. Noticing that the expression to be minimised is
quadratic in the vector θx, we can open the brackets to obtain

θ̂x = arg min
θx

{
n∑

i=1

(Yi − UT
x,iθx)

2K

(
Xi − x
h

)}

= arg min
θx

{
n∑

i=1

(θTxUx,iU
T
x,iθx − 2UT

x,iθxYi + Y 2
i )K

(
Xi − x
h

)}

= arg min
θx

{
θTx ·

n∑

i=1

Ux,iU
T
x,iK

(
Xi − x
h

)
· θx − θTx · 2

n∑

i=1

YiUx,iK

(
Xi − x
h

)
+ CXi,Yi(x)

}

which is equivalent to

θ̂x = arg min
θx

{
θTx ·B(x) · θx − 2θTx · a(x)

}
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where the matrix B(x) and vector a(x) are defined by

B(x) =
1

nh

n∑

i=1

Ux,iU
T
x,iK

(
Xi − x
h

)

=
1

n

n∑

i=1

Ux,iU
T
x,iKh(Xi − x)

a(x) =
1

nh

n∑

i=1

YiUx,iK

(
Xi − x
h

)

=
1

n

n∑

i=1

YiUx,iKh (Xi − x)

Hence, if B(x) is invertible,

θ̂x = B−1(x)a(x).

Therefore, the Local Polynomial estimator can be written as

f̂LPn (x) = θ̂0(x) = eT1B
−1(x)a(x)

where the matrix B(x) and vector a(x) are defined above and eT1 = (1, 0, 0, · · · , 0).

Note that the local polynomial estimator f̂LPn (x) is linear:

fLPn (x) = eT1B
−1(x)a(x) = eT1B

−1(x) · 1

n

n∑

i=1

YiUx,iKh (Xi − x)

=
n∑

i=1

Yi ·
1

n
Kh (Xi − x)

k∑

j=0

[B−1(x)]0,j
1

j!

(
xi − x
h

)j

=
n∑

i=1

Yiwi(x)

with weights

wi(x) =
1

n
Kh (Xi − x)

k∑

j=0

[B−1(x)]0,j
1

j!

(
xi − x
h

)j

that are independent of Y1, . . . , Yn.

Bias, variance, consistency and the rate of convergence for local polynomial
estimator

Proposition 10.3. Suppose that f ∈ Hβ(M) on [0, 1], with β > 0 and M > 0, and

a) the design (X1, . . . , Xn) is regular deterministic;

b) E(εi) = 0, V ar(εi) = σ2;

c) ∃λ0 > 0 such that ∀x ∈ [0, 1], the smallest eigenvalue λmin(B(x)) of B(x) satisfies

λmin(B(x)) > λ0 , where B(x) =
1

n

n∑

i=1

Ux,iU
T
x,iKh(Xi − x);

d) supp(K) ⊆ [−1, 1] and ∃Kmax ∈ (0,∞) such that ∀u, |K(u)| 6 Kmax.
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Let f̂LPn be the Local Polynomial estimator of f which satisfies the above assumptions
with k = bβc. Then, for all x ∈ [0, 1] and h > 1

2n
,

|b(x)| 6 CK
k!
Mhβ, v(x) 6 σ2C2

K

nh
with CK =

2Kmax

λ0

.

Note that if β ∈ (0, 1), the LP estimator becomes the NW estimator, and this proposition
coincides with Proposition 10.2.

Now we study consistency and the rates of convergence of f̂LPn (x). Under the assumptions

of Proposition 10.3, MSE of f̂LPn (x) is bounded by

MSE
[
f̂LPn (x)

]
= [b(x)]2 + v(x) 6

[
CK
k!
M

]2

h2β +
σ2C2

K

n
h−1

which is minimised at

h = hn =

(
σ2C2

K

n

2β
(
CKM
k!

)2

) 1
2β+1

=

(
σ2(k!)2

2βM2n

) 1
2β+1

,

with the value of the minimum being

MSE
[
f̂LPn,hopt(x)

]
6
{[

CK
k!
M

]2

h2β
opt +

σ2C2
K

n
h−1
opt

}
= CLP · n−

2β
2β+1 → 0 as n→∞,

where CLP is a constant depending only on M,k, σ2 and CK (i.e. Kmax, λ0).
Now we study the local and global minimax rates of convergence of the LP(k) estima-

tor with hn = αn−
1

2β+1 over Hβ(M) with k = bβc. In this case, under the conditions of
Proposition 10.3,

MSE
[
f̂LPn,hn(x)

]
6 C2

K

[
α2M2

[k!]2
+ α−1σ2

]
n−

2β
2β+1 ,

which also implies that

MISE (f̂LP (x)) =
∫ 1

0
MSE(f̂LP (x))dx 6 Cn−

2β
2β+1

with the same constant as in the upper bound on the MSE. Therefore, both local and global

rates of convergence of LP(k) are n−
β

1+2β . Therefore, the local polynomial estimator achieves
both local and global minimax rates of convergence. Hence, we proved the following theorem.

Theorem 10.2. Under the assumptions of Proposition 10.3, the Local Polynomial estimator

with the bandwidth h = hn = αn−
1

2β+1 , α > 0, satisfies

lim sup
n→∞

sup
f∈Hβ(M)

sup
x0∈[0,1]

E
[
n

β
2β+1 |f(x0)− f̂n(x0)|

]2

≤ C <∞,

lim sup
n→∞

sup
f∈Hβ(M)

E
[
n

β
2β+1 ||f − f̂n||2

]2

≤ C <∞,

where C is a constant depending only on β, M , a0, λ0, σ2
max, Kmax and α.
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10.3 Smoothing Splines

10.3.1 Definition

Definition 10.16. A smoothing spline is the penalised least squares estimator of f :

f̂pen
n (x) = arg min

f∈C2

[
n∑

i=1

(Yi − f(xi))
2 + λ pen(f)

]
(125)

with penalty function pen(f) =
∫

[f ′′(x)]2dx = ||f ′′||22; λ > 0 is called the regularisation
parameter.

The solution to this minimisation problem has a simple form that is called a natural
cubic spline.

Definition 10.17. Let a ≤ t1 < .. < tN ≤ b be a set of ordered points - called knots. A
cubic spline is a continuous function g such that

• g(x) is cubic on [tj, tj+1], for each j = 1, .., N − 1:

g(x) = bj0 + bj1x+ bj2x
2 + bj3x

3, x ∈ [tj, tj+1],

• both g′ and g′′ are continuous at ti, i = 1, .., N .

A spline that is linear beyond the boundary knots is called a natural spline.

• g(x) is linear on [a, t1] and [tN , b]

g(x) = b00 + b01x , x ∈ [a , t1]

g(x) = bN0 + bN1x, x ∈ [tN , b]

Theorem 10.3. (without proof) Solution f̂pen
n of the above problem is a natural cubic

spline with knots at the data points.

Theorem 10.4. Let knots a 6 t1 < · · · < tN 6 b. For j = 3, . . . , N , define

h1(x) = 1, h2(x) = x,

hj(x) = (x− tj−2)3
+ −

(tN − tj−2)

(tN − tN−1)
(x− tN−1)3

+

+
(tN−1 − tj−2)

(tN − tN−1)
(x− tN)3

+, ∀ 3 6 j 6 N,

where (x− y)3
+ = max

{
(x− y)3, 0

}

The set of functions (hj)
N
j=1 forms a basis for the set of natural cubic splines at these

knots.

Thus, any natural cubic spline g(x) can be written as

g(x) =
N∑

j=1

βjhj(x).



180 Introduction to Statistics for GWs

By Theorem 10.3, the solution of the minimisation problem that defines the smooth-
ing spline is a natural cubic spline, and by Theorem 10.4, it can be written as the linear
combination of the basis functions hj(x), j = 1, 2, . . . , N . Hence, minimising over functions
f

f̂SSn,λ = arg min
f∈C2

{
N∑

i=1

(Yi − f(xi))
2 + λ

∫
[f ′′(x)]

2
dx

}

= arg min
f∈C2

{
N∑

i=1

(
f(xi)

2 − 2f(xi)Yi + Y 2
i

)
+ λ

∫
[f ′′(x)]

2
dx

}

is equivalent to minimising the following expression over the (n+ 2)-dimensional vector β:

β̂ = arg min
β∈RN





N∑

i=1

[
N∑

j=1

βjhj(xi)

]2

− 2
N∑

i=1

[
N∑

j=1

βjhj(xi)

]
Yi + λ

∫ [ N∑

j=1

βjh
′′
j (x)

]2

dx





= arg min
β∈RN

{
βTHTHβ − 2βTHTY + λβTΩβ

}
,

where N × N matrix H has entries Hij = hj(xi), i = 1, . . . , N , j = 1, . . . , N , and N × N
matrix Ω has elements Ωj` =

∫
h′′j (x)h′′` (x)dx, j, ` = 1, . . . , N .

Hence, if
(
HTH + λΩ

)
is invertible,

β̂ =
[(
HTH + λΩ

)−1
HTY

]
.

Therefore, we have proved the following theorem.

Theorem 10.5. A smoothing spline can be written as

f̂SSn,λ =
N∑

j=1

β̂jhj(x)

where β̂ = (β̂1, . . . , β̂N)T is given by

β̂ = (HTH + λΩ)−1HTY

where Y = (Y1, . . . , Yn)T , and matrices H = (Hij) and Ω = (Ωjl) have entries

Hij = hj(xi), Ωjl =

∫ b

a

h′′j (x)h′′l (x)dx, i ∈ 1, . . . , n, j, l ∈ 1, . . . , N

The smoothing spline is a linear estimator since it can be written as

f̂SSN,λ =
N∑

i=1

wi(x)Yi

with weights

wi(x) =
N∑

j=1

hj(x)
[(
HTH + λΩ

)−1
HT
]
ji
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Figure 42: Smoothing spline for example 10.7.

Example 10.7. Construct a smoothing spline on [−2, 2] given data (−1, 2), (0, 4), (1, 1).
Take λ = 0.01, and construct the smoothing spline using

f̂SSn (x) =
N∑

i=1

N∑

j=1

[(HTH + λΩ)−1HT ]jihj(x)Yi.

The matrices necessary for the calculation are H = (Hij), Hij = hj(xi):

H =




1 −1 0
1 0 1
1 1 6


 , HTH =




3 0 7
0 2 6
7 6 37




and Ω = (Ωj`), Ωj` =
∫
h′′j (x)h′′` (x)dx:

Ω =




0 0 0
0 0 0
0 0 24




We find the coefficients of the natural spline are β̂T = (5.00917, 2.94037,−1.14679). The
data and smoothing spline are shown in Figure 42.

10.3.2 Choice of Regularisation Parameter λ

In papplications, λ is usually chosen using cross-validation

λ̂ = arg min
λ>0

{
n∑

i=1

(
Yi − f̂λ,−i(xi)

)2
}
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Figure 43: Left: smoothing spline estimator Right: Silverman kernel

where f̂λ,−i is a smoothing spline based on all data points except the i’th. The expression
to be minimised is an unbiased estimator of MISE.

Smoothing spline estimators with different regularisation parameters λ are plotted in
Figure 43 (Left). The black line corresponds to λ is chosen by cross-validation, the red
line - to λ = 0.05, and the blue line - to λ = 2. For small λ = 0.05, where the leading
contribution comes from the likelihood, the fitted curve is close to the data points but is not
particularly smooth. For larger λ = 2, the penalisation term dominates the likelihood term,
and the linear curve is such that the penalty term is zero (since the second derivative of a
linear function is 0). λ chosen by cross-validation provides the estimator with the trade-off
between fit to the observed data and smoothness.

10.3.3 Smoothing Spline as a Kernel Estimator

For large N , the smoothing spline is asymptotically equivalent to a kernel estimator:

f̂SS(x) ≈ f̂NW (x),

where f̂NW (x) is the Nadaraya-Watson estimator with the Silverman kernel:

K(z) =
1

2
e−|z|/

√
2 sin(|z|/

√
2 + π/4),

plotted in Figure 43 (right), and the bandwidth h can be expressed in terms of λ as h = λ1/4.
Note that this kernel can take negative values. In particular, the smoothing spline has the
same optimality properties as a kernel estimator, such as consistency and the optimal rates
of convergence.
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10.4 Generalized Additive Models

So far we have only talked about regression models with one covariate. However, a more
common regression problem would have multiple covariates and take the form

Yi = f(x1i, x2i, . . . , xmi) + εi, i = 1, . . . , n,

where x1, . . . , xm are a set of covariates. Fitting of multivariate regression models is more
challenging, not least because large amounts of data are in general required to ensure con-
vergence. The optimal rate of convergence for f ∈ H2(M) (i.e., functions with an integrable
second derivative) is n−4/5 with one covariate, but this degrades to n−4/(4+m) when there
are m covariates. If n is the sample size required to achieve a certain accuracy with one
covariate, then the sample size required to achieve the same accuracy with m covariates
is n(4+m)/5 and therefore grows exponentially with m. Nonetheless, generalisations of most
univariate nonparametric methods exist and we will describe some of these here.

10.4.1 Multivariate local polynomial regression

Kernel regression can be carried out with multiple covariates, but requires generalisation of
the kernel function so that it is a function of m variables. The one-dimensional bandwidth
h is replaced by a bandwidth matrix H, allowing a family of kernels to be defined via

KH(x) =
1√

det(H)
K
(
H−1/2x

)
.

A common approach is to rescale the covariates so that they have the same mean and variance
(at least approximately) and then use an isotropic kernel h−mK(||x||2/h) where K(·) is a
one-dimensional kernel.

Given a choice of kernel, the local polynomial estimator of order k is found in
the same way as before. Firstly we note that an arbitrary function of m variables can be
expanded as

f(x1, . . . , xm) = f(z) +
∂f

∂x1

(x)(x1 − z1) +
∂f

∂x2

(x)(x2 − z2) + · · ·+ ∂f

∂xm
(x)(xm − zm)

+
1

2!

(
∂2f

∂x2
1

(x)(x1 − z1)2 + 2
∂2f

∂x1∂x2

(x)(x1 − z1)(x2 − z2)+

· · ·+ ∂2f

∂x2
m

(x)(xm − zm)2

)
+ · · ·

+
1

k!

(
∂kf

∂xk1
(x)(x1 − z1)k + · · ·+ ∂kf

∂xkm
(x)(xm − zm)

)
.

There are a total of Mk = m+kCm = (m+ k)!/(m!k!) distinct partial derivative terms in this
expansion. We can define analogues of the parameter vector θ and the design vector Ux,i
with this many components

θx = (θ0, θ1
1, θ

1
2, . . . , θ

1
m, θ

2
11, θ

2
12, . . . θ

2
mm, . . . , θ

k
mm···m)

Ux,i =

(
1,
x1i − x1

h
,
x2i − x2

h
, . . . ,

xmi − xm
h

,
1

2!

(
x1i − x1

h

)2

,

(
x1i − x1

h

)(
x2i − x2

h

)
,

. . . ,
1

2!

(
xmi − xm

h

)2

, . . . ,
1

k!

(
xmi − xm

h

)k)
.



184 Introduction to Statistics for GWs

In the above, hm =
√

det(H), θdj1...jd corresponds to hd∂df/∂xj1 · · · ∂xjd and the estimator
of this quantity provides an estimate of this particular derivative of the function. Note that
we must be careful to ensure the ordering of derivatives in θ and Ux,i is consistent.

Using this notation the solution for the local polynomial least squares estimator

θ̂ = arg min
θ∈RMd

{
n∑

i=1

(
Yi − UT

x,iθx

)2
KH(xi − x)

}

takes exactly the same form as before, namely θ̂x = B−1(x)a(x) where

B(x) =
1

n

n∑

i=1

Ux,iU
T
x,iKH(xi − x), a(x) =

1

n

n∑

i=1

YiUx,iKH(xi − x).

10.4.2 Multivariate splines

In a similar way, the notion of a spline can be generalized to more than one dimension. Once
again, we aim to minimize the sum of squares, but penalise functions that are not sufficiently
smooth. This is formulated in general as

f̂SSn,λ = arg min
f

{
n∑

i=1

(Yi − f(x1i, . . . , xmi))
2 + λJn(f)

}

where

Jn(f) =

∫ ∫
· · ·
∫ [(

∂2f

∂x2
1

)2

+ 2

(
∂2f

∂x1∂x2

)2

+ 2

(
∂2f

∂x1∂x3

)2

+

· · · +
(
∂2f

∂x2
2

)2

+ 2

(
∂2f

∂x2∂x3

)2

+ · · ·
(
∂2f

∂x2
m

)2
]

dx1dx2 . . . dxm.

The solution to the minimization problem is a thin plate spline.

Definition 10.18. A thin plate spline through a set of knots x1,x2, . . .xn in m-dimensions,
with weights w1, . . . wn, is a function of the form

f(x) =
n∑

i=1

wiG(||x− xi||2) + b0 +
m∑

j=1

bjxj

where G(r) ∝
{
r4−m ln r, m = 2 or m = 4
r4−m, otherwise

, and ||x||22 =
m∑

j=1

x2
j .

In higher dimensions, m > 4, this solution diverges at the knots and so it is not a useful
smoothing method. In that case the m = 2 basis function, G(r) = r2 ln r, is often used, or
the simple solution G(r) = r2. If these alternative solutions are used the resulting solution
is in general not the minimizer for the above problem.

Thin plate splines are difficult to fit and so are not used widely in dimensions higher
than 2. It is more common to take an approach that reduces the multi-dimensional fit to a
set of one-dimensional fits by using an additive model.
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10.4.3 Additive models

While the preceding methods provide ways to fit general multivariate nonparametric models,
they are often hard to visualize and interpret. This motivates assuming a somewhat simpler
form for the unknown function, called an additive model.

Definition 10.19. An additive model is a model of the form

Yi = α +
m∑

j=1

fj(xj) + εi, i = 1, . . . , n

where f1, . . . , fm are smooth functions.

The model above is not identifiable since a constant can be subtracted from any one of
the functions and added to α or any of the other functions to leave the model unchanged.
The usual approach to making the model identifiable is to set α̂ = Ȳ =

∑n
i=1 Yi/n and

forcing
∑n

i=1 f̂j(xji) = 0. The resulting functions can be regarded as representing deviations
from the mean Ȳ .

An additive model can be fitted using any of the techniques for one-dimensional
problems that have been described in this course using a procedure known as backfitting.

Definition 10.20. The backfitting algorithm obtains estimates of f̂j(xj) in the additive model

as follows. Fix the estimator α̂ = Ȳ and choose initial guesses for f̂1, . . . , f̂m. Then

1. For j = 1, . . . ,m:

(a) Compute Ỹi = Yi − α̂−
∑

k 6=j f̂k(xki), i = 1, . . . , n.

(b) Apply a one-dimensional nonparametric fitting procedure (smoother) to Ỹi as a
function of xj. Set f̂j equal to the output of this procedure.

(c) Renormalise by setting f̂j(x) equal to f̂j(x)−∑n
i=1 f̂j(xji)/n.

2. Repeat step 1 until the estimators converge.

10.4.4 Projection pursuit

Projection pursuit regression attempts to approximate the unknown function f(x1, . . . , xm)
by one of the form

µ+
M∑

j=1

rj(zj) where zi = αTi x

and each αi is a unit vector. Projection pursuit attempts to find a transformation of the
coordinates that makes an additive model fit as well as possible. In practice, projection
pursuit is fitted iteratively, using some one-dimensional nonparametric method. We use
S(w; Y,x) to denote the value of the output of this nonparametric method at a point w,
where x is the vector of (one-dimensional) covariates at the observed points and Y is the
vector of measured values. First set µ̂ = Ȳ as before and then initialise the residuals
ε̂i = Yi − Ȳ . We use ε̂ to denote the vector of current residuals, i.e., (ε̂)i = ε̂i. We also scale
the covariates so that their variances are equal and then define an m×n matrix X such that
Xij is the value of the i’th covariate for the j’th data point. Then proceed as follows:
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1. Set j = 0.

2. Find the unit vector α that minimizes

I(α) = 1−
∑n

i=1(ε̂i − S(αTxi; ε̂, X
Tα))2

∑n
i=1 ε̂

2
i

and then set zji = αTxi and f̂j(zji) = S(αTxi; ε̂, X
Tα).

3. Set j = j + 1 and update the residuals

ε̂i ← ε̂i − f̂j(zji).

4. If j = M stop, else return to step 2.

10.4.5 Generalized additive models

Definition 10.21. An generalized additive model is a model in which observed random vari-
ables Yi are assumed to be drawn from a specified distribution in the exponential family, with
a specified link function, g(·), and a model for the expectation value of the form

η(x) = g(E(Y )) = α +
m∑

j=1

fj(xj)

where f1, . . . , fm are smooth functions.

Fitting a generalized additive model can be done iteratively, using a method for fitting
a general additive model, in the same way that generalized linear models can be found
by fitting general linear models using iterative weighted least squares (Fisher’s method of
scoring).

The general procedure is as follows:

1. Start with observed data {(xi, yi) : i = 1, . . . n} and initial guesses for α̂ and f̂1, . . . , f̂m.

2. Then repeat the folliwng steps until the estimates for f̂1, . . . , f̂m converge:

(a) Compute fitted values

η̂(xi) = α̂ +
m∑

j=1

f̂j(xmi)

and r̂(xi) = g−1(η̂(xi)).

(b) Computed transformed responses

zi = η̂(xi) + (yi − r̂(xi))g′(r̂(xi)),

where g′(·) denotes the derivative of the link function.

(c) Compute weights

wi =
[
(g′(r̂(xi))

2σ2
]−1

.



Introduction to Statistics for GWs 187

(d) Compute the weighted general additive model for zi as a function of xi with
weights wi.

Note that the above procedure relies on being able to fit a weighted nonparametric model, but
all of the methods described above have assumed equal variance. However, it is straightfor-
ward to generalise the previous methods to the weighted context. For example, the extension
of the Nadaraya-Watson estimator to the weighted case is

f̂wNWn (x) =

∑n
i=1wiYiKh(Xi − x)∑n
j=1wjKh(Xj − x)

.

Example 10.8. Construct a general additive model, using smoothing splines, on the interval
[−2, 2] × [−2, 2] given data (−1,−1, 1), (−1, 0, 3), (−1, 1, 0), (0,−1, 2), (0, 0, 4), (0, 1, 1),
(1,−1, 6), (1, 0, 3), (1, 1, 2). Use λ = 0.01 in both dimensions.

We note that in this case we have data on a regular grid. The backfitting procedure
fits a function in one dimension at a time, and so we will need to fit a smoothing spline with
multiple observations at a given point. For equal numbers of observations at each point, ns,
this is a trivial extension of the procedure described above. The spline takes the same form,
but we replace Yi by the average of the Y ′i s at each value of x, and we change the smoothing
parameter to λ/ns.

First we estimate α̂ = Ȳ = 22/9 and subtract this from each point. We then fit a
smoothing spline to the data (−1,−10/9), (0,−1/9), (1, 11/9) using λ = 0.01/3. The H and
Ω matrices are the same as in Example 3.1

H =




1 −1 0
1 0 1
1 1 6


 , Ω =




0 0 0
0 0 0
0 0 24


 .

and we derive β̂1 = [(HTH + λΩ)−1HTY ] as before

β̂T1 = (−0.188781, 0.923948, 0.0809061).

This gives fitted values at x = −1, 0, 1 of

f̂1(−1) = −1.11273, f̂1(0) = −0.107875, f̂1(1) = 1.2206.

We need to correct the fit by subtracting
∑3

i=1 f̂1(x1i)/3, but this number is very close to zero
so the values do not change.

We now need to fit for the second dimension, x2. The first stage, in general, is
to subtract f̂1(x1i) from Yi for each i. In this case we have multiple observations at each
value of x2 and so we then need to average the Yi’s for each x2. Since the grid is regular, we
effectively subtract

∑3
i=1 f̂1(x1i)/3 from each value, but this has been fixed to equal 0 and so

does not change the averaged values. This happens generically when the data is on a regular
grid and means the backfitting algorithm converges in one iteration.

The data to fit in x2 is (−1, 5/9), (0, 8/9), (1,−13/9) with λ = 0.01/3 again. The
H and Ω matrices are unchanged so we obtain

β̂T2 = (1.51025, 0.941748,−0.647249).
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Figure 44: Data (red points) and general additive model fit (shaded surface) for example 10.8.
The top plot shows the full surface, while the bottom two plots show the surface from the
x1 and x2 sides respectively.

The algorithm has now converged and we obtain our general additive model estimate of
f(x1, x2) as

f̂(x1, x2) =
22

9
+

3∑

i=1

β1ihi(x1) +
3∑

i=1

β2ihi(x2)

where h1(x) = 1, h2(x) = x, h3(x) = (x+ 1)3
+ − 2(x)3

+ + (x− 1)3
+.

The raw data and the GAM estimate are shown in Figure 44.
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10.5 Wavelet Estimators

We return again to the nonparametric regression model

Yi = f(xi) + εi, i = 1, . . . , n, E(εi) = 0, Var(εi) = σ2, independently.

In this subsection we will assume that the design is regular deterministic, that is xi−xi−1 =
1/n for all i. In particular, we consider xi = i

n
.

10.5.1 Orthonormal basis and projection estimator

We will denote the set of square-integrable functions by L2 =
{
f : ||f ||2 =

√∫
f 2(x)dx <∞

}
.

Definition 10.22. A set of functions {ϕk(x)}∞k=0 is called an orthonormal basis of L2[0, 1],
if

• ∀ g ∈ L2,∃ (ak)
∞
k=0 such that g(x) =

∞∑

k=0

akϕk(x) (the set spans L2[0, 1]),

• ∀x,
∞∑

k=0

akϕk(x) = 0⇒ all ak = 0 (linear independence),

• j 6= k,

∫
ϕk(x)ϕj(x) = 0 (orthogonality),

• ∀ k, ||ϕk||2 = 1 (normalisation).

Therefore, any function f ∈ L2[0, 1] can be written as

f(x) =
∞∑

k=0

θkϕk(x).

Due to orthonormality of the basis, the coefficients θk have a simple expression: θk =∫ 1

0
f(x)ϕk(x)dx, since

∫ 1

0

f(x)ϕk(x)dx =

∫ 1

0

[
∞∑

j=0

θjϕj(x)

]
ϕk(x)dx =

∞∑

j=0

θj

[∫ 1

0

ϕj(x)ϕk(x)dx

]
= θk

Examples of orthonormal bases:
1. Fourier basis: ϕ2k(x) = 1, ϕ2k(x) = cos(2πkx), ϕ2k+1(x) = sin(2πkx), k = 1, 2, . . .,

x ∈ [0, 1] (Tsybakov, 2009).
2. A wavelet basis (Vidakovic, 1999)
3. An orthogonal polynomial basis, such as Chebyshev, Lagrange, Laguerre polynomials

(more commonly used in the context of density estimation)
Projection estimator
Assume that f ∈ L2[0, 1], and {ϕk(x)}∞k=0 is an orthonormal basis of L2[0, 1]. Then, we

can write

f(x) =
∞∑

k=0

θkϕk(x)
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for some real coefficients θ0, θ1, . . .. A projection estimation of f is based on a simple idea:
approximate f by its projection

∑N
k=0 θkϕk(x) on the linear span of the first N + 1 functions

of the basis, and replace θk by their estimators. Thus, a projection estimator is constructed
in three steps.

(1) for large N, approximate f(x) ≈
N∑

k=0

θkϕk(x)

(2) construct an estimator θ̂k of θk from data (y1, . . . , yn), k = 0, 1, . . . , N

(3) plug in the estimator θ̂k in the approximation: f̂N(x) =
N∑

k=0

θ̂kϕk(x)

From the expression for θk in terms of f and ϕk, if we know only values of f(x) at points
xi = i/n, i = 1, . . . , n, then for large n the integral can be approximated by a sum:

θk ≈
1

n

n∑

i=1

f(xi)ϕk(xi).

Since we observe values of f(xi) with error, we plug in these observation in the above
expression to obtain the following estimator for θk:

θ̂k =
1

n

n∑

i=1

Yiϕk(xi).

Inserting this expression into the estimator of the function, we obtain a projection esti-
mator:

f̂N(x) =
N∑

k=0

[
1

n

n∑

i=1

f(xi)ϕk(xi)

]
ϕk(x) =

n∑

i=1

Yi

[
N∑

k=0

1

n
ϕk(xi)ϕk(x)

]

which is a linear estimator with weights wi(x) =
∑N

k=0
1
n
ϕk(xi)ϕk(x) which do not depend

on Yi. The choice of N corresponds to choosing the smoothness of the function f̂N .

10.5.2 Wavelet basis

A wavelet basis is constructed using two functions, a scaling function φ(x) and a wavelet
function ψ(x) that are also called the father and mother wavelet respectively. They satisfy
the following properties: ∫

φ(x)dx = 1,

∫
ψ(x)dx = 0.

Definition 10.23. Given a wavelet function ψ and a scaling function φ, a wavelet basis on
[0, 1] is

{φ, ψjk, j = 0, 1, . . . , k = 0, . . . , 2j − 1},
where φjk(x) = 2j/2φ(2jx− k), ψjk(x) = 2j/2ψ(2jx− k).
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Figure 45: Haar and Daubechies wavelet functions

Under certain additional conditions on the scaling function φ(x) and the wavelet function
ψ(x), this basis is orthonormal. Then, any f ∈ L2[0, 1] can be decomposed in a wavelet
basis:

f(x) = θ0φ(x) +
∞∑

j=0

2j−1∑

k=0

θjkψjk(x),

and θ = {θ0, θjk} is a set of wavelet coefficients:

θ0 =

∫ 1

0

φ(x)f(x)dx, θjk =

∫ 1

0

ψjk(x)f(x)dx.

Wavelets (φ, ψ) are said to have regularity s if they have s derivatives and ψ has s
vanishing moments (

∫
xkψ(x)dx = 0 for integer k ≤ s).

Examples of wavelet functions are plotted in Figure 45, and the structure of the wavelet
basis is illustrated in Figure 46.

Example 10.9. The Haar wavelet basis is determined by the scaling function φ(x) = 1(0,1](x)
and the wavelet function ψ(x) = 1(0,1/2](x)− 1(1/2,1](x) which satisfy

∫
φ(x)dx = 1,

∫
ψ(x)dx = 0,

∫
ψjk(x)dx = 0.

Check that the basis {φ, ψjk, j = 0, 1, . . . , k = 0, . . . , 2j − 1} defined by these functions is
orthonormal, that is, that the functions are normalised

||φ||22 =

∫
φ2(x)dx = 1, ||ψ||22 =

∫
ψ2(x)dx = 1, ||ψjk||22 =

∫
ψ2
jk(x)dx = 1,

and are orthogonal:
∫
φ(x)ψjk(x)dx = 0,

∫
ψjk(x)ψ`m(x) = 0 for (j, k) 6= (`,m).

Local polynomial and kernel estimators provide localisation in time only. A Fourier basis
provides localisation in frequency only. The advantage of a wavelet basis is that it provides
localisation in both time and frequency, at the expense of having two indices. The wavelet
transform provides a sparse representation of most functions (it is the basis of JPEG2000).
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Figure 46: Daubechies wavelet transform, s = 8

10.5.3 Wavelet estimators

A wavelet estimator can be constructed following the same structure as a projection
estimator:

1) derive an estimate θ̂jk from noisy discrete wavelet coefficients
2) substitute into the series expansion to obtain the estimate of f , to obtain a wavelet

estimator f̂ :

f̂(x) = θ̂0φ(x) +
∞∑

j=0

2j−1∑

k=0

θ̂jkψjk(x).

For example, a wavelet projection estimator can be constructed as

f̂J0(x) = θ̂0φ(x) +

J0−1∑

j=0

2j−1∑

k=0

θ̂jkψjk(x),

with

θ̂0 =
1

n

n∑

i=1

Yiφ(xi), θ̂jk =
1

n

n∑

i=1

Yiψjk(xi), j < J0.

From this definition it follows that θ̂jk = 0 for j ≥ J0. It is a linear estimator.

The number of nonzero coefficients of f̂J0(x) is

1 +

J0−1∑

j=0

2j−1∑

k=0

1 = 1 +

J0−1∑

j=0

2j = 1 +
2J0 − 1

2− 1
= 2J0 .

Example 10.10. For the Haar wavelet projection estimator, the variance is

Var(f̂J0(x)) =
σ2

n


(φ(x))2 +

J0−1∑

j=0

2j−1∑

k=0

(ψjk(x))2


 =

σ2

n

[
1 +

J0−1∑

j=0

2j

]
=

2J0

n
σ2,
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since (φ(x))2 = 1 for all x ∈ [0, 1], and (ψjk(x))2 = 2j for (j, k) such that x ∈ supp(ψjk), i.e.
if k

2j
≤ x < k+1

2j
(just one k = bx2jc for each j satisfies this condition).

We will also consider wavelet thresholding estimators which are examples of nonlinear
estimators (see Section 10.5.10).

10.5.4 Multiresolution analysis (MRA)

In this section there is a brief explanation of why wavelet functions, together with the scaling
function, form a basis.

Definition 10.24. A multiresolution analysis (MRA) is a sequence of closed subspaces Vn,
n ∈ {0, 1, 2, ..} in L2(R) such that

1. V0 ⊂ V1 ⊂ V2 ⊂ . . . , Clos(
⋃
j Vj) = L2(R), where Clos(A) stands for the closure of a

set A.

2. Subspaces Vj are self-similar:

g(2jx) ∈ Vj ⇔ g(x) ∈ V0,

3. There exists a scaling function φ ∈ V0 such that
∫
R φ(x)dx 6= 0 whose integer-translates

span the space V0:

V0 =

{
g ∈ L2(R) : g(x) =

∑

k∈Z

ckφ(x− k) for some (ck)k∈Z

}
,

and for which the set of functions {φ(· − k), k ∈ Z} is an orthonormal basis.

Property 2 of MRA implies that for any h(x) ∈ Vj ∃ g ∈ V0 such that

h(x) = g(2jx) =
∑

k∈Z

ckφ(2jx− k),

and hence {φ(2jx − k)}k∈Z or, equivalently, {φjk}k∈Z, form an orthonormal basis of Vj. In
particular, since φ(x) ∈ V0 we have

φ(x) =
√

2
∑

k∈Z

hkφ(2x− k). (126)

The coefficients in this expansion satisfy
∑

k

hk =
√

2,
∑

k

hkhk−2l = δ0l.

We then define another function (the mother wavelet)

ψ(x) =
√

2
∑

gkφ(2x− k)

and require that ψ(x − m) is orthogonal to φ(x) for all integers m, and that {ψ(x − m) :
m ∈ Z} is an orthonormal set. These conditions impose constraints on the coefficients {gk}

∑

k

gkhk+2m = 0 ∀m ∈ Z,
∑

k

gkgk−2l = δ0l
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which can be satisfied by the choice gk = (−1)1−kh1−k. It is clear that the space of functions
spanned by {ψ(x − m) : m ∈ Z}, which we denote W0, is orthogonal to that spanned by
{φ(x −m) : m ∈ Z}, which is V0. The direct sum W0 ⊕ V0 can be seen to coincide with V1

(we will not prove this here, but roughly speaking V1 is twice the size of V0 so it makes sense
that adding two orthogonal spaces of the same size as V0 together can generate V1).

We can continue this procedure to larger j. For each j ≥ 0, we define the “difference”
space Wj: Vj+1 = Vj⊕Wj, for which an orthonormal basis is given by {ψjk(x) : k ∈ Z}. We
see that L2(R) = V0⊕W1⊕W2⊕. . .⊕Wj⊕. . ., and the set {φ(x), ψjk(x) : j = 0, 1, 2, .., k ∈ Z}
forms an orthonormal basis of L2(R).

10.5.5 Filter characterisation of the wavelet transform

We now prove some of the results used to describe the MRA above.

Proposition 10.4. 1.
∑

k∈Z hk =
√

2,
∑

k∈Z gk = 0

2.
∑

k∈Z h
2
k = 1,

∑
k∈Z g

2
k = 1

3. For all ` 6= 0,
∑

k∈Z hkhk−2` = 0,
∑

k∈Z gkgk−2` = 0

4. For all ` ∈ Z,
∑

k∈Z gkhk−2` = 0.

Proof of Properties 1 and 2. 1. To prove
∑

k∈Z hk =
√

2, we integrate the scaling equation:

1 =

∫
φ(x)dx =

∑

k∈Z

hk
√

2

∫
φ(2x− k)dx = [v = 2x− k] =

∑

k∈Z

hk2
−1/2

∫
φ(v)dv

=
1√
2

∑

k∈Z

hk

which implies the result.
Similarly, to prove

∑
k∈Z gk = 0, we integrate the wavelet equation:

0 =

∫
ψ(x)dx =

√
2
∑

k∈Z

gk

∫
φ(2x− k)dx = [v = 2x− k] = 2−1/2

∑

k∈Z

gk

∫
φ(v)dv

= 2−1/2
∑

k∈Z

gk

which implies that
∑

k∈Z gk = 0.
2. To prove

∑
k∈Z h

2
k = 1, we integrate the squared scaling equation:

1 =

∫
φ(x)2dx = 2

∫ [∑

k∈Z

hkφ(2x− k)

]2

dx =
∑

k,m

hkhm

∫
φ(2x− k)φ(2x−m)d(2x)

=
∑

k

h2
k

since
∫
φ(2x− k)φ(2x−m)d(2x) = 1 if k = m and is 0 otherwise.∑

k∈Z g
2
k = 1 is proved similarly, by integrating the squared wavelet equation.
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The two filter decompositions (for φ(x), with coefficients {hk} and ψ(x) with coefficients
{gk} satisfying gk = (−1)kh1−k) have other properties which we will use later to show that a
finite dimensional version of wavelet decomposition, a discrete wavelet transform performed
via the cascade algorithm, transforms iid Gaussian random variables to iid Gaussian random
variables.

Example 10.11. Determine filters gk, hk for the Haar wavelet transform.
For the Haar wavelets, the scaling equation is

1(0,1](x) = 1(0,1/2](x) + 1(1/2,1](x) = 1(0,1](2x) + 1(0,1](2x− 1)

That is,

φ(x) = φ(2x) + φ(2x− 1) =
√

2
∑

k∈Z

hkφ(2x− k)

which implies that the only nonzero values of hk are h0 = h1 = 1/
√

2.
The Haar wavelet function satisfies the following:

ψ(x) = 1(0,1/2](x)− 1(1/2,1](x) = 1(0,1](2x)− 1(0,1](2x− 1) =
1√
2

(φ(2x)− φ(2x− 1))

which implies that g0 = 1/
√

2, g1 = −1/
√

2 and the remaining gk are 0.

10.5.6 Discrete wavelet transform (DWT)

In typical realistic settings, we observe only a finite number of noisy values of the function.
How can we obtain (noisy) wavelet coefficients based on this partial information?

10.5.7 Motivation

We want to discretise the wavelet transform:

θjk =

∫ 1

0

f(x)ψjk(x)dx ≈ 1

n

n∑

i=1

ψjk(i/n)f(i/n) =
1√
n

(Wfn)(jk) =
wjk√
n

=: θ̃jk,

where W , an n × n matrix defined by W1i = φ(xi), Wli = ψjk(xi) with l = 2j + k + 1,
is (approximately) orthonormal and fn is a vector fn = (f(1/n), . . . , f(1)). We assume
n = 2J for some integer J . The subscript (jk) in the above denotes the row, l = 2j + k + 1,
corresponding to a particular pair (j, k).

If the function f is bounded, the approximate wavelet coefficients θ̃jk are close to the
exact coefficients θjk: |θ̃jk−θjk| ≤ C/n. For Haar wavelets, θjk = θ̃jk since the Haar wavelets
are constants on each interval (i/n, (i+ 1)/n) for n = 2J for some integer J .

Use the linear transform defined by a matrix W as a discrete wavelet transform. There
are other ways to derive the approximation, so that |θ̃jk − θjk| ≤ C/n and matrix W is
orthonormal (WW T = I). In practice, it is done via the cascade algorithm which is
derived from filter properties of wavelet transform. In this case, |θ̃jk − θjk| ≤ C/n and the
matrix W satisfies WW T = I due to the filter properties (Proposition 10.4).

Applying the discretised wavelet transform W to data yields

djk = wjk + εjk, 0 ≤ j ≤ J − 1, k = 0, . . . , 2j − 1,

c00 = u00 + ε0,
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where djk and c00 are discrete wavelet and scaling coefficients of observations (yi), and εjk
and ε0 are discrete wavelet coefficients of the noise (εi). If εi ∼ N(0, σ2) independent, then
εjk ∼ N(0, σ2) and ε0 ∼ N(0, σ2) independently due to WW T = I.

10.5.8 Cascade algorithm

The wavelet and scaling equations are the basis for the cascade algorithm that can be used to
calculate the wavelet coefficients. The algorithm is very fast, taking 2n steps where n is the
number of the observations. The algorithm is constructed by using recurrent equations for
wavelet and scaling coefficients that are derived from the wavelet and the scaling equations
in the following way.

Suppose we observe values of f(xi), xi = i/n, i = 1, . . . , n. Denote the corresponding
“noiseless” discrete scaling coefficients by ujk and discrete wavelet coefficients by wjk (recall
that θjk ≈ wjk/

√
n and θ0 ≈ u00/

√
n). Then, the wavelet coefficients satisfy the following

(using the wavelet equation):

θjk =

∫ 1

0

f(x)ψjk(x)dx =

∫ 1

0

f(x)ψ(2jx− k)2j/2dx

=

∫ 1

0

f(x)

[
√

2
∑

m∈Z

gmφ
(
2(2jx− k)−m

)
]

2j/2dx

=

∫ 1

0

f(x)

[∑

m∈Z

gmφ
(
2j+1x− 2k −m

)
2(j+1)/2

]
dx

=
∑

m∈Z

gm

∫ 1

0

f(x)φj+1,2k+m(x)dx.

Here,
∫ 1

0
f(x)φjk(x)dx are scaling coefficients of f that are not used directly for estimation

but are useful for computational purposes. For the discrete wavelet and scaling coefficients
wjk and ujk, we can write the following recurrence relation:

wjk =
∑

m∈Z

gmuj+1,2k+m.

Using the scaling equation, we can derive a similar connection between the scaling coefficients
at consecutive levels j and j + 1:

ujk =
√
n

∫ 1

0

f(x)φjk(x) =
∑

m∈Z

hmuj+1,2k+m.

These recurrence equations are used in the cascade algorithm. They also apply to noisy
scaling and wavelet coefficients cjk and djk.

We need to have a starting point. Assuming that supp(φ) = [0, 1], like for the Haar
scaling function, the scaling coefficients at level J for k = 0, 1, .., 2J − 1 satisfy:

∫ 1

0

f(x)2J/2φ(2Jx− k)dx = 2J/2
∫ (k+1)/2J

k/2J
f(x)φ(2Jx− k)dx

≈ f((k + 1)/n)

∫ (k+1)/2J

k/2J
2J/2φ(2Jx− k)dx = [v = 2Jx− k] = f(xk+1)2−J/2

∫ 1

0

φ(v)dv

≈ f(xk+1)√
n

.



Introduction to Statistics for GWs 197

Therefore, we can set uJ,k = f(xk+1), k = 0, 1, . . . , 2J − 1 = n − 1. For noisy observations
(Yi), we can start with noisy discrete scaling coefficients cJ,k = Yk+1.

Assumptions for the cascade algorithm.

1. Yi are (noisy) observations of a function f at points xi, i = 1, .., n

2. points (xi) form a regular fixed design (xi − xi−1 = 1
n
).

3. n = 2J for some integer J .

Cascade algorithm

1. Set cJk = Yk+1 for k = 0, 1, .., 2J − 1, set j = J − 1;

2. Set

cjk =
∑

m∈Z

hmcj+1,2k+m, djk =
∑

m∈Z

gmcj+1,2k+m;

3. if j = 0 stop; else set j := j − 1 and repeat step 2.

Output: discrete wavelet coefficients c00, djk for 0 ≤ j ≤ J − 1, k = 0, . . . , 2j − 1.
Using the expressions for the Haar wavelet filters hk and gk, the recurrent step of the

cascade algorithm for the Haar wavelet transform is

ujk =
1√
2

(uj+1,2k + uj+1,2k+1) , wjk =
1√
2

(uj+1,2k − uj+1,2k+1) .

To reconstruct the function from the wavelet coefficients, this algorithm can be inverted.

10.5.9 Summary

• The number of data points n = 2J .

• Cascade algorithm: set cJ0 = Y1, . . . , cJ,2J−1 = Yn, and compute recursively

cjk =
∑

m

hmcj+1,2k+m, djk =
∑

m

gmcj+1,2k+m.

• The output of the the cascade algorithm are discrete wavelet coefficients: c00 & djk,
j < J that satisfy

djk ∼ N(wjk, σ
2), c00 ∼ N(u00, σ

2), independently.

• To construct an estimator of f , choose estimators ŵjk, û00(= c00), and hence construct
the corresponding estimators

θ̂0 =
û00√
n
, θ̂jk =

ŵjk√
n
.

These estimators are then used to obtain an estimator of the function f :

f̂(x) = θ̂0φ(x) +
J−1∑

j=0

2j−1∑

k=0

θ̂jkψjk(x).
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For example, a linear projection estimator f̂J0(x) for f(x) can be constructed using the
output of the cascade algorithm:

ŵjk = djk, j ≤ J0 − 1; ŵjk = 0, j ≥ J0; û00 = c00.

For Haar wavelets, the linear projection estimator f̂J0 coincides with the wavelet estimator
based on discrete wavelet coefficients with ŵjk = djk for j ≤ J0 − 1 and ŵjk = 0 for j > J0.

10.5.10 Thresholding Estimators for threshold λ

Hard thresholding estimator

ŵjk = djkI (|djk| > λ) =

{
djk, if |djk| > λ
0, if |djk| < λ

Soft thresholding estimator

ŵjk =





djk − λ, djk > λ
0, −λ ≤ djk ≤ λ
djk + λ, djk < −λ

There is a default choice of threshold λ that is called the universal threshold:

λ = σ
√

2 log n.

In practice, the standard deviation σ is estimated as the median absolution deviation
(MAD):

σ̂ = 1.4826 MAD(dJ−1,0, . . . , dJ−1,2J−1)

where MAD(x1, . . . , xn) = median(|xi −median(xi)|).

10.5.11 Inference on f using wavelet estimators

10.5.12 Asymptotic confidence intervals for f(x)

Yi = f(xi) + εi, xi =
i

n
εi ∼ N(0, σ2)

To construct an asymptotic confidence interval for f(x), we use the linear estimator

f̂J0(x) = θ̂0φ(x) +

J0−1∑

j=0

2j0−1∑

k=0

θ̂jkψjk(x),

where

θ̂0 =
1√
n
û00, û00 = c00 =

1√
n

n∑

i=1

Yiφ(xi)

θ̂jk =
1√
n
ŵjk, ŵjk = djk =

1

n

n∑

i=1

Yiψjk(xi)
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Recall that this estimator is linear:

⇒ f̂J0(x) =
n∑

i=1

wi(x)Yi, wi(x) =
1

n
φ(xi)φ(x) +

1

n

J0−1∑

j=0

2j−1∑

k=0

ψjk(xi)ψjk(x),

therefore, given independent observations of Yi ∼ N(f(xi), σ
2) for i = 1, . . . , n,

f̂J0(x) ∼ N

(
f(x), σ2

n∑

i=1

w2
i (x)

)
for large n.

For Haar wavelets, we derived that
∑n

i=1 w
2
i (x) = 2J0/n.

Therefore, an asymptotic (1 − α)100% confidence interval for f(x) based on the Haar

wavelets projection estimator f̂J0(x), assuming that J0 is large enough so that the bias is
much smaller than the variance, is

f̂J0(x)± zα/2
2J0/2σ√

n
.

Note that if J0 is too large, then the confidence interval is large. Therefore, there is a
tradeoff between bias and variance that results in “optimal” choice of J0. This is discussed
by considering the MISE of f̂J0(x).

10.5.13 Hypothesis testing

Local support of the wavelet basis is useful when it is of interest to test whether a function
is a constant on a certain subinterval of [0, 1]. We want to test the hypothesis

H0 : f(x) = constant on (a, b)

using Haar wavelets.
Due to the support of ψjk being [k/2j, (k+1)/2j], for (a, b) = (m2−`, (m+1)2−`) for some

positive integers m and ` this hypothesis is equivalent to the following hypothesis about the
Haar wavelet coefficients of function f :

H0 : θjk = 0 for (j, k) such that a <
k + 1/2

2j
< b

that is, the change point of ψjk is inside (a, b). The equivalent null hypothesis can also be
written as

H0 : wjk = 0 for (j, k) such that a <
k + 1/2

2j
< b

since (θjk = wjk/
√
n) for Haar wavelets.

Test this hypothesis using observed discrete wavelet coefficients djk ∼ N(wjk, σ
2), j =

0, . . . , J − 1, k = 0, . . . , 2j − 1, independently.
Given only n = 2J observations, we can test this hypothesis only using the wavelet

coefficients with j < J :

H0 : wjk = 0 for (j, k) such that a <
k + 1/2

2j
< b& j < J.
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Test statistic:
T = σ−2

∑

j,k: a<
k+1/2

2j
<b, j<J

d2
jk

which has a χ2
m distribution under the null hypothesis where m is the number of coefficients

tested to be zero, that is, m = Card{(j, k) : a < k+1/2
2j

< b, 0 ≤ j < J, 0 ≤ k ≤ 2j − 1}.
Example 10.12. Data: y = (−1.0,−0.2, 0.8, 0.6, 0.0,−0.4,−0.3,−0.5), xi = i/8, i = 1, .., 8,
n = 8. The data follows the nonparametric regression model with σ = 0.2.

1. Test H0 : f(x) = const on (1/4, 1/2).
Corresponding hypothesis for the wavelet coefficients is H0 : wjk = 0 for (j, k) that satisfy

1/4 < k+1/2
2j

< 1/2 , j < J − 1 = 2 then (2j/4− 1/2) < k < 2j/2− 1/2

Since n = 8 = 23, we have J = 3 and hence we consider 0 ≤ j ≤ 2:
j = 2: 1/2 < k < 3/2 , i.e. k = 1 and hence (j, k) = (2, 1) satisfies the condition
j = 1: 0 < k < 1/2 no integer in the interval, so none
j = 0: −1/4 < k < 0 none.

Therefore, the equivalent hypothesis is H0 : w21 = 0. Since the corresponding noisy
discrete Haar wavelet coefficient d21 ∼ N(w21, σ

2), under the null hypothesis T = d2
21/σ

2 ∼
χ2

1, therefore we reject H0 at a 5% significance level if T = d2
21/σ

2 > χ2
1(5%) = 3.841. Since

for this data d21 = 0.1414 and hence T = d2
21/σ

2 = 0.5 < 3.841, there is not sufficient data
to reject the null hypothesis at a 5% significance level.

2. Now test H0 : f(x) = const on (1/2, 1).
The corresponding hypothesis for the wavelet coefficients is H0 : wjk = 0 for (j, k) s.t.

1/2 < k+1/2
2j

< 1, that is, for (j, k) such that
⇔ 2j/2− 1/2 < k < 2j − 1/2.

j ≤ J − 1 = 2. Check this condition for each 0 ≤ j ≤ 2:
j = 2: 3/2 < k < 7/2, that is, k = 2, 3
j = 1: 1/2 < k < 3/2, that is, k = 1
j = 0: 0 < k < 1/2 none

Therefore, the equivalent hypothesis is

H0 : w11 = w22 = w23 = 0.

The test statistic is T = (d2
11 + d2

22 + d2
23)/σ2 ∼ χ2

3 under H0. That is, we reject the
null hypothesis at a 5% significance level if T > χ2

3(5%) = 7.815. For this data, T =
(0.22 + 0.28284272 + 0.14142142)/0.04 = 3.5 < 7.815, therefore there is not sufficient data to
reject the null hypothesis at a 5% significance level.

Remark 10.2. For an arbitrary interval (a, b) (that is, not of the form (m2−`, (m+ 1)2−`)),
the equivalent null hypothesis in terms of Haar wavelet coefficients is

H0 : wjk = 0 for (j, k) such that {a < k

2j
< b or a <

k + 1/2

2j
< b or a <

k + 1

2j
< b},

for j = 0, 1, . . . , J − 1 and k = 0, 1, . . . , 2j − 1. That is, in the more general case we need to
check if any of the three points where the Haar wavelet ψjk jumps between different constant
values is inside the interval (a, b).

For an interval of the type (m2−`, (m + 1)2−`) it is not necessary to check the end point
since they are either at the same place with regard to (a, b) (that is, inside or outside) as the
mid point (k + 1/2)2−j or on the boundary of the interval.
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10.5.14 MISE (mean integrated square error) of wavelet estimators

Suppose a function f has the following wavelet decomposition:

f(x) = θ0φ(x) +
∞∑

j=0

2j−1∑

k=0

θjkψjk(x),

and consider a wavelet estimator

f̂(x) = θ̂0φ(x) +
∞∑

j=0

2j−1∑

k=0

θ̂jkψjk(x).

Lemma 10.2. (Parseval identity). For a function f and its wavelet estimator f̂(x),

||f − f̂ ||22 = (θ0 − θ̂0)2 +
∞∑

j=0

2j−1∑

k=0

(θ̂jk − θjk)2.

This is due to the wavelet basis being orthonormal.
Consider the following estimator of the wavelet coefficients for j = 0, .., J0 − 1 for some

J0:

θ̂jk =
1

n

n∑

i=1

ψjk(xi)Yi,

and θ̂jk = 0 for j ≥ J0. The estimator of the scaling coefficient is θ̂0 = 1
n

∑n
i=1 φ(xi)Yi.

Sometimes we refer to θ0 as θ−1,0, and to φ(x) as ψ−1,0(x).
The corresponding wavelet estimator is

f̂J0(x) =
∑

j≤J0−1

∑

k

θ̂jkψjk(x) =
1

n

n∑

i=1

Yi
∑

j≤J0−1

∑

k

ψjk(xi)ψjk(x).

This wavelet estimator

f̂J0(x) =
1

n

n∑

i=1

Yi
∑

j≤J0−1

∑

k

ψjk(xi)ψjk(x)

is linear since it can be written as

f̂J0(x) =
n∑

i=1

YiWi(x),

with Wi(x) = 1
n

∑
j≤J0−1,k ψjk(xi)ψjk(x), i.e., that is independent of the Yi’s.

By Lemma 10.2,

E||f − f̂ ||22 = E(θ0 − θ̂0)2 +
∞∑

j=0

2j−1∑

k=0

E(θ̂jk − θjk)2,

hence it is sufficient to find MSE of θ̂jk, E(θ̂jk − θjk)2.
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We know that

E(θ̂jk − θjk)2 = Var(θ̂jk) +
[
bias(θ̂jk)

]2

.

Therefore, we need to find the variance and the bias of θ̂jk.
Variance
For j ≤ J0 − 1,

Var
(
θ̂jk

)
= Var

(
1

n

n∑

i=1

ψjk(xi)Yi

)

=
1

n2

n∑

i=1

ψ2
jk(xi)Var (Yi) =

σ2

n

1

n

n∑

i=1

ψ2
jk(xi)

=
σ2

n
(1 + o(1)),

due to the independence of the Yi’s and 1
n

∑n
i=1 ψ

2
jk(xi) ≈

∫ 1

0
ψ2
jk(x)dx = 1.

Bias
For j ≤ J0 − 1, the bias is

E
(
θ̂jk − θjk

)
=

1

n

n∑

i=1

f(xi)ψjk(xi)−
∫ 1

0

f(x)ψjk(x)dx.

Assume that f ∈ Hβ(Mf ) and is bounded, i.e. |f(x)| ≤ Cf for all x ∈ [0, 1]. We assume
that the wavelet function ψ is such that |ψ(x)−ψ(y)| ≤Mψ|x− y| for all x, y ∈ [0, 1], and it
is bounded: |ψ(x)| ≤ Cψ for all x ∈ [0, 1] (and that the same conditions hold for the scaling
function φ). We also assume that supp(ψ) ⊆ [0, 1] and supp(φ) ⊆ [0, 1] .

Under these assumptions with β ∈ (0, 1], the absolute value of the bias is bounded by

|E
(
θ̂jk − θjk

)
| ≤

n∑

i=1

∫ xi

xi−1

|f(x)ψjk(x)− f(xi)ψjk(xi)| dx

≤
n∑

i=1

∫ xi

xi−1

[|f(x)ψjk(x)− f(x)ψjk(xi)|+ |f(x)ψjk(xi)− f(xi)ψjk(xi)|] dx

≤ max
x
|f(x)|2j/2

n∑

i=1

∫ xi

xi−1

∣∣ψ(2jx− k)− ψ(2jxi − k)
∣∣ dx

+
n∑

i=1

|ψjk(xi)|
∫ xi

xi−1

|f(x)− f(xi)| dx.

Considering the first term on the right hand side, we have
∫ xi

xi−1

∣∣ψ(2jx− k)− ψ(2jxi − k)
∣∣ dx ≤ Mψ

∫ xi

xi−1

|2jx− k − (2jxi − k)|dx

≤ 0.5Mψ2jn−2.

The intersection of the interval of integration [(i− 1)/n, i/n] and the support of ψjk

supp(ψjk) = [k2−j, (k + 1)2−j] = [k2J−j/n, (k + 1)2J−j/n]
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is nonempty (and consists of more than a single point) iff k2J−j < i − 1 < (k + 1)2J−j or
k2J−j < i < (k + 1)2J−j, i.e. k2J−j + 1 ≤ i <≤ (k + 1)2J−j. There are 2J−j of such i. Thus,

n∑

i=1

∫ xi

xi−1

|ψjk(x)− ψjk(xi)|dx ≤ 0.5Mψ2jn−22J−j = 0.5Mψn
−22J = 0.5Mψn

−1,

using n = 2J and hence

max
x
|f(x)|2j/2

n∑

i=1

∫ xi

xi−1

∣∣ψ(2jx− k)− ψ(2jxi − k)
∣∣ dx ≤ 0.5CfMψ2j/2n−1.

For the second term, we have

∫ xi

xi−1

|f(x)− f(xi)| dx ≤ Mf

∫ xi

xi−1

|x− xi|β ≤
Mf

(β + 1)nβ+1
,

and using the restriction to the support of ψjk

|ψjk(xi)| ≤ 2j/2Cψ1(k2J−j + 1 < i < (k + 1)2J−j),

⇒
n∑

i=1

|ψjk(xi)| ≤ 2j/2Cψ

n∑

i=1

1(k2J−j + 1 ≤ i ≤ (k + 1)2J−j) ≤ 2J−j/2Cψ ≤ Cψn2−j/2.

Thus,

|Eθ̂jk − θjk| ≤ 0.5CfMψ2j/2n−1 +
MfCψ
(β + 1)

2−j/2n−β

again using n = 2J and j < J .

MSE (θ̂jk) for j ≥ J0

For j ≥ J0, θ̂jk = 0, and therefore the MSE (θ̂jk) = E(θ̂jk − θjk)2 = θ2
jk.

For f ∈ Hβ(Mf ), |θjk| ≤Mf2
−j(β+1/2) for all j, k.

Now we summarise the properties of bias and variance of θ̂jk that we have derived.

Lemma 10.3. Assume that

• f ∈ Hβ(Mf ), β ∈ (0, 1), and |f(x)| ≤ Cf for all x ∈ [0, 1];

• ψ is such that supp(ψ) ⊆ [0, 1], |ψ(x) − ψ(y)| ≤ Mψ|x − y| for all x, y ∈ [0, 1], and it
is bounded: |ψ(x)| ≤ Cψ for all x ∈ [0, 1] (and that the same conditions hold for the
scaling function φ).

Then, for θ̂jk = 1
n

∑n
i=1 ψjk(xi)Yi,

Var
(
θ̂jk

)
=

σ2

n
(1 + o(1)) as n→∞,

|bias(θ̂jk)| ≤ c12j/2n−1 + c22−j/2n−β,

where c1 = 0.5CfMψ and c2 =
MfCψ
(β+1)

.
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MISE of f̂J0(x)
Under the assumptions of Lemma 10.3, the MISE of the linear wavelet estimator is

E||f − f̂J0||22 = E(θ0 − θ̂0)2 +

J0−1∑

j=0

2j−1∑

k=0

E(θ̂jk − θjk)2 +
∞∑

j=J0

2j−1∑

k=0

θ2
jk

≤ 2J0
σ2

n
(1 + o(1)) + 2c2

1n
−2[1 +

J0−1∑

j=0

2j−1∑

k=0

2j]

+2c2
2n
−2β[1 +

J0−1∑

j=0

2j−1∑

k=0

2−j] +M2
f

∞∑

j=J0

2j−1∑

k=0

2−j(2β+1)

= 2J0
σ2

n
(1 + o(1)) + 2c2

1n
−2(22J0 + 2)/3 + 2c2

2n
−2β(J0 + 1) +M2

f

2−2βJ0

1− 2−2β

≤ σ2N

n
(1 + o(1)) + c̃1n

−2N2 + c̃2n
−2β log n+ c̃3N

−2β + c̃4n
−2

where N = 2J0 < 2J = n and c̃1 = 2c2
1/3, c̃2 = 2c2

2, c̃3 = M2
f (1− 2−2β)−1 and c̃4 = 4c2

1/3.
For the estimator to be consistent, we need the MISE to tend to 0 as n→∞, therefore

we need N/n → 0 and N → ∞ as n → ∞. In this case, the second term is much smaller
than the first one, and logN < log n. Therefore, to find the optimal N (and hence the
optimal J0) that minimises the upper bound on the MISE, we can consider just 2 remaining
terms:

MISE(f̂J0) ≤ σ2N

n
(1 + o(1)) + c̃3N

−2β(1 + o(1))

This expression is minimised when N = cn1/(2β+1), that is, when 2J0 = c2J/(2β+1) which
implies that J0 = J

2β+1
(1 + o(1)) as n→∞ (and hence as J →∞).

Therefore, the linear wavelet estimator with J0 = J
2β+1

has MISE bounded by

MISE(f̂J0) ≤ Cn−2β/(2β+1)

that is, it achieves the global minimax rate of convergence, and it has the same rate of
convergence as the kernel estimator with the optimal bandwidth.

Note that this estimator is non-adaptive, that is, we need to know β, the smoothness
of the unknown function, to estimate f well. The wavelet thresholding estimator with the
threshold (1 + d)σ

√
2 log n for any d ∈ (0, 1) (that is, slightly larger than the universal

threshold) achieves the optimal rate of convergence (up to a factor of log n) adaptively,
that is, without using the smoothness of f .
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11 Gaussian and Dirichlet Processes

We encountered stochastic processes when we discussed noise in gravitational wave detectors
and then again in the discussion of Time Series. Another application of stochastic processes
is to generate probability distributions, as the relative frequencies of different outcomes of
the stochastic process over long time intervals. We will be concerned with two particular
types of stochastic process.

• Gaussian processes: These are infinite dimensional generalisations of the Normal
distribution and realisations of these are random fields.

• Dirichlet processes: These are infinite dimensional generalisations of the Dirichlet
distribution, and realisations of these are probability distributions.

11.1 Gaussian processes

A multivariate Gaussian distribution returns values of a finite set of random variables. A
natural extension is to regard the set of random variables as the values of some random
field at certain points. To generate the full random field we need an infinite dimensional
Gaussian distribution, which is a Gaussian process. Formally we denote a random field,
y(x), generated by a Gaussian process via

y(x) ∼ GP(m(x), k(x,x′))

where m(x) and k(x,x′) are the mean and covariance function of the Gaussian process. For
simplicity of notation we assume that the random field is single valued at each point, but
the extension to multivariate outputs is straightforward.

Formally, a GP is an infinite collection of variables, any finite subset of which are dis-
tributed as a multivariate Gaussian. For a set of parameter points {xi}, including, but not
limited to, the training set D,

[y(xi)] ∼ N(m, K) , (127)

where the mean vector and covariance matrix of this Gaussian distribution are fixed by the
corresponding functions of the GP,

[m]i = m(xi) , [K]ij = k(xi,xj) , (128)

with probability density function

P ({y(xi}) =
1√

(2π)N |K|
exp

(
−1

2

∑

i, j

(y(xi)−m(xi))
[
K−1

]
ij

(y(xj)−m(xj))

)
. (129)

Gaussian processes are often used for interpolation. In that context, the training set D
represents the set of known values of the field, e.g., the results of computational simulations
at certain choices of input parameters, which we denote by ỹ(xi). The Gaussian process
is constrained by this training set and then used to predict the value of the field at new
points in the parameter space, with associated uncertainties. If the values of the field at the
training points are not known perfectly, but have uncertainties εi ∼ N(0, σ2

i ), the expression
above takes the same form but with the replacement

[K]ij = k(xi,xj) + σ2
i δij.
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Even with perfect simulations it can be advantageous to include a small error term, as this
helps with inversion of the covariance matrix.

The mean and variance of the GP determine how the function is interpolated across the
parameter space. It is common in regression to set the mean of the Gaussian process to zero,
but specifying the covariance function is central to GP regression as it encodes our prior
expectations about the properties of the function being interpolated. Possibly the simplest
and most widely used choice for the covariance function is the squared exponential (SE)

k(xi,xj) = σ2
f exp

[
−1

2
gab(xi − xj)

a(xi − xj)
b

]
, (130)

which defines a stationary, smooth GP. In Eq. (130), a scale σf and a (constant) metric gab for
defining a modulus in parameter space have been defined. These are called hyperparameters

and we denote them as ~θ = {σf , gab}, with Greek indices µ, ν, . . . to label the components
of this vector.

The probability in Eq. (129) is referred to as the hyperlikelihood, or alternatively the
evidence for the training set; it is the probability that that particular realisation of waveform
differences was obtained from a GP with a zero mean and specified covariance function. The
hyperlikelihood depends only on the hyperparameters and the quantities in the training set,
so we denote it as Z(~θ|D). The log hyperlikelihood is

lnZ(~θ|D) = −N
2

ln(2π)

−1

2

∑

i, j

(y(xi)−m(xi)) [k(xi,xj)]
−1 (y(xj)−m(xj))

−1

2
ln |det [k(xi,xj)]| . (131)

The values of the hyperparameters can be fixed to their optimum values ~θop, defined as
those which maximise the hyperlikelihood:

∂Z(~θ|D)

∂θµ

∣∣∣∣∣
~θ= ~θop

= 0 . (132)

An alternative approach is to consider the hyperparameters as nuisance parameters in ad-
dition to the source parameters x, and marginalise over them while sampling an expanded
likelihood,

Λexpanded(x, ~θ|D) ∝ L(x|~θ,D)Z(~θ|D). (133)

The disadvantage of this approach is that the hyperlikelihood is expensive to compute and
the inclusion of extra nuisance parameters slows down any application of the GP. In contrast,
maximising the likelihood is a convenient heuristic which is widely used in other contexts
and allows all the additional computation to be done offline.

Having fixed the properties of the covariance function by examining the training set, we
can now move on to using the GP as a predictive tool. The defining property of the GP is
that any finite collection of variables drawn from it is distributed as a multivariate Gaussian
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in the manner of Eq. (129). Therefore, the set of variables formed by the training set plus
the field at a set of extra parameter points {y(zj)} is distributed as

[
y(xi)
y(zj)

]
∼ N (m,Σ) , Σ =

(
K K∗
KT
∗ K∗∗

)
, (134)

where K is defined in Eq. (128) and the matrices K∗ and K∗∗ are defined as

[K∗]ij = k(xi, zj) , [K∗∗]ij = k(zi, zj) . (135)

The conditional distribution of the unknown field values at the new points, given the observed
values in D, can now be found and is given by

p({y(zi)}) ∝ exp

[
−1

2

∑

j,k

(y(zj)− µj)Σ−1
jk (y(xk)− µk)

]
(136)

where the GPR mean and its associated error are given by

µi = m(zi) +
∑

j,k

[K∗]ji
[
K−1

]
jk

(ỹ(xk)−m(xk)) , (137)

Σij = [K∗∗]ij −
∑

k,l

[K∗]ki
[
K−1

]
kl

[K∗]lj . (138)

11.2 The covariance function

The properties of the covariance function play an important role in determining the nature
of the Gaussian process and its behaviour when used for regression. The only necessary
requirements we have of a covariance function are that it is a positive definite; i.e. for
any choice of points {xi} the covariance matrix Kij = k(xi,xj) is positive definite. The
covariance function (and the corresponding GP) is said to be stationary if the covariance is
a function only of ~τ = x1 − x2, furthermore it is said to be isotropic if it is a function only
of τ ≡ |~τ | = |x1 − x2|.3 Isotropy of a GP implies stationarity, but the converse is not true.

An example of how the properties of the covariance function relate to the properties of
the GP, and hence the properties of the resulting interpolant, is given by considering the
mean-square (MS) continuity and differentiability of GPs. It can be shown that the first ζ
MS derivatives of a GP are MS continuous (the GP is said to be ζ-times MS differentiable) if
and only if the first 2ζ derivatives of the covariance function are continuous at the diagonal
point x1 = x2 = x∗. For a stationary GP this condition reduces to checking the 2ζ derivatives
of k(~τ) at ~τ = ~0, and for an isotropic GP checking the 2ζ derivatives of k(τ) at τ = 0.

It is the smoothness properties of the covariance function at the origin that determine
the differentiability of the GP. In the following subsections, we consider two aspects that
enter the definition of the covariance function:

1. specifying the distance metric in parameter space gab;

2. specifying the functional form of the covariance with distance k(τ),

These cannot be completely separated; there exists an arbitrary scaling, α of the distance τ →
ατ which can be absorbed into the definition of the covariance, k(τ) → k(τ/α). However,
provided the steps are tackled in order, there is no ambiguity.

3We have yet to define a metric on parameter space with which to take the norm of this vector (see
Sec. 11.2.2), but all that is required here is that a suitably smooth metric exists.
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11.2.1 The metric gab

One simple way to define a distance τ between two points in parameter space, and the way
used in the SE covariance function in Eq. (130), is to define τ 2 = gab(x1 − x2)a(x1 − x2)b,
where gab are constant hyperparameters. This distance is obviously invariant under a simul-
taneous translation of x1 → x1 +∆ and x2 → x2 +∆; therefore, this defines a stationary GP.
For a D-dimensional parameter space, this involves specifying D(D+ 1)/2 hyperparameters
gab.

More complicated distance metrics (with a larger number of hyperparameters) are possi-
ble if the condition of stationarity is relaxed, i.e. gab → gab(x). Given a family of stationary
covariance functions, a non-stationary generalisation can be constructed. A stationary co-
variance function can be considered as a kernel function centred at x1; k(x1,x2) ≡ kx1(x2).
Allowing a different kernel function to be defined at each point x1, a new, non-stationary
covariance function is k(x1,x2) =

∫
d~u k~u( ~λ1)k~u(x2).4 Applying this procedure to a D-

dimensional SE function generates a non-stationary analogue

k(xi,xj) = σf
∣∣Gi
∣∣1/4 ∣∣Gj

∣∣1/4
∣∣∣∣
Gi + Gj

2

∣∣∣∣
−1/2

× exp

(
−1

2
Qij

)
, (139)

where

Qij = (xi − xj)
a(xi − xj)

b

(
Giab + Gjab

2

)−1

, (140)

and Giab = inv[gab(xi)] is the inverse of the parameter-space metric at position xi. Provided
that the metric gab(x) is smoothly parameterised this non-stationary SE function retains the
smoothness properties discussed earlier.

The generalisation in Eq. (139) involves the inclusion of a large set of additional hyper-
parameters to characterise how the metric changes over parameter space; for example one
possible parameterisation would be the Taylor series

gab(x) = gab(x0) + (xc − xc0)
∂gab(x)

∂λc

∣∣∣∣
x=x0

+ . . . (141)

with the hyperparameters gab(x0), ∂gab(x)/∂λc, and so on. The inclusion of even a single
extra hyperparameter can incur a significant Occam penalty which pushes the training set
to favour a simpler choice of covariance function. For this reason most applications use
stationary GPs.

An alternative to considering non-stationary metrics is instead to try and find new coordi-
nates λ̃ ≡ λ̃(x) such that the metric in these coordinates becomes (approximately) stationary.
Such transformations are very problem specific and finding them typically requires expert
knowledge of the context of the application.

4To see that k is a valid covariance function consider an arbitrary series of points {xi}, and the sum over
training set points I =

∑
i,j aiajk(xi,xj); for k to be a valid covariance it is both necessary and sufficient

that I ≥ 0. Using the definition of k gives I =
∫

d~u
∑

i,j aiajk~u(~λi)k~u(xj) =
∫

d~u (
∑

i aik~u(~λi))
2 ≥ 0.
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Figure 47: Plots of the different generalisations of the SE covariance function discussed in
Sec. 11.2.2. The left-hand panel shows the PLE function, the centre panel shows the Cauchy
function, and the right-hand panel shows the Matérn function; in all cases the value of σf was
fixed to unity. In each panel the effect of varying the additional hyperparameter is shown by
the three curves. For the PLE covariance the case η = 2 recovers the SE covariance, while
for the Cauchy and Matérn covariances the case η →∞ recovers the SE covariance.

11.2.2 The functional form of k(τ)

The second stage of specifying the covariance function involves choosing the function of
distance k(τ). In general whether a particular function k(τ) is positive definite (and hence
is a valid covariance function) depends on the dimensionality D of the underlying space (i.e.
x ∈ RD); however, all the functions considered in this section are valid for all D. Several
choices for k(τ) are particularly common in the literature, these include the SE covariance
function (which has already been introduced), given by

kSE(τ) = σ2
f exp

(
−1

2
τ 2

)
. (142)

The power-law exponential (PLE) covariance function, given by

kPLE(τ) = σ2
f exp

(
−1

2
τ η
)
, (143)

where 0 < η ≤ 2. The PLE reduces to the SE in the case η = 2. The Cauchy function, given
by

kCauchy(τ) =
σ2
f

(1 + τ 2/2η)η
, (144)

where η > 0. This recovers the SE function in the limit η → ∞. And finally, the Matérn
covariance function, given by

kMat(τ) =
σ2
f2

1−η

Γ(η)

(√
2η τ

)η
Kη

(√
2η τ

)
, (145)

where η > 1/2, and Kη is the modified Bessel function of the second kind [?]. In the limit
η →∞, the Matérn covariance function also tends to the SE.

Fig. 47 shows the functional forms of the covariance functions. They have similar shapes;
they return a finite covariance at zero distance which decreases monotonically, and tends
to zero as the distance becomes large. In the case of regression this indicates that the
values of the field at two nearby points in parameter space are closely related, whereas the
values at two well separated points are nearly independent. The PLE, Cauchy and Matérn
function can all be viewed as attempts to generalise the SE with the inclusion of one extra
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hyperparameter η, to allow for more flexible GP modelling. All three alternative functions
are able to recover the SE in some limiting case, but the Matérn is the most flexible of
the three. This can be seen from the discussion of the MS differentiability of GPs given in
section 11.3.

The SE covariance function is infinitely differentiable at τ = 0, and so the corresponding
GP is infinitely MS differentiable. The PLE function is infinitely differentiable at τ = 0
for the SE case when η = 2, but for all other cases it is not at all MS differentiable. In
contrast, the Cauchy function is infinitely differentiable at τ = 0 for all choices of the
hyperparameter η. The Matérn function, by contrast, has a variable level of differentiability
at τ = 0, controlled via the hyperparameter η. The GP corresponding to the Matérn
covariance function in Eq. (145) is ζ-times MS differentiable if and only if η > ζ. This
ability to modify the differentiability allows the same covariance function to successfully
model a wide variety of data. In the process of maximising the hyperlikelihood for the
training set over hyperparameter η, the GP learns the (non)smoothness properties favoured
by the data, and the the GPR returns a correspondingly (non)smooth function.

11.2.3 Compact support and sparseness

All of the covariance functions considered up until this point have been strictly positive;

k(τ) > 0 ∀τ ∈ [0,∞) . (146)

When evaluating the covariance matrix for the training set Kij this leads to a matrix where
all entries are positive definite; i.e. a dense matrix. When performing the GPR it is necessary
to maximise the hyperlikelihood for the training set with respect to the hyperparameters.
This process involves inverting the dense matrix Kij at each iteration of the optimisation
algorithm. Although this procedure is carried out offline, it still can become prohibitive for
large training sets. A related problem, as pointed out in Sec. ?? is that for large training
sets the determinant of the covariance matrix is typically small which also contributes to
making the covariance matrix hard to invert.

One potential way around these issues is to consider a covariance function with compact
support,

k(τ) > 0 τ ∈ [0, T ] ,

k(τ) = 0 ∀τ ∈ (T,∞) ,
(147)

where T is some threshold distance beyond which we assume that the waveform differences
become uncorrelated. This leads to a sparse, band-diagonal covariance matrix, which is much
easier to invert. Care must be taken when specifying the covariance function to ensure that
the function is positive definite (which is required of a GP): if the SE covariance function is
truncated, then the matrix formed from the new covariance function is not guaranteed to be
positive definite.

Nevertheless, it is possible to construct covariance functions which have the requisite
properties and satisfy the compact support condition in Eq. (147). These are typically based
on polynomials. We consider a series of polynomials, originally proposed by Wendland.
These have the property that they are positive definite in RD and are 2q-time differentiable
at the origin. Therefore the discrete parameter q is in some sense analogous to the η hyper-
parameter of the Matérn covariance function in that it controls the smoothness of the GP.
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Figure 48: Plots of the first few Wendland polynomial covariance functions. All these func-
tions have compact support, k(τ) = 0 for τ > 1. As the value of q increases the functions
become smoother near the origin.

Defining β to be

β =

⌊
D

2

⌋
+ q + 1 (148)

and where Θ(x) denotes the Heaviside step function, the first few Wendland polynomials
kD, q(τ) are given by,

kD, 0(τ) = σ2
fΘ(1− τ)(1− τ)β , (149)

kD, 1(τ) = σ2
fΘ(1− τ)(1− τ)β+1 [1 + (β + 1) τ ] , (150)

kD, 2(τ) =
σ2
f

3
Θ(1− τ)(1− τ)β+2 [ 3 + (3β + 6) τ

+
(
β2 + 4β + 3

)
τ 2
]
, (151)

kD, 3(τ) =
σ2
f

15
Θ(1− τ)(1− τ)β+3

[
15 + (15β + 45) τ

+
(
6β2 + 36β + 45

)
τ 2

+
(
β3 + 9β2 + 23β + 15

)
τ 3
]
. (152)

The first few Wendland polynomials are plotted in Fig. 48. Other types of covariance
functions with compact support have also been proposed and explored in the literature, but
we do not consider them here.

11.3 Continuity and differentiability of GPs

Before moving on to some examples, we give proofs concerning the continuity and differen-
tiability of GPs. Let x1,x2,x3 . . . be a sequence of points in parameter space which converges
to a point x∗, in the sense lim`→∞ |x` − x∗| = 0. The GP Y (x) is said to be MS continuous
at x∗ if

lim
`→∞

E [(Y (x`)− Y (x∗)|Y (x`)− Y (x∗))] = 0 , (153)

where E[. . .] denotes the expectation of the enclosed quantity over realisations of the GP.
MS continuity implies continuity in the mean,

lim
`→∞

E [Y (x`)− Y (x∗)] = 0 . (154)
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This follows from considering the variance of the quantity Y (x`)− Y (x∗), and the fact that
variance is non-negative. There are other notions of continuity of GPs used in the literature,
but the notion of MS continuity relates most easily to the covariance.

The mean and the covariance of a GP are defined as

m(x) = E[Y (x)] , (155)

k(x1,x2) = E[(Y (x1)−m(x1)|Y (x2)−m(x2))] .

Using these, Eq. (153) can be written as

lim
`→∞
{k(x∗,x∗)− 2k(x`,x∗) + k(x`,x`)

+ (m(x∗)−m(x`)|m(x∗)−m(x`))} = 0 , (156)

and using the continuity of the mean in Eq. (154) gives

lim
`→∞

[k(x∗,x∗)− 2k(x`,x∗) + k(x`,x`)] = 0 . (157)

This condition is satisfied if the covariance function is continuous at the point x1 = x2 = x∗.
Therefore, we arrive at the result that if the covariance function is continuous in the usual
sense at some point x∗, then the corresponding GP is MS continuous at this point.5 In the
special case of stationary covariance this reduces to checking continuity of k(~τ) at ~τ = 0,
and in the special case of isotropic covariance, continuity of k(τ) at τ = 0.

We now move on from continuity to consider differentiability. In the spirit of Eq. (153),
the notion of taking the MS derivative of a GP is defined as

∂Y (x)

∂xa
= l.i.m

ε→0
Xa(x, ε) , (158)

where l.i.m is read limit in MS and

Xa(x, ε) =
Y (x + ε êa)− Y (x)

ε
(159)

with parameter-space unit vector êa. This definition can be extended to higher-order deriva-
tives in the obvious way.

The MS derivative of a GP is also a GP; this follows simply from the fact that the sum
of Gaussians is also distributed as a Gaussian. The covariance of Xa(x, ε) is given by

Kε(x1,x2) = E [(Xa(x1, ε)− Ξ(x1, ε)|
Xa(x2, ε)− Ξ(x2, ε))] (160)

where Ξa(x, ε) = E[Xa(x, ε)]. It then follows that

Kε(x1,x2) =
k(x1 + ε,x2 + ε)− k(x1,x2 + ε)

ε2

+
k(x1 + ε,x2)− k(x1,x2)

ε2
. (161)

5A GP is continuous in MS if and only if the covariance function is continuous, although this is not proved
here.
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Substituting this into Eq. (158), the limit in MS becomes a normal limit, and the result is
obtained that the MS derivative of a MS continuous GP with covariance function k(x1,x2)
is a GP with covariance function ∂2k(x1,x2)/∂xa1∂xa2. In general the covariance function of
the ζ-times MS differentiated GP

∂ζY (x)

∂xa1∂xa2 . . . ∂xaζ
, (162)

is given by the 2ζ-times differentiated covariance function

∂2ζk(x1,x2)

∂xa11 ∂xa12 ∂xa21 ∂xa22 . . . ∂x
aζ
1 ∂x

aζ
2

. (163)

From the above results relating the MS continuity of GPs to the continuity of the covari-
ance function at x1 = x2 = x∗, it follows that the ζ-times MS derivative of the GP is MS
continuous (the GP is said to be ζ-times MS differentiable) if the 2ζ-times derivative of the
covariance function is continuous at x1 = x2 = x∗. So it is the smoothness properties of the
covariance function along the diagonal points that determine the differentiability of the GP.6

11.4 Example applications of Gaussian processes

Example: interpolation of a quadratic We consider first a toy problem in which we
generate noisy measurements, {yi}, at 200 points, {xi}, randomly chosen in the interval
[0, 1] according to

yi = −2− 3xi + 5x2
i + εi, εi ∼ N(0, 0.152).

We then fit a Gaussian process to a training set comprising a subset of these points. We
use a squared exponential covariance function and optimize the hyperparameters over the
training set. The results of this procedure are shown in Figure 49. Results are represented
by the expectation value and 1σ uncertainty computed from the fitted Gaussian process as a
function of x. We see that the Gaussian process is well able to recover the true function, even
with as a few as ten training points. This is a particularly simple function and if we knew
that the relationship was quadratic there would be no need to use a Gaussian process to fit
the data. In Figure 50 we show the result of fitting a quadratic model to the same data. As
expected, the fit is slightly better, but not hugely so. The advantage of the Gaussian process
approach is that you do not need to know the form of the model in advance, and avoid the
problem of model mis-specification. In Figure ?? we show the result of fitting a linear model
to the same data. We see that we end up with a very precise, but wrong, representation
of the curve. Gaussian process regression models have greater flexibility and should always
converge to the true underlying function in the limit that the number of observations tends
to infinity.

Example: waveform model errors We will now consider a few examples from the
gravitational wave literature. There are many of these that have all appeared since ∼
2015, so we cannot describe them all but we will mention a few different examples. The
first application of Gaussian processes in a gravitational wave context was to characterise
uncertainties coming from waveform model errors (Moore & Gair (2014)). A Gaussian
process was used to model the error in a particular waveform model family over parameter

6It can be further shown that if a covariance function k(x1,x2) is continuous at every diagonal point
x1 = x2 then it is everywhere continuous.
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Figure 49: Gaussian process fit to noisy measurements of a quadratic, for different sizes of
training set, as stated in the title of each panel.
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Figure 50: As Figure 49, but now fitting a quadratic linear model to the same data.
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Figure 51: As Figure 49, but now fitting a linear model to the same data.
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Figure 52: Comparison between uncorrected, corrected and “true” likelihood for inference
with waveform models that include model error. The corrected likelihood uses a Gaus-
sian process to model the waveform error and then marginalises this out of the likelihood.
Reproduced from Moore et al. (2015).

space. Using a training set based on model errors estimated as the difference between
two different approximate waveforms, a Gaussian process model for the waveform error
was produced. As this distribution is Gaussian and so is the normal gravitational wave
likelihood, the waveform error can then be marginalised out of the likelihood to give an
alternative marginalised likelihood for use in parameter estimation. This marginalised
likelihood took the form

L(~λ) ∝ 1√
1 + σ2(~λ)

exp


−1

2

∥∥∥s−H(~λ) + µ(~λ)
∥∥∥

2

1 + σ2(~λ)


 . (164)

In this ~λ is the vector of parameters characterising the gravitational wave signal, the quantity
µ(~λ) is the Gaussian process estimate for the model error, and shifts the distribution to

eliminate the error, and σ2(~λ) is the variance in the Gaussian process, which widens the
posterior to account for the uncertainty in the model error. Use of this marginalised likelihood
corrects for biases in parameter estimation, as illustrated in Figure 52.

Example: waveform interpolation In Williams et al. (2020), Gaussian processes were
used to directly model the gravitational waveform, rather than its error. A set of numerical
relativity waveforms were used to create a training set to which a Gaussian process model
was fitted. In Figure 53 we show some random draws from the GP model at a certain point in
parameter space and compare these to two different waveform approximants evaluated at the
same point. We see that the GP uncertainty band includes all of the different approximants
and so automatically factors in waveform uncertainty.

Example: population inference In Taylor & Gerosa (2018), a Gaussian process was
used as a means to interpolate the output of binary population synthesis code over the
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FIG. 2. GPR predictions, compared to NR. One hundred draws from the Gaussian process (left panel) for a non-
spinning configuration (~s1 = (0, 0, 0), ~s2 = (0, 0, 0), ~q = 0.625) with a total mass of 60-solar masses, shown as light grey
lines compared to a single analytical approximant model, IMRPhenomPv2 in blue. The mean draw from the Gaussian process
is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding the mean. In the
right panel the distribution of mismatches between the samples and both phenomenological waveforms are shown, with the
vertical lines representing the mismatch between the GPR and the phenomenological waveform. The di↵erences between the
phenomenological model and the GPR model waveforms are seen to also exist between the phenomenological model waveforms
and the NR-derived waveform, plotted here in pink.

FIG. 3. Non-spinning waveform. One hundred draws from the Gaussian process (left panel) for a non-spinning, equal-mass
configuration (~s1 = (0, 0, 0), ~s2 = (0, 0, 0), ~q = 1.0) with a total mass of 60-solar masses, shown as light grey lines compared
to two analytical approximant models, SEOBNRv4 and IMRPhenomPv2 in red and blue respectively. The mean draw from the
Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding
the mean. In the right panel the distribution of mismatches between the samples and both phenomenological waveforms are
shown, with the vertical lines representing the mismatch between the GPR and the phenomenological waveform.

able, and in principal can facilitate accurate inference
on detected signals. However, the expense of produc-
ing them limits their coverage of the parameter space;
as a result of this lack of coverage, and the considerable
time requirements to produce new waveforms, any infer-
ence method which relied solely on NR techniques could
not hope to satisfy the requirement to rapidly charac-
terise signals, and would not be practical in a scenario
where multiple events are detected every month. Phe-
nomenological models, which can be evaluated rapidly,
are available, which attempt to interpolate across a large
volume of the parameter space, but the accuracy of the
waveforms which they produce can be di�cult to assess.

Ths leads to the possibility of introducing biases into the
inferred properties of the system which generated the sig-
nal.

In this paper we have laid-out an approach to improv-
ing the accuracy of gravitational wave parameter estima-
tion in the context of limited template availability by im-
plementing a waveform approximant model using GPR,
providing not only a point-estimate of the waveform at
any point in the BBH parameter space, but also a distri-
bution of plausible waveforms, allowing the uncertainty
of the interpolation to be taken into account during the
analysis. In contrast to previous attemptes to produce a
GPR model for GW waveforms, such as [7], our model

Figure 53: Comparison of several approximate waveform models to random draws from a
Gaussian process interpolant trained on numerical relativity simulations. Reproduced from
Williams et al. (2020).

space of physical parameters that characterise them. The resulting model, continuous over
parameter space, was then used to infer properties of the underlying astrophysical population
based on a set of observed compact binary inspirals. Figure ?? shows simulated inferred
posteriors on the population parameters that were produced in this way.

Example: equation of state uncertainties Landry & Essick (2019) and Essick,
Landry & Holz (2019) used a Gaussian process to model the equation of state of a neutron
star, p(ρ). The hyperparameters of the Gaussian process were constrained using a training
set including numerical equation of state simulations. The resulting model generates random
equations of state which can be used to marginalise equation of state uncertainties out of
inference on gravitational wave signals from binary neutron stars. Figure 55 shows a set of
random draws of the equation of state from the Gaussian process.

11.5 Dirichlet Processes

Recall that a Dirichlet distribution generates a set of K random values, {xi}, constrained to
take values with 0 ≤ xi ≤ 1 for all i and

∑
xi = 1. The distribution depends on a vector of

parameters ~α = (α1, . . . , αK) and has pdf

p(~x) =
1

B(~α)

K∏

i=1

xαi−1
i , B(~α) =

∏K
i=1 Γ(αi)

Γ
(∑K

j=1 αj

) .

A realisation of a Dirichlet distribution is a probability mass function for a discrete distribu-
tion with K possible outcomes. A Dirichlet process generalises the Dirichlet distribution
to infinite dimensions and a realisation of a Dirichlet process is a continuous probability
distribution. A Dirichlet process is characterised by a base distribution, P , and a con-
centration parameter, a. The base distribution is a probability measure on a set S. The
process X is a Dirichlet process, denoted X ∼DP(P, a) if for any measurable finite partition
of the set S, {Bi}ni=1, the probability distribution on this partition generated by X is

(X(B1), X(B2), . . . , X(Bn)) ∼ Dir(aP (B1), aP (B2), . . . , aP (Bn)). (165)

In the limit a → 0, the Dirichlet pdf, which is proportional to xαi−1
i , places a logarithmi-

cally increasing weight towards the lower boundary of the variable range. Draws from this
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FIG. 6. Testing the accuracy of our GP emulator for the model of Eq. (33). In the left panel we create training data on an
evenly-spaced 8⇥8 grid in log10 �1,2 space (red points). We achieve a data compression factor of ⇠ 500, then train a GP in each
of the reduced basis features. The GP prediction is compared to the analytic result across �1,2 space by taking the GP-mean
(o↵set by 1 �), rotating back to the full z1,2 basis, then finding the maximum di↵erence from the analytic value in any z1,2 bin.
Low accuracy locations are used to inform the positions at which new simulations are performed. These additional points are
shown in the right panel as empty circles, where we see that their addition improves accuracy across the entire hyper-parameter
space.
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FIG. 7. Comparison of posterior recoveries of population
hyper-parameters from a catalog of 100 sources with spin-
alignment distribution given by Eq. (33) [82]. The true hyper-
parameter coordinate, {�1 = 0.45,�2 = 0.45} is indicated via
intersecting white dashed lines.

will always be positive. We can now predict the distri-
bution values in compressed parameter space, and rotate
this back into the full parameter space to construct the
final predictions.

Figure 6 shows validation studies for di↵erent num-
bers of initial training data. For an evenly-spaced grid of
8 ⇥ 8 = 64 training datasets in hyper-parameter space,
we achieve an accuracy of better than ⇠ 50% across the
majority of the space. The worst performance occurs in
parts of hyper-parameter space that are voids of simula-
tions. We find the 36 worst accuracy locations, and add
these as additional simulations to improve accuracy to
better than 10%. Similar accuracy is given by an Latin-
hypercube design of 100 training datasets.

We now test our framework on a simulated popula-
tion, consisting of 100 sources drawn from p(z1, z2) with
� = {�1 = 0.45,�2 = 0.45}. A comparison of the joint
posterior probability distribution of {�1,�2} as recovered
by the analytic model [Eq. (33)] and the GP framework
is shown in Fig. 7. The GP framework is trained on 100
simulations from a Latin-hypercube design; we use this
design because it is our standard approach for e�ciently
sampling the high-dimensional hyper-parameter space of
binary stellar evolution, and it gives similar emulation ac-
curacy to the adaptive design in the right panel of Fig. 6.
In this analysis, we have propagated all uncertainties
from the GP prediction and the hyper-parameters of the
trained GP covariance function into the final model. The
agreement is excellent, with the true hyper-parameter co-
ordinate lying well within the 68% credible region of both
techniques. We have not incorporated the e↵ect of indi-
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FIG. 8. Posterior probability distribution of progenitor metal-
licity Z, as inferred by an analysis of the current BH catalog
in Table I using a model for the chirp mass distribution that
is conditioned on simulations from [25]. Dashed vertical lines
marks the 68% and 90% confidence intervals.

was trained (including some sharp features), namely that
the distribution of chirp masses shifts to smaller values
as the progenitor metallicity is increased. Physically, this
is because stellar winds are weaker in stars with lower
metallicity, that thus tend to form heavier BHs like the
ones detected by Advanced LIGO [25, 34–36]. The events
of the current binary BH catalog are shown as vertical
bands corresponding to the 90% credible region of chirp
mass.

C. BSE Population Synthesis

To further showcase the e↵ectiveness of our statistical
framework, we now consider a more elaborate set of input
data. We perform a dedicated program of population-
synthesis simulations to predict properties of BH binaries
from isolated binary stars.

We use a modified version of the public population syn-
thesis code BSE [18, 90]. The modifications implemented
here are the same described in Refs. [36, 91]: wind mass
loss prescriptions according to Ref. [92] and core-collapse
remnant mass relationship following Ref. [20]. These
minimal updates are necessary to generate any BHs of
masses & 10M� like the ones that are now detected,
and thus to attempt a comparison with the Advanced-
LIGO–Advanced-Virgo data. We stress, however, that
this study is not meant to rival with the full complex-
ity of state-of-the-art binary evolution codes, but rather
highlight the potential of our inference pipeline.
BSE requires us to specify distributions of binary stars

on their zero-age main sequence (ZAMS), and a variety
of flags encoding assumptions of the underlying stellar
physics. We distribute primary masses m1 from an ini-
tial mass function p(m1) / m�2.3

1 in [5, 100]M�; mass
ratios q = m2/m1 uniformly in [0, 1]; initial separations

R uniformly in log10 in [10, 105]R�; eccentricities e from
a thermal distribution p(e) / e; and redshifts z uniformly
in comoving volume using the Plank cosmology [93] (c.f.
Ref. [29] for similar choices).

The evolutionary flags are the quantities that should be
treated as hyper-parameters, and that could potentially
be constrained with current and future catalogs of GW
events. For simplicity, we present results considering a
3-dimensional hyper-parameter space, but our method is
fully generalizable and scalable to higher dimensions. We
fix all flags to their default value in BSE, except for the
following three:

1. Metallicity of the ZAMS star: Z. As already
highlighted above, the progenitor metallicity has a
large impact on the properties of the resulting BHs.
Metallicity strongly a↵ects massive star winds and
thus the mass that remains available to form the
final compact object [22, 24, 92, 94–97]. Here we
consider a metallicity range 0.0001  Z  0.03
where Z� = 0.02 [18].

2. Kicks imparted to BHs at formation: �k. As
stars collapse (perhaps exploding into supernovae),
asymmetries in the emitted material and neutri-
nos may impart a recoil to the newly formed com-
pact object (e.g. Ref. [98]). Observations of galactic
pulsar proper motions suggest that NS recoils are
well modeled by a single Maxwellian distribution
with 1D root-mean-square �k ⇠ 265 km/s [99, 100].
Whether BHs receive any kick at formation is still
a matter of debate. On the one hand, X-ray binary
measurements hint at large kick velocities [101] (c.f.
also Ref. [102] for a GW constraint). Conversely,
theoretical arguments and simulations suggest that
kicks for BHs might be suppressed because of ma-
terial falling back after the explosion [98, 103, 104].
This is a clear case where a method like ours, al-
lowing for a direct estimate of �k, might show its
potential. We consider BH recoils in the range
0 km/s  �k  265 km/s independently of BH mass
or other parameters (see Ref. [40] for a discussion
of this point).

3. E�ciency of the common envelope: ↵ce. After the
first star collapses, the binary system consists of a
BH and an extended star. As this second star ex-
pands into a supergiant, it may overflow its Roche
Lobe and undergo unstable mass transfer to the
BH [105–108]. The envelope of the giant engulfs
the companion BH. In this process, known as the
common-envelope stage, a fraction ↵ce of the bi-
nary’s orbital energy is transferred to the enve-
lope, thus hardening the binary. In the standard
evolutionary channel considered here, common en-
velope evolution is the key stage to produce BHs
able to merge within a Hubble time. The details
of the common envelope phase are still very uncer-
tain [109–112], and are arguably one of the most

Figure 54: Posteriors on physical parameters of the astrophysical source population inferred
form simulated observations of binaries. Inference relied on a Gaussian process model that
interpolated the output of the population synthesis codes over the astrophysical parameter
space. Reproduced from Taylor & Gerosa (2018).

distribution will therefore be singletons, with all xi’s bar one equal to zero. For small a the
Dirichlet distribution will therefore tend to be discretized, with probability concentrated at
a small number of locations.

In the limit a→∞, the distribution becomes more and more concentrated at its mode,
which is at xi = P (Bi). Every realisation of Dir(aP (B1), aP (B2), . . . , aP (Bn)) therefore
returns (P (B1), . . . , P (Bn)) and every realisation of the Dirichlet process thus gives the base
distribution.

These limits show that the Dirichlet process generates discretized representations of the
base distribution, with the level of discretization decreasing as a → ∞. To illustrate this,
we show in Figure 56 and 57 some realisations of a Dirichlet process, for a fixed base distri-
bution, P = N(0, 1), and various choices of a. In each figure, we represent the realisation
of the Dirichlet process by a set of 1000 random draws from the realised probability distri-
bution. It is clear that for small a, only a small number of values are returned, showing
high discretisation, but as a increases the number of distinct values is increasing and the
distribution becomes a closer and closer approximation to the base distribution.

11.5.1 Sampling Dirichlet processes

A realisation of a Dirichlet process is a probability distribution on S and hence infinite
dimensional. Drawing such a realisation is therefore very difficult. However, in practice
what we need is not the realisation of the Dirichlet process itself but a set of samples from
that realised distribution, which is much easier to obtain. If the full realisation is required,
this can be evaluated by looking at the distribution of a large number of samples. This is
how the realisations shown in Figures 56 and 57 were produced.

There are several different algorithms for drawing samples from a random realisation of
a Dirichlet process, X ∼DP(P, a). The chinese restaurant process generates a sequence
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FIG. 1. Example synthetic EOSs drawn from our (left) agnostic and (right) informed nonparametric priors, constructed
as mixture models with equal prior odds for hadronic, hyperonic, and quark compositions. Draws from the prior are colored
according to the maximum nonrotating NS mass they support: blue for Mmax � 1.93 M�, and black otherwise. Candidate
EOSs from the literature, used as input for our GPs, are shown in red (see Table VII). Vertical lines indicate once, twice and
six times nuclear saturation density.
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where ⇤(↵) is the mass-tidal deformability relation implicitly defined by "(↵). It is worth noting that several sets of
samples are publicly accessible. Our specific choice is not expected to significantly a↵ect our conclusions, although
our precise quantitative results will depend on issues like waveform systematics discussed in Ref. [41]. Drawing "(↵)

from our prior and associating this marginal likelihood with each sample generates the posterior process. This also
allows us to immediately estimate the evidence for each prior, up to a common normalization constant:

P (d|{"}A, H) ⇡ 1

N↵

N↵X

↵

1

Ni

NiX

i

L
⇣
data

���M (i)
1 , M

(i)
2 ,⇤(↵)(M

(i)
1 ),⇤(↵)(M

(i)
2 )
⌘ ����

M
(i)
1 , M

(i)
2 ⇠ P (M1, M2|H)

"(↵) ⇠ P ("|{"}A)
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where we draw Ni mass realizations for each of the N↵

EOS realizations. Within this Monte-Carlo algorithm,
we optimize our KDE model for L(d| · · · ) by selecting
bandwidths that maximize a cross-validation likelihood
based on the public samples (see Appendix B).

The overarching composition-marginalized priors are
constructed hierarchically, assuming equal prior odds for

each composition, which is to say

P (data|X) =

1

3

⇥
P (data|X; Hadronic)

+ P (data|X; Hyperonic)

+ P (data|X; Quark)
⇤

(15)

for informed and agnostic priors processes separately. In

Figure 55: Random draws from a Gaussian process model of the equation of state of a
neutron star. Reproduced from Essick et al. (2019).
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Figure 56: Sample realisations of a Dirichlet process, X ∼DP(N(0, 1), a), for a = 1 (top
row), a = 10 (middle row) and a = 100 (bottom row). In each figure we show 1000 samples
from the given realisation of the Dirichlet process. Within each row, the figures show three
distinct realisations of the stated Dirichlet process.
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Figure 57: As in Figure 56, these figures show sample realisations of a Dirichlet process,
X ∼DP(N(0, 1), a), for a = 1000 (top row) and a = 10000 (bottom row). In each figure we
show 1000 samples from the given realisation of the Dirichlet process. Within each row, the
figures show three distinct realisations of the stated Dirichlet process.
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of samples {xi} for i ≥ 1 as follows

• with probability a/(a+ i− 1) draw xi from P;

• with probability nx/(a+ i− 1) set xi = x, where nx is the number of previous obser-
vations of xj = x for j < i.

This procedure is called the chinese restaurant process by analogy with a restaurant with an
infinite number of tables, each serving a different dish, and each with infinite seating capacity.
A new diner may choose to sit at a new table, or may choose to sit at a table where people
are already eating. The probability of choosing a particular table is proportional to the
number of people observed already sitting at that table and enjoying the offered dish.

Closely related to this is the Polya Urn scheme. In that construction we start with an
urn containing a black balls. At each step of the algorithm, a ball is drawn at random from
the urn. If the ball is black, we generate a new color randomly, color a new ball this color
and return it to the urn along with the black ball. The corresponding sample is the new
color. If the ball drawn is coloured, then we take a new ball, color it the same color as the
sampled ball, and return both of them to the urn. The corresponding sample is the color
of the ball that was drawn. It is clear that the distribution of colors produced in this way
corresponds to the samples generated form the chinese restaurant process.

A final approach to constructing a sample from a random realisation of a Dirichlet process
is the stick breaking construction. This approach explicitly generates a discrete distribu-
tion, X, which is a realisation of the Dirichlet process. The distribution is given by

X =

(
LH∑

l=1

plδUl

)
+

(
1−

LH∑

l=1

pl

)
δU0

p1 = V1, pl =

(
l−1∏

j=1

(1− Vj)
)
Vl, l ≥ 2, p0 = 1−

LH∑

l=1

pl

Vl ∼ Beta(1, a), l = 1, . . . , LH , Ul ∼ P, l = 0, 1, . . . , LH , (166)

where we take the limit LH → ∞, but in practical applications the procedure is truncated
at some finite, but sufficiently large, value.

11.5.2 Example applications

The main application of Dirichlet processes is in the field of Bayesian nonparametrics, where
they are used as a prior for unknown probability distributions. We will provide two examples.

Example: B-spline regression In the nonparametric regression chapter we encoun-
tered the notion of smoothing splines for regression. In that context, the knots of the spline
were fixed at the locations of the observed data points. The number of knots is therefore
fixed for any given data set and grows as n→∞. The smoothing was controlled by the regu-
larisation parameter. Another approach to nonparametric regression is to allow the number
of spline points to vary and let the data choose the optimal number. Even greater flexibility
comes from allowing the locations of the spline knots to vary. In Edwards & Gair (2020) they
presented a Bayesian nonparametric regression algorithm that uses B-splines (an alternative
basis for cubic splines than the one presented in this course), but with the number and
location of the knots both allowed to vary and adapt to the data. The knot locations were
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6 Matthew C. Edwards, Jonathan R. Gair

The freespline algorithm outperforms the
LEX algorithm in terms of average MSE for both
test functions here. Upon visual inspection, we find

exactly why this is the case. We see in Figure 4
that the LEX model manages to pick up the first lo-
cal extremum (minimum), which is large, but fails

to pick up the secondary local extremum (maxi-
mum), which is small. We also see in Figure 5 that
the LEX algorithm cannot handle sharp and abrupt

extrema.
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Fig. 4: One comparison of methods for the ExpSum
example.
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Fig. 5: One comparison of methods for the
Triangle example.

We have demonstrated that freespline out-
performs LEX when one extremum is small

(ExpSum), or when we have a sharp, and abrupt
extremum (Triangle). Additional benefits of
freespline is that it is publicly available on CRAN,

it provides credible regions which give a level of un-
certainty around the fitted curve, and that it can

handle more than two local extrema, which will be
demonstrated explicitly in the following sections.

3.2 Simulation Study

In this section, we run a comprehensive simulation

study, using the following three test functions from
DiMatteo et al. (2001):

1. The true function is a natural spline on [0, 1]

with internal knots (0.2, 0.6, 0.7) and coe�-
cients � = (20, 4, 6, 11, 6). Zero-mean Normal
noise with standard deviation � = 0.9 is added

to this curve.
2. The true function is f(x) = sin(x) +

2 exp(�30x2) for x 2 [�2, 2]. Zero-mean Nor-
mal noise with standard deviation � = 0.3 is

added to this curve.
3. The true function is a natural spline on [0, 1]

with internal knots (0.4, 0.4, 0.4, 0.4, 0.7) and

coe�cients � = (2,�5, 5, 2,�3,�1, 2). Zero-
mean Normal noise with standard deviation
� = 0.55 is added to this curve.

We run the freespline algorithm on 1,000 dif-
ferent noise realizations for each test function, at
sample sizes of n = (27, 28, 29), computing average
MSE, estimated standard errors, mean run-time,

and uniform coverage probabilities.. An example
of each function can be seen in Figure 6.

Results are presented in Tables 2 and 3. We see

that as n increases, MSE and SE decrease for all
test functions. We also see that computing time
roughly increases linearly with n, and that the
mode number of B-splines stays reasonably con-

stant when changing n. Note that these test func-
tions all have a signal-to-noise ratio (SNR) of ⇠ 3,

where SNR = sd(signal)
sd(noise) . We also present results for

SNR equal to 1 and 10 in Appendix 2.

Table 2: Average MSE with estimated standard
errors in brackets.

n = 27 n = 28 n = 29

1 0.0747 (0.0353) 0.0361 (0.0164) 0.0188 (0.0080)
2 0.0097 (0.0045) 0.0048 (0.0020) 0.0025 (0.0010)
3 0.0280 (0.0154) 0.0147 (0.0078) 0.0082 (0.0051)

One benefit of the freespline algorithm is its
ability to compute credible regions from posterior

Figure 58: Nonparametric regression fit to noisy measurements of the function f(x) =
26 exp(−3.25x)−4 exp(−6.5x)+3 exp(−9.75x) using the freespline algorithm with a Dirichlet
process prior on the probability density determining the knot locations. Figure reproduced
from Edwards & Gair (2020).

represented by a random cumulative density function, H, defined on the interval [0, 1], with
the j’th of k − r internal knots located at xj = H(j/(k − r)). The random density H was
assigned a Dirichlet process prior. In Figure 58 we show the result of using this algorithm
to fit noisy measurements of a function

f(x) = 26 exp(−3.25x)− 4 exp(−6.5x) + 3 exp(−9.75x).

We see that the freespline algorithm is able to capture all of the turning points of this
function, while another widely used regression algorithm, lex, is not. In Figure 59 we show
another application of that algorithm to obtain a nonparametric fit to the power spectrum
of temperature fluctuations in the CMB measured by Planck. The nonparametric fit can
be compared to the best fit cosmological model prediction. There is some evidence that the
data does not support the up-tick at low multipoles predicted by the model. In fact, there
has been extensive debate in the literature about whether the l = 2, 3 multipoles are in fact
lower than predicted, and these results seem to support that. There is also weak evidence
that the data suggests the second and third peaks are further apart than the standard ΛCDM
model predicts. Observations of this nature (if they were to be robust in future data sets)
would help guide modifications to the model, and this would be much harder without the
nonparametric regression tool.

Example: LIGO sky localisation In Del Pozzo et al. (2018), a Dirichlet process
Gaussian mixture model (DPGMM) was used to produce a smooth interpolation of the
output of LALInference sampling. The aim was to produce a continuous representation of
the source localisation volume (sky location and distance), to target electromagnetic follow-
up. The Dirichlet process was used as a prior to generate the centres (in 3-dimensions)
of Gaussians. The sum of these Gaussians, with weights, was used as a representation
of the smooth posterior probability and then constrained by the set of posterior samples
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crowave background (CMB) at microwave and in-
frared frequencies, with the aim of testing the-
ories of the early Universe. The mission was a

great achievement, providing a clear picture of an
extremely simple Universe (Akrami et al., 2018;
Aghanim et al., 2018).

However, CMB observations have highlighted
some puzzles in modern cosmology, most notice-
ably the inconsistencies in the local rate of ex-

pansion of the Universe inferred indirectly from
the CMB relative to the value measured locally
using Type Ia Supernovae (Bernal et al., 2016;

Reiss et al., 2016; Akrami et al., 2018; Aghanim
et al., 2018). One explanation is that the standard
model of cosmology, the so-called Lambda Cold
Dark Matter (⇤CDM) model (which is paramet-

ric), does not tell the full story. ⇤CDM is the sim-
plest model that could describe the Universe on
large scales, but it has shown remarkable agree-

ment with all astronomical measurements until
very recently. Departures from ⇤CDM could arise
from modifications in the true theory of gravity
away from general relativity, the existence of new

fields or particles or di↵erences in the properties
of the dark matter and dark energy components of
the Universe. It is therefore natural to ask whether

the CMB data are supporting the standard model
of cosmology, or whether conclusions are being bi-
ased by using a parametric fit rather than a non-

parametric one.

One interesting output from the Planck mis-
sion was the CMB temperature (TT) power spec-

trum, which shows the amplitude of temperature
anisotropies in the CMB as a function of the an-
gular scale, labelled by multipole index, l (which
is inversely proportional to angular scale). Infor-

mation contained in this spectrum (peaks and
troughs) can be used to precisely estimate under-
lying cosmological parameters and therefore allow

us to make statements about the early Universe
(Akrami et al., 2018).

In this section we use the freespline method

to fit the CMB TT power spectrum1, and com-
pare this to the “best fit” model, based on the
⇤CMD model. ⇤CMD uses a parametric model
described in (Akrami et al., 2018; Aghanim et al.,

2018), essentially using Gaussians to model peaks
in the spectrum. We demonstrate the usefulness of

1 These data are publicly available at http://pla.

esac.esa.int/pla/#cosmology.

nonparametric models for these data, showing that
we can get mostly consistent results with minimal
specifications, thus allowing the data to “speak for

itself”. Our fit can be seen in Figure 8.
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Fig. 8: Fitting the Planck CMB TT power spec-

trum. The ⇤CMD model is plotted as the blue line
and our posterior median curve is plotted as the
red dots.

In Figure 8, we can see that the “best fit” model
(blue curve), based on the ⇤CDM, fits the Planck
data extremely well, except at low values of the

multipole moment, where we expect a small rise in
temperature fluctuation. Our estimated curve (red
dots) fits the data well, and follows the ⇤CDM

model nearly perfectly, except at low values of the
multipole moment, where there is an up-tick in the
fit predicted by ⇤CDM. At low multipoles the ob-

served spectrum is more uncertain because these
correspond to large angular scales and there are
therefore fewer independent samples on the sky
that can be used to measure them. Models pre-

dict that the spectrum should have an up-tick at
low multipoles, but we see that this up-tick is not
supported by the data. There has been some de-

bate about whether the lowest (l = 2, 3) multipoles
are in fact significantly lower than predicted by
⇤CDM (see for example Bielewicz et al. (2004)).
This could be due to foreground contamination.

The fact that we find no evidence for the up-tick
may be evidence in support of this, which fitting
the parametric model cannot reveal.

Our fitted curve supports the notion of six
peaks in the TT spectrum, but not seven as
reported by the Planck Collaboration (Akrami

et al., 2018; Aghanim et al., 2018). We also see
some slight evidence that the first and second

Figure 59: Nonparametric regression fit to the CMB temperature power spectrum, as mea-
sured by Planck. The dashed red line is the freespline fit to the data, while the blue line is
the prediction of the best fit cosmological model. Figure reproduced from Edwards & Gair
(2020).

previously generated by LALInference. In Figure 60 we show the result of this analysis,
the distribution of posterior credible volumes computed for a set of injections and using the
DPGMM to obtain the credible volumes. This is the only application of Dirichlet processes
in a gravitational wave context to date, but they are likely to be powerful tools for fitting
nonparametric population models as the number of observations becomes large enough to
make this possible.
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Figure 3. Cumulative fractions of events with localization vol-

umes smaller than the abscissa value. The top panel shows the

50% credible volume CV0.5, the middle shows the 90% credi-
ble volume CV0.9 and the bottom shows the searched volume V⇤.

The 68% confidence interval for the cumulative distribution is en-

closed by the shaded regions; this does not include the inherent
uncertainty in the volume estimates.

can be be used to find the most probable source galaxies
within a matter of minutes of the LALInference analy-
sis finishing, making it useful for prompt multimessenger
follow-up activities.

We constructed localization volumes for a catalogue
of BNS signals appropriate for the early operation of the

advanced-detector era (Singer et al. 2014; Berry et al. 2015;
Farr et al. 2016). We have verified that the three-dimensional
localizations are well calibrated (cf. Cook et al. 2006; Sidery
et al. 2014b) and have confirmed that when distance is
marginalised out, these volumes reduce to sky areas that
are consistent with two-dimensional KDE results. Our cred-
ible volumes have the expected proportionality with SNR,
scaling roughly / %�6

net.
Our results show that localizations for detections dur-

ing early observing runs would be ⇠ 104–105 Mpc3, corre-
sponding to ⇠ 102–103 potential host galaxies within the
GLADE catalogue (Dálya et al. 2018). Approximately half
of events have searched volumes which contain 102 galaxies
or fewer, and a few percent of events have searched volumes
which contain a single galaxy. Since our results do not in-
clude the e↵ects of calibration uncertainty, they would be
lower bounds for any actual detections: for the (O1-like) HL
recoloured data set, we find that the median 90% credible
volume is 5 ⇥ 104 Mpc3 and for the HL Gaussian data set
it is 4 ⇥ 104 Mpc3; moving ahead to the (O2-like) HLV sce-
nario, the median 90% credible volume is 1 ⇥ 105 Mpc3 for
the Gaussian data set. Greater sensitivity of the detectors
means that we can detect signals from a greater distance and
hence are sensitive to sources in a larger volume. However,
localization does improve as further detectors are added to
the network: the median 90% credible volume in the HLV
scenario for a two-detector network is 3 ⇥ 105 Mpc3 but for
a three-detector network it is 1⇥105 Mpc3. The localization
improves rapidly as the SNR of the signal increases, and the
best localization occurs when there is significant SNR from
each of the three detectors. Addition of further detectors,
such as KAGRA (Aso et al. 2013) or the proposed LIGO-
India detector (Unnikrishnan 2013; Abbott et al. 2017a),
could further improve localization and the prospects of iden-
tifying a counterpart.
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Figure 60: Cumulative distribution function of 90% credible volumes for events observed
by the ground-based detector network. The credible volumes were computed by fitting a
Dirichlet Process Gaussian Mixture Model to posterior samples generated by LALInference.
Figure reproduced from Del Pozzo et al. (2018).


