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11 Gaussian and Dirichlet Processes

We encountered stochastic processes when we discussed noise in gravitational wave detectors
and then again in the discussion of Time Series. Another application of stochastic processes
is to generate probability distributions, as the relative frequencies of di↵erent outcomes of
the stochastic process over long time intervals. We will be concerned with two particular
types of stochastic process.

• Gaussian processes: These are infinite dimensional generalisations of the Normal
distribution and realisations of these are random fields.

• Dirichlet processes: These are infinite dimensional generalisations of the Dirichlet
distribution, and realisations of these are probability distributions.

11.1 Gaussian processes

A multivariate Gaussian distribution returns values of a finite set of random variables. A
natural extension is to regard the set of random variables as the values of some random
field at certain points. To generate the full random field we need an infinite dimensional
Gaussian distribution, which is a Gaussian process. Formally we denote a random field,
y(x), generated by a Gaussian process via

y(x) ⇠ GP(m(x), k(x,x0))

where m(x) and k(x,x0) are the mean and covariance function of the Gaussian process. For
simplicity of notation we assume that the random field is single valued at each point, but
the extension to multivariate outputs is straightforward.

Formally, a GP is an infinite collection of variables, any finite subset of which are dis-
tributed as a multivariate Gaussian. For a set of parameter points {xi}, including, but not
limited to, the training set D,

[y(xi)] ⇠ N(m, K) , (127)

where the mean vector and covariance matrix of this Gaussian distribution are fixed by the
corresponding functions of the GP,

[m]i = m(xi) , [K]ij = k(xi,xj) , (128)

with probability density function

P ({y(xi}) =
1p

(2⇡)N |K|
exp
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(y(xj) � m(xj))

!
. (129)

Gaussian processes are often used for interpolation. In that context, the training set D
represents the set of known values of the field, e.g., the results of computational simulations
at certain choices of input parameters, which we denote by ỹ(xi). The Gaussian process
is constrained by this training set and then used to predict the value of the field at new
points in the parameter space, with associated uncertainties. If the values of the field at the
training points are not known perfectly, but have uncertainties ✏i ⇠ N(0, �2

i ), the expression
above takes the same form but with the replacement

[K]ij = k(xi,xj) + �2

i �ij.
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Even with perfect simulations it can be advantageous to include a small error term, as this
helps with inversion of the covariance matrix.

The mean and variance of the GP determine how the function is interpolated across the
parameter space. It is common in regression to set the mean of the Gaussian process to zero,
but specifying the covariance function is central to GP regression as it encodes our prior
expectations about the properties of the function being interpolated. Possibly the simplest
and most widely used choice for the covariance function is the squared exponential (SE)

k(xi,xj) = �2

f exp


�1

2
gab(xi � xj)

a(xi � xj)
b

�
, (130)

which defines a stationary, smooth GP. In Eq. (130), a scale �f and a (constant) metric gab for
defining a modulus in parameter space have been defined. These are called hyperparameters

and we denote them as ~✓ = {�f , gab}, with Greek indices µ, ⌫, . . . to label the components
of this vector.

The probability in Eq. (129) is referred to as the hyperlikelihood, or alternatively the
evidence for the training set; it is the probability that that particular realisation of waveform
di↵erences was obtained from a GP with a zero mean and specified covariance function. The
hyperlikelihood depends only on the hyperparameters and the quantities in the training set,
so we denote it as Z(~✓|D). The log hyperlikelihood is

lnZ(~✓|D) = �N

2
ln(2⇡)

�1

2

X

i, j

(y(xi) � m(xi)) [k(xi,xj)]
�1 (y(xj) � m(xj))

�1

2
ln |det [k(xi,xj)]| . (131)

The values of the hyperparameters can be fixed to their optimum values ~✓op, defined as
those which maximise the hyperlikelihood:

@Z(~✓|D)

@✓µ

�����
~✓ = ~✓op

= 0 . (132)

An alternative approach is to consider the hyperparameters as nuisance parameters in ad-
dition to the source parameters x, and marginalise over them while sampling an expanded
likelihood,

⇤expanded(x, ~✓|D) / L(x|~✓,D)Z(~✓|D). (133)

The disadvantage of this approach is that the hyperlikelihood is expensive to compute and
the inclusion of extra nuisance parameters slows down any application of the GP. In contrast,
maximising the likelihood is a convenient heuristic which is widely used in other contexts
and allows all the additional computation to be done o✏ine.

Having fixed the properties of the covariance function by examining the training set, we
can now move on to using the GP as a predictive tool. The defining property of the GP is
that any finite collection of variables drawn from it is distributed as a multivariate Gaussian
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in the manner of Eq. (129). Therefore, the set of variables formed by the training set plus
the field at a set of extra parameter points {y(zj)} is distributed as


y(xi)
y(zj)

�
⇠ N (m,⌃) , ⌃ =

✓
K K⇤
K

T

⇤ K⇤⇤

◆
, (134)

where K is defined in Eq. (128) and the matrices K⇤ and K⇤⇤ are defined as

[K⇤]ij = k(xi, zj) , [K⇤⇤]ij = k(zi, zj) . (135)

The conditional distribution of the unknown field values at the new points, given the observed
values in D, can now be found and is given by

p({y(zi)}) / exp
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#
(136)

where the GPR mean and its associated error are given by

µi = m(zi) +
X
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[K⇤]ji
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K
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(ỹ(xk) � m(xk)) , (137)
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11.2 The covariance function

The properties of the covariance function play an important role in determining the nature
of the Gaussian process and its behaviour when used for regression. The only necessary
requirements we have of a covariance function are that it is a positive definite; i.e. for
any choice of points {xi} the covariance matrix Kij = k(xi,xj) is positive definite. The
covariance function (and the corresponding GP) is said to be stationary if the covariance is
a function only of ~⌧ = x1 � x2, furthermore it is said to be isotropic if it is a function only
of ⌧ ⌘ |~⌧ | = |x1 � x2|.3 Isotropy of a GP implies stationarity, but the converse is not true.

An example of how the properties of the covariance function relate to the properties of
the GP, and hence the properties of the resulting interpolant, is given by considering the
mean-square (MS) continuity and di↵erentiability of GPs. It can be shown that the first ⇣
MS derivatives of a GP are MS continuous (the GP is said to be ⇣-times MS di↵erentiable) if
and only if the first 2⇣ derivatives of the covariance function are continuous at the diagonal
point x1 = x2 = x⇤. For a stationary GP this condition reduces to checking the 2⇣ derivatives
of k(~⌧) at ~⌧ = ~0, and for an isotropic GP checking the 2⇣ derivatives of k(⌧) at ⌧ = 0.

It is the smoothness properties of the covariance function at the origin that determine
the di↵erentiability of the GP. In the following subsections, we consider two aspects that
enter the definition of the covariance function:

1. specifying the distance metric in parameter space gab;

2. specifying the functional form of the covariance with distance k(⌧),

These cannot be completely separated; there exists an arbitrary scaling, ↵ of the distance ⌧ !
↵⌧ which can be absorbed into the definition of the covariance, k(⌧) ! k(⌧/↵). However,
provided the steps are tackled in order, there is no ambiguity.

3
We have yet to define a metric on parameter space with which to take the norm of this vector (see

Sec. 11.2.2), but all that is required here is that a suitably smooth metric exists.
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11.2.1 The metric gab

One simple way to define a distance ⌧ between two points in parameter space, and the way
used in the SE covariance function in Eq. (130), is to define ⌧ 2 = gab(x1 � x2)a(x1 � x2)b,
where gab are constant hyperparameters. This distance is obviously invariant under a simul-
taneous translation of x1 ! x1+� and x2 ! x2+�; therefore, this defines a stationary GP.
For a D-dimensional parameter space, this involves specifying D(D+ 1)/2 hyperparameters
gab.

More complicated distance metrics (with a larger number of hyperparameters) are possi-
ble if the condition of stationarity is relaxed, i.e. gab ! gab(x). Given a family of stationary
covariance functions, a non-stationary generalisation can be constructed. A stationary co-
variance function can be considered as a kernel function centred at x1; k(x1,x2) ⌘ kx1(x2).
Allowing a di↵erent kernel function to be defined at each point x1, a new, non-stationary
covariance function is k(x1,x2) =

R
d~u k~u( ~�1)k~u(x2).4 Applying this procedure to a D-

dimensional SE function generates a non-stationary analogue

k(xi,xj) = �f
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⇥ exp

✓
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◆
, (139)

where

Qij = (xi � xj)
a(xi � xj)

b

 
Gi

ab + Gj
ab

2

!�1

, (140)

and Gi
ab = inv[gab(xi)] is the inverse of the parameter-space metric at position xi. Provided

that the metric gab(x) is smoothly parameterised this non-stationary SE function retains the
smoothness properties discussed earlier.

The generalisation in Eq. (139) involves the inclusion of a large set of additional hyper-
parameters to characterise how the metric changes over parameter space; for example one
possible parameterisation would be the Taylor series

gab(x) = gab(x0) + (xc � xc
0
)
@gab(x)

@�c

����
x=x0

+ . . . (141)

with the hyperparameters gab(x0), @gab(x)/@�c, and so on. The inclusion of even a single
extra hyperparameter can incur a significant Occam penalty which pushes the training set
to favour a simpler choice of covariance function. For this reason most applications use
stationary GPs.

An alternative to considering non-stationary metrics is instead to try and find new coordi-
nates �̃ ⌘ �̃(x) such that the metric in these coordinates becomes (approximately) stationary.
Such transformations are very problem specific and finding them typically requires expert
knowledge of the context of the application.

4
To see that k is a valid covariance function consider an arbitrary series of points {xi}, and the sum over

training set points I =
P

i,j aiajk(xi,xj); for k to be a valid covariance it is both necessary and su�cient

that I � 0. Using the definition of k gives I =
R

d~u
P

i,j aiajk~u(~�i)k~u(xj) =
R

d~u (
P

i aik~u(~�i))
2 � 0.
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Figure 47: Plots of the di↵erent generalisations of the SE covariance function discussed in
Sec. 11.2.2. The left-hand panel shows the PLE function, the centre panel shows the Cauchy
function, and the right-hand panel shows the Matérn function; in all cases the value of �f was
fixed to unity. In each panel the e↵ect of varying the additional hyperparameter is shown by
the three curves. For the PLE covariance the case ⌘ = 2 recovers the SE covariance, while
for the Cauchy and Matérn covariances the case ⌘ ! 1 recovers the SE covariance.

11.2.2 The functional form of k(⌧)

The second stage of specifying the covariance function involves choosing the function of
distance k(⌧). In general whether a particular function k(⌧) is positive definite (and hence
is a valid covariance function) depends on the dimensionality D of the underlying space (i.e.
x 2 R

D); however, all the functions considered in this section are valid for all D. Several
choices for k(⌧) are particularly common in the literature, these include the SE covariance
function (which has already been introduced), given by

kSE(⌧) = �2

f exp

✓
�1

2
⌧ 2

◆
. (142)

The power-law exponential (PLE) covariance function, given by

kPLE(⌧) = �2

f exp

✓
�1

2
⌧ ⌘

◆
, (143)

where 0 < ⌘  2. The PLE reduces to the SE in the case ⌘ = 2. The Cauchy function, given
by

kCauchy(⌧) =
�2

f

(1 + ⌧ 2/2⌘)⌘ , (144)

where ⌘ > 0. This recovers the SE function in the limit ⌘ ! 1. And finally, the Matérn
covariance function, given by

kMat(⌧) =
�2

f2
1�⌘

�(⌘)

⇣p
2⌘ ⌧

⌘⌘

K⌘

⇣p
2⌘ ⌧

⌘
, (145)

where ⌘ > 1/2, and K⌘ is the modified Bessel function of the second kind [?]. In the limit
⌘ ! 1, the Matérn covariance function also tends to the SE.

Fig. 47 shows the functional forms of the covariance functions. They have similar shapes;
they return a finite covariance at zero distance which decreases monotonically, and tends
to zero as the distance becomes large. In the case of regression this indicates that the
values of the field at two nearby points in parameter space are closely related, whereas the
values at two well separated points are nearly independent. The PLE, Cauchy and Matérn
function can all be viewed as attempts to generalise the SE with the inclusion of one extra
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hyperparameter ⌘, to allow for more flexible GP modelling. All three alternative functions
are able to recover the SE in some limiting case, but the Matérn is the most flexible of
the three. This can be seen from the discussion of the MS di↵erentiability of GPs given in
section 11.3.

The SE covariance function is infinitely di↵erentiable at ⌧ = 0, and so the corresponding
GP is infinitely MS di↵erentiable. The PLE function is infinitely di↵erentiable at ⌧ = 0
for the SE case when ⌘ = 2, but for all other cases it is not at all MS di↵erentiable. In
contrast, the Cauchy function is infinitely di↵erentiable at ⌧ = 0 for all choices of the
hyperparameter ⌘. The Matérn function, by contrast, has a variable level of di↵erentiability
at ⌧ = 0, controlled via the hyperparameter ⌘. The GP corresponding to the Matérn
covariance function in Eq. (145) is ⇣-times MS di↵erentiable if and only if ⌘ > ⇣. This
ability to modify the di↵erentiability allows the same covariance function to successfully
model a wide variety of data. In the process of maximising the hyperlikelihood for the
training set over hyperparameter ⌘, the GP learns the (non)smoothness properties favoured
by the data, and the the GPR returns a correspondingly (non)smooth function.

11.2.3 Compact support and sparseness

All of the covariance functions considered up until this point have been strictly positive;

k(⌧) > 0 8⌧ 2 [0,1) . (146)

When evaluating the covariance matrix for the training set Kij this leads to a matrix where
all entries are positive definite; i.e. a dense matrix. When performing the GPR it is necessary
to maximise the hyperlikelihood for the training set with respect to the hyperparameters.
This process involves inverting the dense matrix Kij at each iteration of the optimisation
algorithm. Although this procedure is carried out o✏ine, it still can become prohibitive for
large training sets. A related problem, as pointed out in Sec. ?? is that for large training
sets the determinant of the covariance matrix is typically small which also contributes to
making the covariance matrix hard to invert.

One potential way around these issues is to consider a covariance function with compact
support,

k(⌧) > 0 ⌧ 2 [0, T ] ,

k(⌧) = 0 8⌧ 2 (T,1) ,
(147)

where T is some threshold distance beyond which we assume that the waveform di↵erences
become uncorrelated. This leads to a sparse, band-diagonal covariance matrix, which is much
easier to invert. Care must be taken when specifying the covariance function to ensure that
the function is positive definite (which is required of a GP): if the SE covariance function is
truncated, then the matrix formed from the new covariance function is not guaranteed to be
positive definite.

Nevertheless, it is possible to construct covariance functions which have the requisite
properties and satisfy the compact support condition in Eq. (147). These are typically based
on polynomials. We consider a series of polynomials, originally proposed by Wendland.
These have the property that they are positive definite in R

D and are 2q-time di↵erentiable
at the origin. Therefore the discrete parameter q is in some sense analogous to the ⌘ hyper-
parameter of the Matérn covariance function in that it controls the smoothness of the GP.
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Figure 48: Plots of the first few Wendland polynomial covariance functions. All these func-
tions have compact support, k(⌧) = 0 for ⌧ > 1. As the value of q increases the functions
become smoother near the origin.

Defining � to be

� =

�
D

2

⌫
+ q + 1 (148)

and where ⇥(x) denotes the Heaviside step function, the first few Wendland polynomials
kD, q(⌧) are given by,

kD, 0(⌧) = �2

f⇥(1 � ⌧)(1 � ⌧)� , (149)

kD, 1(⌧) = �2

f⇥(1 � ⌧)(1 � ⌧)�+1 [1 + (� + 1) ⌧ ] , (150)

kD, 2(⌧) =
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f

3
⇥(1 � ⌧)(1 � ⌧)�+2 [ 3 + (3� + 6) ⌧
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�2 + 4� + 3

�
⌧ 2
⇤
, (151)

kD, 3(⌧) =
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⇥
15 + (15� + 45) ⌧

+
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6�2 + 36� + 45

�
⌧ 2

+
�
�3 + 9�2 + 23� + 15

�
⌧ 3
⇤
. (152)

The first few Wendland polynomials are plotted in Fig. 48. Other types of covariance
functions with compact support have also been proposed and explored in the literature, but
we do not consider them here.

11.3 Continuity and di↵erentiability of GPs

Before moving on to some examples, we give proofs concerning the continuity and di↵eren-
tiability of GPs. Let x1,x2,x3 . . . be a sequence of points in parameter space which converges
to a point x⇤, in the sense lim`!1 |x` � x⇤| = 0. The GP Y (x) is said to be MS continuous
at x⇤ if

lim
`!1

E [(Y (x`) � Y (x⇤)|Y (x`) � Y (x⇤))] = 0 , (153)

where E[. . .] denotes the expectation of the enclosed quantity over realisations of the GP.
MS continuity implies continuity in the mean,

lim
`!1

E [Y (x`) � Y (x⇤)] = 0 . (154)
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This follows from considering the variance of the quantity Y (x`) � Y (x⇤), and the fact that
variance is non-negative. There are other notions of continuity of GPs used in the literature,
but the notion of MS continuity relates most easily to the covariance.

The mean and the covariance of a GP are defined as

m(x) = E[Y (x)] , (155)

k(x1,x2) = E[(Y (x1) � m(x1)|Y (x2) � m(x2))] .

Using these, Eq. (153) can be written as

lim
`!1

{k(x⇤,x⇤) � 2k(x`,x⇤) + k(x`,x`)

+ (m(x⇤) � m(x`)|m(x⇤) � m(x`))} = 0 , (156)

and using the continuity of the mean in Eq. (154) gives

lim
`!1

[k(x⇤,x⇤) � 2k(x`,x⇤) + k(x`,x`)] = 0 . (157)

This condition is satisfied if the covariance function is continuous at the point x1 = x2 = x⇤.
Therefore, we arrive at the result that if the covariance function is continuous in the usual
sense at some point x⇤, then the corresponding GP is MS continuous at this point.5 In the
special case of stationary covariance this reduces to checking continuity of k(~⌧) at ~⌧ = 0,
and in the special case of isotropic covariance, continuity of k(⌧) at ⌧ = 0.

We now move on from continuity to consider di↵erentiability. In the spirit of Eq. (153),
the notion of taking the MS derivative of a GP is defined as

@Y (x)

@xa
= l.i.m

✏!0

Xa(x, ✏) , (158)

where l.i.m is read limit in MS and

Xa(x, ✏) =
Y (x + ✏ êa) � Y (x)

✏
(159)

with parameter-space unit vector êa. This definition can be extended to higher-order deriva-
tives in the obvious way.

The MS derivative of a GP is also a GP; this follows simply from the fact that the sum
of Gaussians is also distributed as a Gaussian. The covariance of Xa(x, ✏) is given by

K✏(x1,x2) = E [(Xa(x1, ✏) � ⌅(x1, ✏)|
Xa(x2, ✏) � ⌅(x2, ✏))] (160)

where ⌅a(x, ✏) = E[Xa(x, ✏)]. It then follows that

K✏(x1,x2) =
k(x1 + ✏,x2 + ✏) � k(x1,x2 + ✏)

✏2

+
k(x1 + ✏,x2) � k(x1,x2)

✏2
. (161)

5
A GP is continuous in MS if and only if the covariance function is continuous, although this is not proved

here.
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Substituting this into Eq. (158), the limit in MS becomes a normal limit, and the result is
obtained that the MS derivative of a MS continuous GP with covariance function k(x1,x2)
is a GP with covariance function @2k(x1,x2)/@xa

1
@xa

2
. In general the covariance function of

the ⇣-times MS di↵erentiated GP

@⇣Y (x)

@xa1@xa2 . . . @xa⇣

, (162)

is given by the 2⇣-times di↵erentiated covariance function

@2⇣k(x1,x2)

@xa1
1
@xa1

2
@xa2

1
@xa2

2
. . . @x

a⇣

1
@x

a⇣

2

. (163)

From the above results relating the MS continuity of GPs to the continuity of the covari-
ance function at x1 = x2 = x⇤, it follows that the ⇣-times MS derivative of the GP is MS
continuous (the GP is said to be ⇣-times MS di↵erentiable) if the 2⇣-times derivative of the
covariance function is continuous at x1 = x2 = x⇤. So it is the smoothness properties of the
covariance function along the diagonal points that determine the di↵erentiability of the GP.6

11.4 Example applications of Gaussian processes

Example: interpolation of a quadratic We consider first a toy problem in which we
generate noisy measurements, {yi}, at 200 points, {xi}, randomly chosen in the interval
[0, 1] according to

yi = �2 � 3xi + 5x2

i + ✏i, ✏i ⇠ N(0, 0.152).

We then fit a Gaussian process to a training set comprising a subset of these points. We
use a squared exponential covariance function and optimize the hyperparameters over the
training set. The results of this procedure are shown in Figure 49. Results are represented
by the expectation value and 1� uncertainty computed from the fitted Gaussian process as a
function of x. We see that the Gaussian process is well able to recover the true function, even
with as a few as ten training points. This is a particularly simple function and if we knew
that the relationship was quadratic there would be no need to use a Gaussian process to fit
the data. In Figure 50 we show the result of fitting a quadratic model to the same data. As
expected, the fit is slightly better, but not hugely so. The advantage of the Gaussian process
approach is that you do not need to know the form of the model in advance, and avoid the
problem of model mis-specification. In Figure ?? we show the result of fitting a linear model
to the same data. We see that we end up with a very precise, but wrong, representation
of the curve. Gaussian process regression models have greater flexibility and should always
converge to the true underlying function in the limit that the number of observations tends
to infinity.

Example: waveform model errors We will now consider a few examples from the
gravitational wave literature. There are many of these that have all appeared since ⇠
2015, so we cannot describe them all but we will mention a few di↵erent examples. The
first application of Gaussian processes in a gravitational wave context was to characterise
uncertainties coming from waveform model errors (Moore & Gair (2014)). A Gaussian
process was used to model the error in a particular waveform model family over parameter

6
It can be further shown that if a covariance function k(x1,x2) is continuous at every diagonal point

x1 = x2 then it is everywhere continuous.
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Figure 49: Gaussian process fit to noisy measurements of a quadratic, for di↵erent sizes of
training set, as stated in the title of each panel.
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Figure 50: As Figure 49, but now fitting a quadratic linear model to the same data.
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Figure 51: As Figure 49, but now fitting a linear model to the same data.
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Figure 52: Comparison between uncorrected, corrected and “true” likelihood for inference
with waveform models that include model error. The corrected likelihood uses a Gaus-
sian process to model the waveform error and then marginalises this out of the likelihood.
Reproduced from Moore et al. (2015).

space. Using a training set based on model errors estimated as the di↵erence between
two di↵erent approximate waveforms, a Gaussian process model for the waveform error
was produced. As this distribution is Gaussian and so is the normal gravitational wave
likelihood, the waveform error can then be marginalised out of the likelihood to give an
alternative marginalised likelihood for use in parameter estimation. This marginalised
likelihood took the form

L(~�) / 1q
1 + �2(~�)

exp

0

B@�1

2

���s � H(~�) + µ(~�)
���

2

1 + �2(~�)

1

CA . (164)

In this ~� is the vector of parameters characterising the gravitational wave signal, the quantity
µ(~�) is the Gaussian process estimate for the model error, and shifts the distribution to
eliminate the error, and �2(~�) is the variance in the Gaussian process, which widens the
posterior to account for the uncertainty in the model error. Use of this marginalised likelihood
corrects for biases in parameter estimation, as illustrated in Figure 52.

Example: waveform interpolation In Williams et al. (2020), Gaussian processes were
used to directly model the gravitational waveform, rather than its error. A set of numerical
relativity waveforms were used to create a training set to which a Gaussian process model
was fitted. In Figure 53 we show some random draws from the GP model at a certain point in
parameter space and compare these to two di↵erent waveform approximants evaluated at the
same point. We see that the GP uncertainty band includes all of the di↵erent approximants
and so automatically factors in waveform uncertainty.

Example: population inference In Taylor & Gerosa (2018), a Gaussian process was
used as a means to interpolate the output of binary population synthesis code over the
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FIG. 2. GPR predictions, compared to NR. One hundred draws from the Gaussian process (left panel) for a non-
spinning configuration (�s1 = (0, 0, 0), �s2 = (0, 0, 0), �q = 0.625) with a total mass of 60-solar masses, shown as light grey
lines compared to a single analytical approximant model, IMRPhenomPv2 in blue. The mean draw from the Gaussian process
is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding the mean. In the
right panel the distribution of mismatches between the samples and both phenomenological waveforms are shown, with the
vertical lines representing the mismatch between the GPR and the phenomenological waveform. The di�erences between the
phenomenological model and the GPR model waveforms are seen to also exist between the phenomenological model waveforms
and the NR-derived waveform, plotted here in pink.

FIG. 3. Non-spinning waveform. One hundred draws from the Gaussian process (left panel) for a non-spinning, equal-mass
configuration (�s1 = (0, 0, 0), �s2 = (0, 0, 0), �q = 1.0) with a total mass of 60-solar masses, shown as light grey lines compared
to two analytical approximant models, SEOBNRv4 and IMRPhenomPv2 in red and blue respectively. The mean draw from the
Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding
the mean. In the right panel the distribution of mismatches between the samples and both phenomenological waveforms are
shown, with the vertical lines representing the mismatch between the GPR and the phenomenological waveform.

able, and in principal can facilitate accurate inference

on detected signals. However, the expense of produc-

ing them limits their coverage of the parameter space;

as a result of this lack of coverage, and the considerable

time requirements to produce new waveforms, any infer-

ence method which relied solely on NR techniques could

not hope to satisfy the requirement to rapidly charac-

terise signals, and would not be practical in a scenario

where multiple events are detected every month. Phe-

nomenological models, which can be evaluated rapidly,

are available, which attempt to interpolate across a large

volume of the parameter space, but the accuracy of the

waveforms which they produce can be di�cult to assess.

Ths leads to the possibility of introducing biases into the

inferred properties of the system which generated the sig-

nal.

In this paper we have laid-out an approach to improv-

ing the accuracy of gravitational wave parameter estima-

tion in the context of limited template availability by im-

plementing a waveform approximant model using GPR,

providing not only a point-estimate of the waveform at

any point in the BBH parameter space, but also a distri-

bution of plausible waveforms, allowing the uncertainty

of the interpolation to be taken into account during the

analysis. In contrast to previous attemptes to produce a

GPR model for GW waveforms, such as [7], our model

Figure 53: Comparison of several approximate waveform models to random draws from a
Gaussian process interpolant trained on numerical relativity simulations. Reproduced from
Williams et al. (2020).

space of physical parameters that characterise them. The resulting model, continuous over
parameter space, was then used to infer properties of the underlying astrophysical population
based on a set of observed compact binary inspirals. Figure ?? shows simulated inferred
posteriors on the population parameters that were produced in this way.

Example: equation of state uncertainties Landry & Essick (2019) and Essick,
Landry & Holz (2019) used a Gaussian process to model the equation of state of a neutron
star, p(⇢). The hyperparameters of the Gaussian process were constrained using a training
set including numerical equation of state simulations. The resulting model generates random
equations of state which can be used to marginalise equation of state uncertainties out of
inference on gravitational wave signals from binary neutron stars. Figure 55 shows a set of
random draws of the equation of state from the Gaussian process.

11.5 Dirichlet Processes

Recall that a Dirichlet distribution generates a set of K random values, {xi}, constrained to
take values with 0  xi  1 for all i and

P
xi = 1. The distribution depends on a vector of

parameters ~↵ = (↵1, . . . ,↵K) and has pdf

p(~x) =
1

B(~↵)

KY

i=1

x↵i�1

i , B(~↵) =

QK
i=1

�(↵i)

�
⇣PK

j=1
↵j

⌘ .

A realisation of a Dirichlet distribution is a probability mass function for a discrete distribu-
tion with K possible outcomes. A Dirichlet process generalises the Dirichlet distribution
to infinite dimensions and a realisation of a Dirichlet process is a continuous probability
distribution. A Dirichlet process is characterised by a base distribution, P , and a con-
centration parameter, a. The base distribution is a probability measure on a set S. The
process X is a Dirichlet process, denoted X ⇠DP(P, a) if for any measurable finite partition
of the set S, {Bi}n

i=1
, the probability distribution on this partition generated by X is

(X(B1), X(B2), . . . , X(Bn)) ⇠ Dir(aP (B1), aP (B2), . . . , aP (Bn)). (165)

In the limit a ! 0, the Dirichlet pdf, which is proportional to x↵i�1

i , places a logarithmi-
cally increasing weight towards the lower boundary of the variable range. Draws from this
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FIG. 6. Testing the accuracy of our GP emulator for the model of Eq. (33). In the left panel we create training data on an
evenly-spaced 8�8 grid in log10 �1,2 space (red points). We achieve a data compression factor of � 500, then train a GP in each
of the reduced basis features. The GP prediction is compared to the analytic result across �1,2 space by taking the GP-mean
(o�set by 1 �), rotating back to the full z1,2 basis, then finding the maximum di�erence from the analytic value in any z1,2 bin.
Low accuracy locations are used to inform the positions at which new simulations are performed. These additional points are
shown in the right panel as empty circles, where we see that their addition improves accuracy across the entire hyper-parameter
space.
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FIG. 7. Comparison of posterior recoveries of population
hyper-parameters from a catalog of 100 sources with spin-
alignment distribution given by Eq. (33) [82]. The true hyper-
parameter coordinate, {�1 = 0.45, �2 = 0.45} is indicated via
intersecting white dashed lines.

will always be positive. We can now predict the distri-

bution values in compressed parameter space, and rotate

this back into the full parameter space to construct the

final predictions.

Figure 6 shows validation studies for di�erent num-

bers of initial training data. For an evenly-spaced grid of

8 ⇥ 8 = 64 training datasets in hyper-parameter space,

we achieve an accuracy of better than ⇠ 50% across the

majority of the space. The worst performance occurs in

parts of hyper-parameter space that are voids of simula-

tions. We find the 36 worst accuracy locations, and add

these as additional simulations to improve accuracy to

better than 10%. Similar accuracy is given by an Latin-

hypercube design of 100 training datasets.

We now test our framework on a simulated popula-

tion, consisting of 100 sources drawn from p(z1, z2) with

� = {�1 = 0.45, �2 = 0.45}. A comparison of the joint

posterior probability distribution of {�1, �2} as recovered

by the analytic model [Eq. (33)] and the GP framework

is shown in Fig. 7. The GP framework is trained on 100

simulations from a Latin-hypercube design; we use this

design because it is our standard approach for e�ciently

sampling the high-dimensional hyper-parameter space of

binary stellar evolution, and it gives similar emulation ac-

curacy to the adaptive design in the right panel of Fig. 6.

In this analysis, we have propagated all uncertainties

from the GP prediction and the hyper-parameters of the

trained GP covariance function into the final model. The

agreement is excellent, with the true hyper-parameter co-

ordinate lying well within the 68% credible region of both

techniques. We have not incorporated the e�ect of indi-
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FIG. 8. Posterior probability distribution of progenitor metal-
licity Z, as inferred by an analysis of the current BH catalog
in Table I using a model for the chirp mass distribution that
is conditioned on simulations from [25]. Dashed vertical lines
marks the 68% and 90% confidence intervals.

was trained (including some sharp features), namely that

the distribution of chirp masses shifts to smaller values

as the progenitor metallicity is increased. Physically, this

is because stellar winds are weaker in stars with lower

metallicity, that thus tend to form heavier BHs like the

ones detected by Advanced LIGO [25, 34–36]. The events

of the current binary BH catalog are shown as vertical

bands corresponding to the 90% credible region of chirp

mass.

C. BSE Population Synthesis

To further showcase the e�ectiveness of our statistical

framework, we now consider a more elaborate set of input

data. We perform a dedicated program of population-

synthesis simulations to predict properties of BH binaries

from isolated binary stars.

We use a modified version of the public population syn-

thesis code BSE [18, 90]. The modifications implemented

here are the same described in Refs. [36, 91]: wind mass

loss prescriptions according to Ref. [92] and core-collapse

remnant mass relationship following Ref. [20]. These

minimal updates are necessary to generate any BHs of

masses & 10M� like the ones that are now detected,

and thus to attempt a comparison with the Advanced-

LIGO–Advanced-Virgo data. We stress, however, that

this study is not meant to rival with the full complex-

ity of state-of-the-art binary evolution codes, but rather

highlight the potential of our inference pipeline.

BSE requires us to specify distributions of binary stars

on their zero-age main sequence (ZAMS), and a variety

of flags encoding assumptions of the underlying stellar

physics. We distribute primary masses m1 from an ini-

tial mass function p(m1) / m�2.3
1 in [5, 100]M�; mass

ratios q = m2/m1 uniformly in [0, 1]; initial separations

R uniformly in log10 in [10, 10
5
]R�; eccentricities e from

a thermal distribution p(e) / e; and redshifts z uniformly

in comoving volume using the Plank cosmology [93] (c.f.

Ref. [29] for similar choices).

The evolutionary flags are the quantities that should be

treated as hyper-parameters, and that could potentially

be constrained with current and future catalogs of GW

events. For simplicity, we present results considering a

3-dimensional hyper-parameter space, but our method is

fully generalizable and scalable to higher dimensions. We

fix all flags to their default value in BSE, except for the

following three:

1. Metallicity of the ZAMS star: Z. As already

highlighted above, the progenitor metallicity has a

large impact on the properties of the resulting BHs.

Metallicity strongly a�ects massive star winds and

thus the mass that remains available to form the

final compact object [22, 24, 92, 94–97]. Here we

consider a metallicity range 0.0001  Z  0.03

where Z� = 0.02 [18].

2. Kicks imparted to BHs at formation: �k. As

stars collapse (perhaps exploding into supernovae),

asymmetries in the emitted material and neutri-

nos may impart a recoil to the newly formed com-

pact object (e.g. Ref. [98]). Observations of galactic

pulsar proper motions suggest that NS recoils are

well modeled by a single Maxwellian distribution

with 1D root-mean-square �k ⇠ 265 km/s [99, 100].

Whether BHs receive any kick at formation is still

a matter of debate. On the one hand, X-ray binary

measurements hint at large kick velocities [101] (c.f.

also Ref. [102] for a GW constraint). Conversely,

theoretical arguments and simulations suggest that

kicks for BHs might be suppressed because of ma-

terial falling back after the explosion [98, 103, 104].

This is a clear case where a method like ours, al-

lowing for a direct estimate of �k, might show its

potential. We consider BH recoils in the range

0 km/s  �k  265 km/s independently of BH mass

or other parameters (see Ref. [40] for a discussion

of this point).

3. E�ciency of the common envelope: �ce. After the

first star collapses, the binary system consists of a

BH and an extended star. As this second star ex-

pands into a supergiant, it may overflow its Roche

Lobe and undergo unstable mass transfer to the

BH [105–108]. The envelope of the giant engulfs

the companion BH. In this process, known as the

common-envelope stage, a fraction �ce of the bi-

nary’s orbital energy is transferred to the enve-

lope, thus hardening the binary. In the standard

evolutionary channel considered here, common en-

velope evolution is the key stage to produce BHs

able to merge within a Hubble time. The details

of the common envelope phase are still very uncer-

tain [109–112], and are arguably one of the most

Figure 54: Posteriors on physical parameters of the astrophysical source population inferred
form simulated observations of binaries. Inference relied on a Gaussian process model that
interpolated the output of the population synthesis codes over the astrophysical parameter
space. Reproduced from Taylor & Gerosa (2018).

distribution will therefore be singletons, with all xi’s bar one equal to zero. For small a the
Dirichlet distribution will therefore tend to be discretized, with probability concentrated at
a small number of locations.

In the limit a ! 1, the distribution becomes more and more concentrated at its mode,
which is at xi = P (Bi). Every realisation of Dir(aP (B1), aP (B2), . . . , aP (Bn)) therefore
returns (P (B1), . . . , P (Bn)) and every realisation of the Dirichlet process thus gives the base
distribution.

These limits show that the Dirichlet process generates discretized representations of the
base distribution, with the level of discretization decreasing as a ! 1. To illustrate this,
we show in Figure 56 and 57 some realisations of a Dirichlet process, for a fixed base distri-
bution, P = N(0, 1), and various choices of a. In each figure, we represent the realisation
of the Dirichlet process by a set of 1000 random draws from the realised probability distri-
bution. It is clear that for small a, only a small number of values are returned, showing
high discretisation, but as a increases the number of distinct values is increasing and the
distribution becomes a closer and closer approximation to the base distribution.

11.5.1 Sampling Dirichlet processes

A realisation of a Dirichlet process is a probability distribution on S and hence infinite
dimensional. Drawing such a realisation is therefore very di�cult. However, in practice
what we need is not the realisation of the Dirichlet process itself but a set of samples from
that realised distribution, which is much easier to obtain. If the full realisation is required,
this can be evaluated by looking at the distribution of a large number of samples. This is
how the realisations shown in Figures 56 and 57 were produced.

There are several di↵erent algorithms for drawing samples from a random realisation of
a Dirichlet process, X ⇠DP(P, a). The chinese restaurant process generates a sequence
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FIG. 1. Example synthetic EOSs drawn from our (left) agnostic and (right) informed nonparametric priors, constructed
as mixture models with equal prior odds for hadronic, hyperonic, and quark compositions. Draws from the prior are colored
according to the maximum nonrotating NS mass they support: blue for Mmax � 1.93 M�, and black otherwise. Candidate
EOSs from the literature, used as input for our GPs, are shown in red (see Table VII). Vertical lines indicate once, twice and
six times nuclear saturation density.

P (d|�(�), H) =

Z
dM1dM2 p(M1, M2|H) L

⇣
data

���M1, M2, �
(�)

(M1), �
(�)

(M2)

⌘
(12)

⇡ 1

Ni

NiX

i

L
⇣
data

���M (i)
1 , M (i)

2 , �(�)
(M (i)

1 ), �(�)
(M (i)

2 )

⌘ ��� M (i)
1 , M (i)

2 ⇠ P (M1, M2|H) , (13)

where �
(�)

is the mass-tidal deformability relation implicitly defined by �(�)
. It is worth noting that several sets of

samples are publicly accessible. Our specific choice is not expected to significantly a�ect our conclusions, although

our precise quantitative results will depend on issues like waveform systematics discussed in Ref. [41]. Drawing �(�)

from our prior and associating this marginal likelihood with each sample generates the posterior process. This also

allows us to immediately estimate the evidence for each prior, up to a common normalization constant:

P (d|{�}A, H) ⇡ 1

N�

N�X

�

1

Ni

NiX

i

L
⇣
data

���M (i)
1 , M (i)

2 , �(�)
(M (i)

1 ), �(�)
(M (i)

2 )

⌘ ����
M (i)

1 , M (i)
2 ⇠ P (M1, M2|H)

�(�) ⇠ P (�|{�}A)
, (14)

where we draw Ni mass realizations for each of the N�

EOS realizations. Within this Monte-Carlo algorithm,

we optimize our KDE model for L(d| · · · ) by selecting

bandwidths that maximize a cross-validation likelihood

based on the public samples (see Appendix B).

The overarching composition-marginalized priors are

constructed hierarchically, assuming equal prior odds for

each composition, which is to say

P (data|X) =

1

3

⇥
P (data|X; Hadronic)

+ P (data|X; Hyperonic)

+ P (data|X; Quark)
⇤

(15)

for informed and agnostic priors processes separately. In

Figure 55: Random draws from a Gaussian process model of the equation of state of a
neutron star. Reproduced from Essick et al. (2019).



Introduction to Statistics for GWs 221

pmf of F ~ DP(N(0,1),1)

x

p(
x)

−1 0 1 2

0
20

40
60

pmf of F ~ DP(N(0,1),1)

x

p(
x)

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0
50

10
0

15
0

pmf of F ~ DP(N(0,1),1)

x

p(
x)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
50

10
0

15
0

pmf of F ~ DP(N(0,10),1)

x

p(
x)

−2 −1 0 1

0
10

20
30

40

pmf of F ~ DP(N(0,10),1)

x

p(
x)

−2 −1 0 1 2

0
10

20
30

40

pmf of F ~ DP(N(0,1),10)

x

p(
x)

−2 −1 0 1 2

0
5

10
15

20
25

30

pmf of F ~ DP(N(0,100),1)

x

p(
x)

−2 −1 0 1 2 3

0
1

2
3

4
5

6
7

pmf of F ~ DP(N(0,100),1)

x

p(
x)

−2 −1 0 1 2

0
1

2
3

4
5

6
7

pmf of F ~ DP(N(0,1),100)

x

p(
x)

−3 −2 −1 0 1 2 3

0
2

4
6

8

Figure 56: Sample realisations of a Dirichlet process, X ⇠DP(N(0, 1), a), for a = 1 (top
row), a = 10 (middle row) and a = 100 (bottom row). In each figure we show 1000 samples
from the given realisation of the Dirichlet process. Within each row, the figures show three
distinct realisations of the stated Dirichlet process.
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Figure 57: As in Figure 56, these figures show sample realisations of a Dirichlet process,
X ⇠DP(N(0, 1), a), for a = 1000 (top row) and a = 10000 (bottom row). In each figure we
show 1000 samples from the given realisation of the Dirichlet process. Within each row, the
figures show three distinct realisations of the stated Dirichlet process.
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of samples {xi} for i � 1 as follows

• with probability a/(a + i � 1) draw xi from P;

• with probability nx/(a + i � 1) set xi = x, where nx is the number of previous obser-
vations of xj = x for j < i.

This procedure is called the chinese restaurant process by analogy with a restaurant with an
infinite number of tables, each serving a di↵erent dish, and each with infinite seating capacity.
A new diner may choose to sit at a new table, or may choose to sit at a table where people
are already eating. The probability of choosing a particular table is proportional to the
number of people observed already sitting at that table and enjoying the o↵ered dish.

Closely related to this is the Polya Urn scheme. In that construction we start with an
urn containing a black balls. At each step of the algorithm, a ball is drawn at random from
the urn. If the ball is black, we generate a new color randomly, color a new ball this color
and return it to the urn along with the black ball. The corresponding sample is the new
color. If the ball drawn is coloured, then we take a new ball, color it the same color as the
sampled ball, and return both of them to the urn. The corresponding sample is the color
of the ball that was drawn. It is clear that the distribution of colors produced in this way
corresponds to the samples generated form the chinese restaurant process.

A final approach to constructing a sample from a random realisation of a Dirichlet process
is the stick breaking construction. This approach explicitly generates a discrete distribu-
tion, X, which is a realisation of the Dirichlet process. The distribution is given by

X =

 
LHX

l=1

pl�Ul

!
+

 
1 �

LHX

l=1

pl

!
�U0

p1 = V1, pl =

 
l�1Y

j=1

(1 � Vj)

!
Vl, l � 2, p0 = 1 �

LHX

l=1

pl

Vl ⇠ Beta(1, a), l = 1, . . . , LH , Ul ⇠ P, l = 0, 1, . . . , LH , (166)

where we take the limit LH ! 1, but in practical applications the procedure is truncated
at some finite, but su�ciently large, value.

11.5.2 Example applications

The main application of Dirichlet processes is in the field of Bayesian nonparametrics, where
they are used as a prior for unknown probability distributions. We will provide two examples.

Example: B-spline regression In the nonparametric regression chapter we encoun-
tered the notion of smoothing splines for regression. In that context, the knots of the spline
were fixed at the locations of the observed data points. The number of knots is therefore
fixed for any given data set and grows as n ! 1. The smoothing was controlled by the regu-
larisation parameter. Another approach to nonparametric regression is to allow the number
of spline points to vary and let the data choose the optimal number. Even greater flexibility
comes from allowing the locations of the spline knots to vary. In Edwards & Gair (2020) they
presented a Bayesian nonparametric regression algorithm that uses B-splines (an alternative
basis for cubic splines than the one presented in this course), but with the number and
location of the knots both allowed to vary and adapt to the data. The knot locations were
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6 Matthew C. Edwards, Jonathan R. Gair

The freespline algorithm outperforms the

LEX algorithm in terms of average MSE for both

test functions here. Upon visual inspection, we find

exactly why this is the case. We see in Figure 4

that the LEX model manages to pick up the first lo-

cal extremum (minimum), which is large, but fails

to pick up the secondary local extremum (maxi-

mum), which is small. We also see in Figure 5 that

the LEX algorithm cannot handle sharp and abrupt

extrema.
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Fig. 4: One comparison of methods for the ExpSum

example.
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Fig. 5: One comparison of methods for the

Triangle example.

We have demonstrated that freespline out-

performs LEX when one extremum is small

(ExpSum), or when we have a sharp, and abrupt

extremum (Triangle). Additional benefits of

freespline is that it is publicly available on CRAN,

it provides credible regions which give a level of un-

certainty around the fitted curve, and that it can

handle more than two local extrema, which will be

demonstrated explicitly in the following sections.

3.2 Simulation Study

In this section, we run a comprehensive simulation

study, using the following three test functions from

DiMatteo et al. (2001):

1. The true function is a natural spline on [0, 1]

with internal knots (0.2, 0.6, 0.7) and coe�-

cients � = (20, 4, 6, 11, 6). Zero-mean Normal

noise with standard deviation � = 0.9 is added

to this curve.

2. The true function is f(x) = sin(x) +

2 exp(�30x2
) for x 2 [�2, 2]. Zero-mean Nor-

mal noise with standard deviation � = 0.3 is

added to this curve.

3. The true function is a natural spline on [0, 1]

with internal knots (0.4, 0.4, 0.4, 0.4, 0.7) and

coe�cients � = (2, �5, 5, 2, �3, �1, 2). Zero-

mean Normal noise with standard deviation

� = 0.55 is added to this curve.

We run the freespline algorithm on 1,000 dif-

ferent noise realizations for each test function, at

sample sizes of n = (2
7, 28, 29

), computing average

MSE, estimated standard errors, mean run-time,

and uniform coverage probabilities.. An example

of each function can be seen in Figure 6.

Results are presented in Tables 2 and 3. We see

that as n increases, MSE and SE decrease for all

test functions. We also see that computing time

roughly increases linearly with n, and that the

mode number of B-splines stays reasonably con-

stant when changing n. Note that these test func-

tions all have a signal-to-noise ratio (SNR) of ⇠ 3,

where SNR =
sd(signal)
sd(noise) . We also present results for

SNR equal to 1 and 10 in Appendix 2.

Table 2: Average MSE with estimated standard

errors in brackets.

n = 27 n = 28 n = 29

1 0.0747 (0.0353) 0.0361 (0.0164) 0.0188 (0.0080)

2 0.0097 (0.0045) 0.0048 (0.0020) 0.0025 (0.0010)

3 0.0280 (0.0154) 0.0147 (0.0078) 0.0082 (0.0051)

One benefit of the freespline algorithm is its

ability to compute credible regions from posterior

Figure 58: Nonparametric regression fit to noisy measurements of the function f(x) =
26 exp(�3.25x)�4 exp(�6.5x)+3 exp(�9.75x) using the freespline algorithm with a Dirichlet
process prior on the probability density determining the knot locations. Figure reproduced
from Edwards & Gair (2020).

represented by a random cumulative density function, H, defined on the interval [0, 1], with
the j’th of k � r internal knots located at xj = H(j/(k � r)). The random density H was
assigned a Dirichlet process prior. In Figure 58 we show the result of using this algorithm
to fit noisy measurements of a function

f(x) = 26 exp(�3.25x) � 4 exp(�6.5x) + 3 exp(�9.75x).

We see that the freespline algorithm is able to capture all of the turning points of this
function, while another widely used regression algorithm, lex, is not. In Figure 59 we show
another application of that algorithm to obtain a nonparametric fit to the power spectrum
of temperature fluctuations in the CMB measured by Planck. The nonparametric fit can
be compared to the best fit cosmological model prediction. There is some evidence that the
data does not support the up-tick at low multipoles predicted by the model. In fact, there
has been extensive debate in the literature about whether the l = 2, 3 multipoles are in fact
lower than predicted, and these results seem to support that. There is also weak evidence
that the data suggests the second and third peaks are further apart than the standard ⇤CDM
model predicts. Observations of this nature (if they were to be robust in future data sets)
would help guide modifications to the model, and this would be much harder without the
nonparametric regression tool.

Example: LIGO sky localisation In Del Pozzo et al. (2018), a Dirichlet process
Gaussian mixture model (DPGMM) was used to produce a smooth interpolation of the
output of LALInference sampling. The aim was to produce a continuous representation of
the source localisation volume (sky location and distance), to target electromagnetic follow-
up. The Dirichlet process was used as a prior to generate the centres (in 3-dimensions)
of Gaussians. The sum of these Gaussians, with weights, was used as a representation
of the smooth posterior probability and then constrained by the set of posterior samples
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crowave background (CMB) at microwave and in-

frared frequencies, with the aim of testing the-

ories of the early Universe. The mission was a

great achievement, providing a clear picture of an

extremely simple Universe (Akrami et al., 2018;

Aghanim et al., 2018).

However, CMB observations have highlighted

some puzzles in modern cosmology, most notice-

ably the inconsistencies in the local rate of ex-

pansion of the Universe inferred indirectly from

the CMB relative to the value measured locally

using Type Ia Supernovae (Bernal et al., 2016;

Reiss et al., 2016; Akrami et al., 2018; Aghanim

et al., 2018). One explanation is that the standard

model of cosmology, the so-called Lambda Cold
Dark Matter (�CDM) model (which is paramet-

ric), does not tell the full story. �CDM is the sim-

plest model that could describe the Universe on

large scales, but it has shown remarkable agree-

ment with all astronomical measurements until

very recently. Departures from �CDM could arise

from modifications in the true theory of gravity

away from general relativity, the existence of new

fields or particles or di�erences in the properties

of the dark matter and dark energy components of

the Universe. It is therefore natural to ask whether

the CMB data are supporting the standard model

of cosmology, or whether conclusions are being bi-

ased by using a parametric fit rather than a non-

parametric one.

One interesting output from the Planck mis-

sion was the CMB temperature (TT) power spec-

trum, which shows the amplitude of temperature

anisotropies in the CMB as a function of the an-

gular scale, labelled by multipole index, l (which

is inversely proportional to angular scale). Infor-

mation contained in this spectrum (peaks and

troughs) can be used to precisely estimate under-

lying cosmological parameters and therefore allow

us to make statements about the early Universe

(Akrami et al., 2018).

In this section we use the freespline method

to fit the CMB TT power spectrum
1
, and com-

pare this to the “best fit” model, based on the

�CMD model. �CMD uses a parametric model

described in (Akrami et al., 2018; Aghanim et al.,

2018), essentially using Gaussians to model peaks

in the spectrum. We demonstrate the usefulness of

1 These data are publicly available at http://pla.

esac.esa.int/pla/#cosmology.

nonparametric models for these data, showing that

we can get mostly consistent results with minimal

specifications, thus allowing the data to “speak for

itself”. Our fit can be seen in Figure 8.
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Fig. 8: Fitting the Planck CMB TT power spec-

trum. The �CMD model is plotted as the blue line

and our posterior median curve is plotted as the

red dots.

In Figure 8, we can see that the “best fit” model

(blue curve), based on the �CDM, fits the Planck

data extremely well, except at low values of the

multipole moment, where we expect a small rise in

temperature fluctuation. Our estimated curve (red

dots) fits the data well, and follows the �CDM

model nearly perfectly, except at low values of the

multipole moment, where there is an up-tick in the

fit predicted by �CDM. At low multipoles the ob-

served spectrum is more uncertain because these

correspond to large angular scales and there are

therefore fewer independent samples on the sky

that can be used to measure them. Models pre-

dict that the spectrum should have an up-tick at

low multipoles, but we see that this up-tick is not

supported by the data. There has been some de-

bate about whether the lowest (l = 2, 3) multipoles

are in fact significantly lower than predicted by

�CDM (see for example Bielewicz et al. (2004)).

This could be due to foreground contamination.

The fact that we find no evidence for the up-tick

may be evidence in support of this, which fitting

the parametric model cannot reveal.

Our fitted curve supports the notion of six

peaks in the TT spectrum, but not seven as

reported by the Planck Collaboration (Akrami

et al., 2018; Aghanim et al., 2018). We also see

some slight evidence that the first and second

Figure 59: Nonparametric regression fit to the CMB temperature power spectrum, as mea-
sured by Planck. The dashed red line is the freespline fit to the data, while the blue line is
the prediction of the best fit cosmological model. Figure reproduced from Edwards & Gair
(2020).

previously generated by LALInference. In Figure 60 we show the result of this analysis,
the distribution of posterior credible volumes computed for a set of injections and using the
DPGMM to obtain the credible volumes. This is the only application of Dirichlet processes
in a gravitational wave context to date, but they are likely to be powerful tools for fitting
nonparametric population models as the number of observations becomes large enough to
make this possible.
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Figure 3. Cumulative fractions of events with localization vol-

umes smaller than the abscissa value. The top panel shows the

50% credible volume CV0.5, the middle shows the 90% credi-

ble volume CV0.9 and the bottom shows the searched volume V⇤.

The 68% confidence interval for the cumulative distribution is en-

closed by the shaded regions; this does not include the inherent

uncertainty in the volume estimates.

can be be used to find the most probable source galaxies
within a matter of minutes of the LALInference analy-
sis finishing, making it useful for prompt multimessenger
follow-up activities.

We constructed localization volumes for a catalogue
of BNS signals appropriate for the early operation of the

advanced-detector era (Singer et al. 2014; Berry et al. 2015;
Farr et al. 2016). We have verified that the three-dimensional
localizations are well calibrated (cf. Cook et al. 2006; Sidery
et al. 2014b) and have confirmed that when distance is
marginalised out, these volumes reduce to sky areas that
are consistent with two-dimensional KDE results. Our cred-
ible volumes have the expected proportionality with SNR,
scaling roughly � ��6

net.
Our results show that localizations for detections dur-

ing early observing runs would be � 104–105 Mpc3, corre-
sponding to � 102–103 potential host galaxies within the
GLADE catalogue (Dálya et al. 2018). Approximately half
of events have searched volumes which contain 102 galaxies
or fewer, and a few percent of events have searched volumes
which contain a single galaxy. Since our results do not in-
clude the e�ects of calibration uncertainty, they would be
lower bounds for any actual detections: for the (O1-like) HL
recoloured data set, we find that the median 90% credible
volume is 5 � 104 Mpc3 and for the HL Gaussian data set
it is 4 � 104 Mpc3; moving ahead to the (O2-like) HLV sce-
nario, the median 90% credible volume is 1 � 105 Mpc3 for
the Gaussian data set. Greater sensitivity of the detectors
means that we can detect signals from a greater distance and
hence are sensitive to sources in a larger volume. However,
localization does improve as further detectors are added to
the network: the median 90% credible volume in the HLV
scenario for a two-detector network is 3 � 105 Mpc3 but for
a three-detector network it is 1�105 Mpc3. The localization
improves rapidly as the SNR of the signal increases, and the
best localization occurs when there is significant SNR from
each of the three detectors. Addition of further detectors,
such as KAGRA (Aso et al. 2013) or the proposed LIGO-
India detector (Unnikrishnan 2013; Abbott et al. 2017a),
could further improve localization and the prospects of iden-
tifying a counterpart.
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Figure 60: Cumulative distribution function of 90% credible volumes for events observed
by the ground-based detector network. The credible volumes were computed by fitting a
Dirichlet Process Gaussian Mixture Model to posterior samples generated by LALInference.
Figure reproduced from Del Pozzo et al. (2018).


