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8 Examples of Bayesian statistics in gravitational wave
astronomy

In this section we will provide some examples of the application of Bayesian statistics in
gravitational wave astronomy. In most cases we will briefly outline what is done, and provide
references where further information can be obtained.

8.1 LIGO Parameter Estimation

Parameter estimation results for sources detected by the LIGO interferometers are obtained
and summarised as posterior distributions using the Bayesian techniques described earlier in
this course. Typically, LIGO parameter estimation results are quoted as posterior medians
and symmetric credible intervals. Figure 31 gives an example of this, showing the summary
of parameter estimation results for all of the events observed by LIIGO and Virgo during
the O1 and O2 observing runs (Abbott et al. (2019), Phys. Rev. X 9 031040).

LIGO/Virgo parameter estimation results in O1 and O2 were computed using the LAL-
Inference software suite, which includes two separate parameter estimation codes. LALIn-
ferenceMCM(C'is a Markov Chain Monte Carlo code, which generates posterior distributions
using the Metropolis-Hastings algorithm and proposal distributions that are tuned to features
expected in the likelihood for gravitational wave observations of compact binary inspirals.
Further details can be found in

e Rover, C., Meyer, R., and Christensen, N., Bayesian Inference on Compact Binary In-
spiral Gravitational Radiation Signals in Interferometric Data, Class. Quantum Grav.
23, 4895 (2006).

e van der Sluys, M., Raymond, V., Mandel, I., Rover, C., Christensen, N., Kalogera, V.,
Meyer, R., and Vecchio, A., Parameter Estimation of Spinning Binary Inspirals Using
Markov-Chain Monte Carlo, Class. Quantum Grav. 25, 184011 (2008).

LALInferenceNestis a nested sampling algorithm, which obtains candidate values for updates
to the live point set by carrying out short MCMC chains originating at the current lowest
likelihood point in the live point set. Further details can be found in

e Veitch, J., and Vecchio, A., Phys. Rev. D 81, 062003 (2010).
A summary of the LALInference package can be found in

e Veitch, J., et al., Parameter Estimation for Compact Binaries with Ground-Based
Gravitational- Wave Observations Using the LA LInference Software Library, Phys. Rev.
D 91, 042003 (2015).

and the version used in the analysis of the O2 events can be downloaded from
e https://git.ligo.org/lscsoft /lalsuite/tree/lalinference o2 .

From O3 onwards, an additional parameter estimation code, Bilby, has been developed
and used to obtain posterior distributions for LIGO/Virgo detections. This code uses generic
freely available Bayesian sampling codes to draw samples from the posterior distribution,
such as DYNESTY and PTMCMC. The rest of the code consists of wrappers and functions to
compute the correct likelihood to feed to the sampling codes. The description of the software
can be found in
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Event mi /Mo my/My  M/Mg Xt My/Mo  ap  Ena/(Moc?) oo/ (ergs™) dp/Mpc 2 AQ/deg?
GW150914 356757 30.6739 28.6717 —0.015012 63.1734 0.695007 31704 3.6704 x 10% 4401130 0.091053 182
GW151012 232114 13.6744 15271 0.05503) 3560098 0672017 1.670% 32008 x 10% 108013550 0.2150% 1523
GWI151226 13.7188 77722 89103 0.18707) 205704 0741057 1.0501  3.4707 x 10% 450480 0.09109: 1033
GW170104 30.8773 20.013¢ 214772 —0.041017 489770 0.661 0% 22107 33708 % 10% 9901310 0.2010%8 921
GWI170608 11.0173 7.6534  7.9%507  0.03%0y; 17.8737 0.69100: 09709 35794 % 10% 3204 0.07105%7 392
GW170729 50.21/82 34.015!, 354183 0371020 79.57]57 0.81107 4877 42702 x 10°° 28407390 0.497017 1041
GW170809 35.01%3 23.8731 249721  0.0870)7 563732 0.701058 27796 3,570 % 10% 10301320 0201095 308
GW170814 30.6135 252728 24111 0071013 532537 0721007 27504 37704 < 10% 6007350 0.1279%3 87
GW170817 1461013 1.271000 1.18610001 0.001097 <28 <089 >004 >01x10° 407, 0.01°3% 16
GW170818 354173 26,7733 265171 —0.097008 504740 0.671007 27103 34103 x 10% 10601550 0217097 39
GW170823 39.5744% 29.0M8]  29.2738  0.097032 6545151 0.72500 33700 3.6707 x 10%° 1940795 0.35%012 1666

Figure 31: Parameter estimation results summary from the first Gravitational Wave Tran-
sient Catalogue published by the LIGO /Virgo collaboration (Phys. Rev. X 9 031040 (2019)).
Results are presented as the median and 90% symmetric credible interval of the Bayesian
posterior distribution.

e Ashton, G., et al. (2019), Astrophys. J. Supp. 241, 27
and the software can be downloaded from
e https://git.ligo.org/lscsoft /bilby

As well as providing tables summarising the median and symmetric credible intervals
for the observed sources, LIGO papers typically include plots of the full Bayesian posterior
distributions. These take various forms. Two-dimensional joint posterior distributions are
often given for pairs of parameters that are correlated, such as the chirp mass and mass
ratio or the final mass and spin of the remnant black hole produced by the merger or the
sky location of the merger event. Examples of two-dimensional posterior distributions are
shown in Figure 32 and Figure 33. One dimensional posteriors are often plotted as “violin
plots” to allow comparison between the results for multiple events. The violin plot plots the
parameter value on the y-axis and the posterior density on the xz-axis, which is opposite to the
usual convention. Additionally, the posterior is reflected in the y-axis so that it is symmetric
about that axis for each event. The width of the resulting violin plot is proportional to the
posterior probability for the corresponding value of the parameter. An example is shown
in Figure 34. Posteriors in the spins of the black holes, which is fundamentally a three-
dimensional quantity, are typically represented by semi-circular density plots such as those
shown in Figure 35. The full 3D posterior is marginalised over the (poorly constrained)
azimuthal direction of the spin, and the resulting 2D posterior is represented on a semi-circle
with the spin-magnitude as the radial direction and the angle between the spin vector and
the orbital angular momentum as the angular direction. The density of the colour in these
plots is proportional to the posterior density for the corresponding spin vector.

LALInference is also used to obtain posterior deviations on parameters characterising
deviations from general relativity, to facilitate tests of GR. More details can be found, along
with results from analysis of the O1 and O2 events, in Abbott, B.P., et al., Phys. Rev. D
100, 104036.
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Figure 32: Joint two dimensional posterior on mass and mass ratio (left) and on final mass
and spin (right) for all of the events observed by LIGO/Virgo during the O1 and O2 observing
runs. Reproduced from Abbott et al. (2019), Phys. Rev. X 9 031040.

Figure 33: Sky location posterior distribution for all events observed by LIGO/Virgo during
the O1 and O2 observing runs. Reproduced from Abbott et al. (2019), Phys. Rev. X 9
031040.



Introduction to Statistics for GWs 131

Figure 34: One-dimensional marginalised posteriors on the mass ratio (left) and effective
spin (right) for all the events observed by LIGO/Virgo during the O1 and O2 observing
runs. The one-dimensional posteriors are represented as “violin plots” as described in the
text. Reproduced from Abbott et al. (2019), Phys. Rev. X 9 031040.
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Figure 35: Posteriors on the spins of the two components in the binary for all of the events
observed by LIGO/Virgo during the O1 and O2 observing runs. The distance from the
origin represents the magnitude of the spin, and the angle represents the direction of the
spin. The two halves of the plot are for the primary (left) and secondary (right) object in
the binary. The density of colour is proportional to the posterior density for that spin value.
Reproduced from Abbott et al. (2019), Phys. Rev. X 9 031040.
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8.2 Reduced order modelling

LIGO parameter estimation codes are computationally expensive, primarily due to the cost of
evaluating models of the gravitational waveforms to compute likelihoods. To make inference
more efficient, it is advantageous to have models of the signals that are quicker to evaluate.
This has been achieved by building reduced order models and surrogate models. The
principle of both approaches is quite similar. First, a basis for the space of waveforms is
found that has lower dimensionality than the number of samples in the original waveforms.
Then either a fast interpolant is constructed to map physical parameters to the weights of
the basis functions (in the case of some surrogate models, the interpolant is built directly
for the waveform itself) or a reduced order quadrature representation of the likelihood
is constructed. In the latter approach, a projection of the target waveform onto the reduced
basis is obtained not by using overlaps to find the best projection, but instead by requiring
the target waveform to exactly match a linear combination of basis waveforms at a number
of points, called quadrature interpolation points, equal to the number of functions in
the basis. This allows the likelihood quadrature to be reduced to a sum over the target
waveform evaluated at the quadrature points weighted by data-dependent constants that
can be computed prior to running inference from overlaps of the basis functions with the
data

( |d—4§R/ ~X? df

N/2

~ AR Zd* e (f)AFAT| R(X)

= 4%Zwkh(Fk;X). (109)

k=1

Reduced order quadrature approximations to likelihoods are the state of the art in LIGO
parameter estimation, but they require being able to evaluate the target waveform at certain
frequencies quickly and so can only really be used with frequency-domain waveform approx-
imants. Surrogate models can be used to accelerate inference with time-domain waveform
models.

8.3 Population inference

Inference on the properties of the population of sources form which the observed LIGO
events are drawn also uses Bayesian methods, specifically Bayesian hierarchical modelling.
We encountered one example of this in Section 4.9, which is the inference of cosmological
parameters using gravitational wave observations of binary neutron star mergers with coun-
terparts. Other examples include inference on the rate of mergers of different types of source
in the Universe, and on the distributions of masses and spins of black holes and neutron
stars. Full details on the range of population analyses carried out for the O1 and O2 events
can be found in Abbott, B.P., et al., Astrophys. J. Lett. 882, 1.24 (2019) and references
therein, but we summarise some of the key analyses here.
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8.3.1 Rate estimation

Accurate estimation of the rate of events in the Universe is complicated by confusion with
detector noise, i.e., identifying which events are real gravitational wave events and which
are instrumental artefacts, and by the need to make assumptions about the distribution of
parameters of sources in the population. The first problem was tackled in Farr, W., Gair,
J.R., Mandel, 1., and Cutler, C., Phys. Rev. D 91, 023005 (2014). If the output of the
detector is represented by a sequence of values of a detection statistic, x, and any statistic
value that exceeds some threshold, x;,, is regarded as a detection, then the observed data
is a set of detection statistic values above threshold, {z;}. Some of these events correspond
to real foreground events, while others arise due to noise fluctuations in the detector and are
background. We introduce an (unobserved) parameter f; for each event such that f; =1 is
it is a foreground event and f;=0 if it is background. The foreground and background events
are assumed to be generated by independent Poisson processed with rates

AN, AN,

E:Rff(l‘aef)? d.ﬁE

- Rbb($7 91))

and corresponding cumulative distributions F'(z,6;), B(z,6;). Here Ry and R, are the fore-
ground and background rates respectively and 6 and 6, represent any unknown parameters
that characterise the foreground and background distributions. The combined posterior for
the rates, event flags and distribution parameters is

4 w B p(0)
p(fi, Ry, Ry, O]dio, N) = (dtm _ llglRff 24, 0) ilEORbb@l,e) exp| (Rf+Rb)]\/m

where p(6) is the prior on the posterior parameters and we are using a Jeffreys’ prior p(R) o
1/ V'R on the rates. The subscript on dy, indicates that we are using time-ordered data. The
data could also be analysed ordered by ranking statistic. This posterior can be marginalised
over the unknown flags to give posteriors on the rates, or over the rates to give posterior
probabilities for f; = 1 for each event.

One complication with this approach is that it relies on a model for the foreground and
background distributions. These can be estimated by injections and time-slides, but, since
LIGO is not equally sensitive to all types of CBC event, the former requires imposing some
model of the astrophysical population from which the events are drawn. One approach to
this is to assume that all events in the Universe are the same as the one that has been
observed. This approach was used in Kim, Kalogera and Lorimer (Astrophys. J. 584, 985
(2003)) to estimate the rate of double neutron star mergers and so is often referred to as the
“KKL method”. In the first LIGO detection paper, for GW150914, the combination of the
rate estimation accounting for confusion (FGMC) and the KKL method was used to infer
the rate of binary black hole mergers. The application of this “alphabet soup” method was
complicated by the fact that the data being analysed to infer the background for GW150914
contained a second CBC trigger, LVT151012. The parameters of this event were completely
different to GW150914, so the KKL method could still be applied, but generalising to the
case where all events in the Universe were either like GW150914 or LVT151012. Further
details can be found in Abbott, B.P., et al. Astrophys. J. Lett. 833, 1 (2016) and Abbott,
B.P., et al. Astrophys. J. Supp. 227, 14 (2016).

One additional trigger, GW151226, was present in the LIGO O1 data, and that again
had sufficiently distinct parameters that the KKL approach could be used. In O2, the events
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began to have much more posterior overlap and so this method could no longer be used.
Now, a model of the population is assumed in event rate estimation. Recent analyses have
used both a power-law mass distribution or a flat in log-mass distribution in an attempt
to bound the range of possible rate, but future results are likely to shift towards a single
combined analysis of the population parameters and rate.

8.3.2 Black hole mass distribution

The mass distribution of stellar-origin black holes in binaries can be inferred from LIGO/Virgo
observations in a hierarchical analysis by placing a prior on the mass of individual events
that depends on some unknown parameters that can be constrained from analysing the full
set of events. In Abbott, B.P., et al., Astrophys. J. Lett. 882, 124 (2019) three different
models of the mass function were used. Models A and B assumed a power law distribution
on mass and mass ratio

C(my)mi%q% if muin < ma < my < Mippax
p(mla m2|mmin7 Mmax, &, Bq) X O otherwise .

In model A, myin = 5Mg, B, = 0 and the only free parameters are myax and «. In model
B, all four parameters are allowed to vary. The third model mixes a power-law component
of the above form, with a Gaussian component, designed to fit any excess of events near the
lower mass limit of the pair-instability supernova mass gap. The model is

p(m]0) = [(1 = A\) AO)MT®O (M — 111) + A B(6) exp (—Mﬂ S(mi, Mg, 6m)

202,
p(q = ma/mi|my, 0) = C(my, 0)¢% S (ma, Mupin, 0m). (110)

The mass distribution obtained by fitting these models to the O1 and O2 data is shown in
Figure 36.

8.3.3 Black hole spin distribution

A hierarchical analysis of LIGO/Virgo events can also provide insight into the spin distribu-
tion. This can be done either parametrically or non-parametrically and both analyses were
done for the O1 and O2 events in Abbott, B.P., et al., Astrophys. J. Lett. 882, L.24 (2019).
The parametric approach models the spin magnitude using a Beta distribution

ade (1 — q;)Pat

B, Ba)

while the non-parametric analysis models the spin-magnitude distribution as a set of heights
of a binned distribution, with the bin heights free parameters to be determined by the obser-
vations. For example, a three-bin distribution (Farr, B., Holz, D., and Farr, W., Astrophys.
J. 854, 1.9 (2018))

p(ai|aaa /Ba) =

Ar/3 0<a<1/3
pla) =< Ay/3 1/3<a<2/3 .

The posteriors obtained from applying these models to the O1 and O2 events are shown in
Figure 37.
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Figure 36: Black hole mass function inferred from LIGO/Virgo events observed in the O1
and O2 observing runs. Figure reproduced from Abbott, B.P., et al., Astrophys. J. Lett.

882, L24 (2019).
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The spin direction is also a parameter of interest astrophysically, as different formation
scenarios predict either isotropically distributed spin directions, or a preference for spins to
be aligned with the angular momentum of the binary. To capture this, the analysis of the
O1 and O2 data used a mixture model

(1-¢ ¢ exp(—(1 — cost;)?/20%)
T @ H oserf(v/2/0;)

p(costy, costa|oy, 09,() =
i€{1,2}

At present, LIGO measurements are not sufficiently informative about spins to strongly
constrain the parameters of the model.

8.3.4 Rate evolution

The FGMC+KKL method described earlier assumes that the rate of mergers is constant,
but in principle this could evolve over cosmic history (the FGMC framework can handle this,
but the interpretation of Ry is different, as the average rate over the sensitive volume of the
detector). An evolution of the rate can be explicitly included and constrained by introducing
an extra parameter into the rate density

dR
—=(210) = Rop(£]0)(1 + 2)*.

dg
The analysis of the O1 and O2 events provided weak evidence for an evolution in rate with
redshift, but this was mostly due to the event GW170729, which was the most marginal
detection. The rate evolution will be better constrained by the order of magnitude increase

in events expected in O3 and future observing runs.

8.4 Model selection

Bayesian methods are also applied to model selection using the LIGO/Virgo observations,
through the evaluation of evidence ratios or Bayes factors for pairs of alternative hy-
potheses for the data. Some examples of applications to gravitational wave data are

e Test for the presence of a signal in the data after the end of the merger of the two
neutron stars in GW170817. Such a signal might be evidence that the merger project
was a hypermassive neutron star rather than a black hole. For GW170817 the Bayes
factor for the noise model over the signal model was 256.79 (Abbott, B.P. et al., Phys.
Rev. X 9 011001 (2019)), providing strong evidence that no such signal was present.

e Test of the polarisation state of gravitational waves. Possible models are that the
gravitational waves have tensor polarisation, as expected in GR, or have scalar polar-
isation or vector polarisation. The analysis of GW170818 gave Bayes factors of 12 for
tensor versus vector polarisation and 407 for tensor versus scalar, while the analysis of
GW170814 gave Bayes’ factors of 30 and 220 respectively (Abbott, B.P. jet al., Phys.
Rev. D 100 104036 (2019)).

e Tests of the no-hair property of the remnant black hole formed in a merger, by compar-
ing the properties of the observed ringdown radiation to that predicted by GR (Brito,
Buonanno and Raymond, Phys. Rev. D 98, 084038 (2018)).
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e Probing alternative theories of gravity. For example, looking for evidence for dynamical
gravity with the polarisation of continuous gravitational waves (Isi et al., Phys. Rewv.
D 96, 042001 (2017)).

8.5 Source reconstruction

Although Bayesian inference relies on the existence of models, it is also possible to use these
methods to recover “unmodelled” sources. One such implementation is the BAYESWAVE
algorithm. The method works by modelling the noise and signals in the data from the
various detectors as a superposition of simple components. BAYESWAVE represents the
noise as a combination of a smooth PSD component, described by a cubic spline, lines
represented by Lorentzians and glitches modelled by wavelets. Signals in the data are also
modelled by wavelets, but with parameters that are common across the detectors, as opposed
to the noise components which are independent in different detectors. Wavelets are simple
functions that are compact in both time and frequency. We will encounter these again in the
non-parametric regression section of this course. There are many different wavelet families,
but the wavelets used in BAYESWAVE are known as the Morley-Gabor basis.

BAYESWAVE fits itsmodel using reversible jump MCMC. The reversible jump element is
required to add or remove wavelet or line components, as the number of these required is
not known a priori. Further details on the BAYESWAVE algorithm can be found in

e Cornish, N.J., and Littenberg, T.B., Class. Quantum Grav. 32, 135012 (2015).
e Littenberg, T.B., and Cornish, N.J., Phys. Rev. D 91, 084034 (2015).

BAYEWAVE is used in LIGO analyses for PSD estimation, glitch removal and for non-
parametric waveform reconstruction. The good agreement between the BAYESWAVE recon-
structed waveform and the best fit model found by parameter estimation for GW150914 (see
Figure 38) provided extra support to the fact that this was a true signal.

8.6 Rapid localisation

Since the start of the O1 observing run, LIGO/Virgo have been sending out triggers to
facilitate follow-up of gravitational wave events by electromagnetic telescopes. To avoid
delays to these alerts, it is necessary to rapidly estimate the sky location of the triggers so
that astronomers know where to point their telescopes. Bayesian techniques are also used
for this purpose. Full Bayesian parameter estimation is not possible in low-latency, so the
rapid localisation algorithms are not truly Bayesian, but make approximations in evaluating
the posterior that allow it to be computed quickly.

The BAYESTAR algorithm replaces the full likelihood by the autocorrelation likelihood,
which is the likelihood evaluated at the maximum likelihood parameter values, as returned
by the online search algorithms. This autocorrelation likelihood takes the form

1 ‘
exp | =5 Z P2+ Z piR {e iz (1)}

where p; denotes the signal to noise ratio in detector i, 7; and 7; are the phase and time of
arrival of the trigger in detector ¢ and z;(t) is the time-series of the matched filter overlap
in detector i. The marginalisation of this integral over all parameters except sky location is
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Figure 38: BAYESWAVE reconstruction of GW150914 (labelled “unmodelled”), compared to
the waveform corresponding to the maximum a posteriori parameters obtained by param-
eter estimation (labelled “modelled”) and a numerical relativity waveform with consistent
parameters. Figure reproduced from Abbott, B.P., et al., Phys. Rev. Lett. 116, 061102

(2016).
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accelerated using approximations to the marginalisation integrals and by employing look-up
tables. The result of running the algorithm is a sky map probability density, i.e., a weighting
of pixels on the sky by their relative probability of being the true location of the observed
transient.

More details on the BAYESTAR algorithm can be found in

e Singer, L., and Price, L., Phys. Rev. D 93, 024013 (2016).

Another rapid localisation algorithm used in LIGO is LALINFERENCEBURST or LIB.
In this case, computational savings in the model are obtained by representing an arbitrary
signal as a single sine-Gaussian

hrss
V(1 + cos(2¢0)e=@) /4 fo /7

While this simple model cannot accurately describe all signals, it does represent the rela-
tive amplitudes of the signal in different detectors correctly and that is enough to obtain
reasonable sky-localisation accuracies.

There is also an online version of LIB, called OLIB, that uses Bayesian evidences com-
puted by LIB to assess triggers identified in a time-frequency analysis. The evidences for the
triggers being noise versus signal and being coherent in different detectors versus incoherent
are used to identify potentially interesting candidate events for follow-up. OLIB was running
at the time of GW150914 and, along with CWB, was the first algorithm to identify this
signal in the data.

More details on the LALINFERENCEBURST algorithm and on oLIB, can be found in

hy(t) = cos(a) sin(27 fo(t — to) + go)e” 10/

e Essick, R., Vitale, S., Katsavounidis, E., Vedovato, G., and Klimenko, S., Astrophys.
J. 800, 81 (2015).

e Lynch, R., Vitale, S., Essick, R., Katsavounidis, E., and Robinet, F., Phys. Rev. D
95, 104046 (2017).

8.7 LISA parameter estimation

Bayesian methods have also been used in the context of data analysis development for LISA,
mostly in the framework of the sequence of Mock LISA Data Challenges (MLDCs) that took
place between 2006 and 2010. Bayesian techniques, with some frequentist simplifications
such as the use of the F-statistic, were used not only to characterise the identified sources,
but also to search for sources in the data set. A variety of techniques were employed,
including Markov Chain Monte Carlo algorithms, genetic algorithms and nested sampling.
These methods were successfully able to find and characterise sources in the sample data sets,
although these were somewhat simplified, containing only Gaussian instrumental noise with
known PSD and a reduced number of astrophysical sources. In Figure 39 we show a table of
parameter measurement precisions of supermassive black hole mergers for all submissions to
the third round of the MLDC. The final two columns of the table show the fitting factor, i.e.,
overlap, of the submitted entry with the true source in each of the two independent LISA
data channels, A and F.

The use of Bayesian techniques for searches as well as parameter estimation in the LISA
context is motivated by the nature of the data. In the LIGO/Virgo context, most sources are
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source group | AM./M. An/n At. Asky Aay Aay AD/D SNR FF 4 FFg
(SNRtrue) x10~% x10~14 (sec) (deg) x10™* x107* x10~2

MBH-1 AEI 2.4 6.1 62.9 11.6 7.6 47.4 8.0]1657.71 0.9936 0.9914

(1670.58) CambAEI 3.4 40.7 24.8 2.0 8.5 79.6 0.71657.19 0.9925 0.9917

MTAPC 24.8 41.2 619.2 171.0 13.3 28.7 4.01669.97 0.9996 0.9997

JPL 40.5 186.6 23.0 26.9 39.4 66.1 6.9 1664.87 0.9972 0.9981

GSFC 1904.0 593.2 183.9 82.5 5.7 124.3 94.9( 267.04 0.1827 0.1426

MBH-3 AEI 9.0 5.2 100.8 175.9 6.2 18.6 2.7 846.96 0.9995 0.9989

(847.61) CambAEI 13.5 57.4 138.9 179.0 21.3 7.2 1.5| 847.04 0.9993 0.9993

MTAPC 333.0 234.1 615.7 80.2 71.6 177.2 16.1| 842.96 0.9943 0.9945

JPL 153.0 51.4 356.8 11.2 187.7 414.9 2.7| 835.73 0.9826 0.9898

GSFC 8168.4 2489.9 3276.9 77.9 316.3 69.9 95.6| 218.05 0.2815 0.2314

MBH-4 AEI 4.5 752 31.4 0.1 47.1 173.6 9.1| 160.05 0.9989 0.9994
(160.05) CambAEI 3.2 171.9 30.7 0.2 52.9 346.1 21.6| 160.02 0.9991 0.9992
MTAPC 48.6 2861.0 5.8 7.3 33.1 321.1 33.0| 149.98 0.8766 0.9352

JPL 302.6 262.0 289.3 4.0 47.6 184.5 28.3| 158.34 0.8895 0.9925

GSFC 831.3 1589.2 1597.6 94.4 59.8 566.7 95.4 | —45.53 —0.1725 —0.2937

MBH-2 AEI 1114.1 952.2 38160.8 171.1 331.7 409.0 15.3 20.54 0.9399 0.9469
(18.95) CambAEI 88.7 386.6 6139.7 172.4 210.8 130.7 24.4 20.36 0.9592 0.9697
MTAPC 128.6 45.8 16612.0 8.9 321.4 2424 13.1 20.27 0.9228 0.9260

JPL 287.0 597.7 11015.7 11.8 375.3 146.3 9.9 18.69 0.9661 0.9709

MBH-6 AEI 1042.3 1235.6 82343.2 2.1 258.2 191.6 26.0 13.69 0.9288 0.9293

(12.82) CambAEI 5253.2 1598.8 953108.0 158.3 350.8 2154 294 10.17 0.4018 0.4399
MTAPC| 56608.7 296.7 180458.8 119.7 369.2 297.6  25.1 11.34 -0.0004 0.0016

Figure 39: Summary of the fractional errors in the recovery of parameters of the supermassive
black hole binary mergers in the third MLDC data challenge. The final two columns, labelled
FF4 and FFg, give the overlap (or “fitting factor”) of the waveform corresponding to the
recovered parameters with the true injected waveform. Each row represents a separate entry
from one of the groups responding to the challenge. Table reproduced from Babak, S., et
al., Class. Quantum Grav. 27, 084009 (2010).
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type! v (mHz) p/M. M/M. € fq ©s A a/M? SNR
True 0.1920421 10.296 9517952 0.21438 1.018 4910 0.4394 0.69816 120.5
Found 0.1920437 10.288 9520796 0.21411 1.027 4.932 0.4384 0.69823 118.1
True 0.34227777 9.771 5215577 0.20791 1.211 4.6826 1.4358 0.63796 132.9
Found 0.34227742 9.769 5214091 0.20818 1.172 4.6822 1.4364 0.63804 132.8
True 0.3425731 9.697 5219668 0.19927 0.589 0.710 0.9282 0.53326 79.5
Found 0.3425712 9.694 5216925 0.19979 0.573 0.713 0.9298 0.53337 79.7
True 0.8514396 10.105 955795 0.45058 2.551 0.979 1.6707 0.62514 101.6
Found 0.8514390 10.106 955544 0.45053 2.565 1.012 1.6719 0.62534 96.0
True 0.8321840 9.790 1033413 0.42691 2.680 1.088 2.3196 0.65829 55.3
Found 0.8321846 9.787 1034208 0.42701 2.687 1.053 2.3153 0.65770 55.6
Blind

True 0.1674472 10.131 10397935 0.25240 2.985 4.894 1.2056 0.65101 52.0
Found 0.1674462 10.111 10375301 0.25419 3.023 4.857 1.2097 0.65148 51.7
True 0.9997627 9.7478 975650 0.360970 1.453 4.95326 0.5110 0.65005 122.9
Found 0.9997626 9.7479 975610 0.360966 1.422 495339 0.5113 0.65007 116.0

Figure 40: Maximum a posteriori parameter values (labelled “Found”) recovered for all five
EMRIs in the MLDC data set 1B (upper rows) and two additional random chosen sources.
These are compared to the “Ture” parameters which were used ot generate the injected
signals. Table reproduced from Babak, S., Gair, J.R., and Porter, E.K., Class. Quantum
Grav.26, 135004 (2009).

of short duration relative to the time between signals, and so it is necessary to efficiently sift
through large amounts of data to find candidate sources of interest. In the LISA context, the
source duration is comparable to the length of the data stream and so the entire data stream
is relevant for the analysis of all sources. It is natural therefore to find and characterise
sources simultaneously.

While the MLDCs demonstrated the effectiveness of the use of Bayesian methods to find
and characterise most source types, several open questions remain, in particular related to
the impact of non-stationary noise and instrumental artefacts such as gaps, the full extent of
source confusion and the detection and characterisation of extreme-mass-ratio inspirals (EM-
RIs). While the EMRI sources in the MLDC data sets were successfully characterised under
simplified assumptions (see Figure 41), the likelihood for an EMRI is very complicated, with
many secondary maxima in parameter space. The successful algorithms relied on knowledge
of the structure of the likelihood surface, which was specific to the simplified model of the
EMRI employed in the MLDC, and the fact that all identified secondaries were generated by
the same EMRI signal. While the structure of the likelihood surface can probably be learned
for more accurate waveform models, the correct grouping of secondary modes will be much
more challenging for real LISA data which could contain many hundreds of EMRISs.

Nested sampling has also been used in the context of LISA data analysis. In fact, the first
application of the MULTINEST nested sampling algorithm in a gravitational wave context
was to the characterisation of supermassive black hole mergers in LISA data (Feroz, F., Gair,
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Bayesian Evidence Ratio as a Function of SNR for a Cosmic String Signal
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Figure 41: Left panel: posterior on the parameters characterising one of the cosmic string
cusp gravitational wave bursts in the MLDC round 3 cosmic string data set. Right panel:
evidence ratio in favour of the true (cosmic string cusp) model versus an alternative (sine-
Gaussian) model for the burst, as a function of the burst signal-to-noise ratio. Figures
reproduced from Feroz, F., Gair, J.R., Graff, P., Hobson, M.P., and Lasenby, A., Class.
Quantum Grav. 27, 075010 (2010).

J.R., Hobson, M.P., and Porter, E.K., Class. Quantum Grav. 26, 215003). MULTINEST was
also used to find and characterise supermassive black hole mergers and gravitational wave
bursts from cosmic string cusps in MLDC data. In the latter case, the computed Bayesian
evidences were used to test the hypothesis that the burst signals were consistent with a
cosmic string cusp as opposed to a generic sine-Gaussian burst model (see Figure 7?7 and
Feroz, F., Gair, J.R., Graff, P., Hobson, M.P., and Lasenby, A., Class. Quantum Grav. 27,
075010 (2010)).

Further details on LISA data analysis can be found in the MLDC papers, and references
therein:

e Arnaud, K.A., et al. The Mock LISA Data Challenges: An overview, AIP Conf. Proc.
873, 619 (2006).

e Arnaud, K.A., et al., A How-To for the Mock LISA Data Challenges, AIP Conf. Proc.
873, 625 (2006).

e Arnaud, K.A., et al., Report on the first round of the Mock LISA Data Challenges,
Class. Quantum Grav. 24, S529 (2007).

e Arnaud, K.A., et al., An overview of the second round of the Mock LISA Data Chal-
lenges, Class. Quantum Grav. 24, S551 (2007).

e Babak, S., et al., Report on the second Mock LISA Data Challenge, Class. Quantum
Grav. 25, 114037 (2008).

e Babak, S., et al., The Mock LISA Data Challenges: from Challenge 1B to Challenge
3, Class. Quantum Grav. 25, 184026 (2008).
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e Babak, S., et al., The Mock LISA Data Challenges: from Challenge 3 to Challenge 4,
Class. Quantum Grav. 27, 084009 (2010).



