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8 Examples of Bayesian statistics in gravitational wave
astronomy

In this section we will provide some examples of the application of Bayesian statistics in
gravitational wave astronomy. In most cases we will briefly outline what is done, and provide
references where further information can be obtained.

8.1 LIGO Parameter Estimation

Parameter estimation results for sources detected by the LIGO interferometers are obtained
and summarised as posterior distributions using the Bayesian techniques described earlier in
this course. Typically, LIGO parameter estimation results are quoted as posterior medians
and symmetric credible intervals. Figure 31 gives an example of this, showing the summary
of parameter estimation results for all of the events observed by LIIGO and Virgo during
the O1 and O2 observing runs (Abbott et al. (2019), Phys. Rev. X 9 031040).

LIGO/Virgo parameter estimation results in O1 and O2 were computed using the LAL-
Inference software suite, which includes two separate parameter estimation codes. LALIn-
ferenceMCMC is a Markov Chain Monte Carlo code, which generates posterior distributions
using the Metropolis-Hastings algorithm and proposal distributions that are tuned to features
expected in the likelihood for gravitational wave observations of compact binary inspirals.
Further details can be found in

• Röver, C., Meyer, R., and Christensen, N., Bayesian Inference on Compact Binary In-
spiral Gravitational Radiation Signals in Interferometric Data, Class. Quantum Grav.
23, 4895 (2006).

• van der Sluys, M., Raymond, V., Mandel, I., Röver, C., Christensen, N., Kalogera, V.,
Meyer, R., and Vecchio, A., Parameter Estimation of Spinning Binary Inspirals Using
Markov-Chain Monte Carlo, Class. Quantum Grav. 25, 184011 (2008).

LALInferenceNest is a nested sampling algorithm, which obtains candidate values for updates
to the live point set by carrying out short MCMC chains originating at the current lowest
likelihood point in the live point set. Further details can be found in

• Veitch, J., and Vecchio, A., Phys. Rev. D 81, 062003 (2010).

A summary of the LALInference package can be found in

• Veitch, J., et al., Parameter Estimation for Compact Binaries with Ground-Based
Gravitational-Wave Observations Using the LALInference Software Library, Phys. Rev.
D 91, 042003 (2015).

and the version used in the analysis of the O2 events can be downloaded from

• https://git.ligo.org/lscsoft/lalsuite/tree/lalinference o2 .

From O3 onwards, an additional parameter estimation code, Bilby, has been developed
and used to obtain posterior distributions for LIGO/Virgo detections. This code uses generic
freely available Bayesian sampling codes to draw samples from the posterior distribution,
such as dynesty and ptmcmc. The rest of the code consists of wrappers and functions to
compute the correct likelihood to feed to the sampling codes. The description of the software
can be found in
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and calibration have not changed, a reanalysis is valuable
for the following reasons: (i) Parameter estimation analyses
use an improved method for estimating the power spectral
density of the detector noise [53,54] and frequency-depen-
dent calibration envelopes [98]; (ii) we use two waveform
models that incorporate precession and combine their
posteriors to mitigate model uncertainties.
Key source parameters for the ten BBHs and one BNS are

shown in Table III. We quote the median and symmetric 90%
credible intervals for inferred quantities. For BBH coales-
cences, parameter uncertainties include statistical and sys-
tematic errors from averaging posterior probability
distributions over the two waveform models, as well as
calibration uncertainty. Apart from GW170817, all posterior
distributions of GW events are consistent with originating
from BBHs. Posterior distributions for all GW events are
shown in Figs. 4–8. Mass and tidal deformability poste-
riors for GW170817 are shown in Fig. 9. For BBH
coalescences, we present combined posterior distributions
from an effective precessing spin waveform model
(IMRPhenomPv2) [25,26,49] and a fully precessing
model (SEOBNRv3) [27,28,30]. For the analysis of
GW170817, we present results for three frequency-
domain models IMRPhenomPv2NRT [25,26,32,49,99],
SEOBNRv4NRT [29,32,77,99], and TaylorF2 [35,36,
38,100–112] and two time-domain models SEOBNRv4T
[31] and TEOBResumS [33,113]. Details on Bayesian
parameter estimation methods, prior choices, and wave-
form models used for BBH and BNS systems are provided
in Appendix B, B 1, and B 2, respectively. We discuss an

analysis including higher harmonics in the waveform in
Appendix B 3 and find results broadly consistent with the
analysis presented below. The impact of prior choices on
selected results is discussed in Appendix C.

A. Source parameters
The GW signal emitted from a BBH coalescence

depends on intrinsic parameters that directly characterize
the binary’s dynamics and emitted waveform, and extrinsic
parameters that encode the relation of the source to the
detector network. In general relativity, an isolated BH is
uniquely described by its mass, spin, and electric charge
[114–118]. For astrophysical BHs, we assume the electric
charge to be negligible. A BBH undergoing quasicircular
inspiral can be described by eight intrinsic parameters, the
two masses mi, and the two three-dimensional spin vectors
S⃗i of its component BHs defined at a reference frequency.
Seven additional extrinsic parameters are needed to
describe a BH binary: the sky location (right ascension
α and declination δ), luminosity distance dL, the orbital
inclination ι and polarization angle ψ , the time tc, and phase
ϕc at coalescence.
Since the maximum spin a Kerr BH of mass m can

reach is ðGm2Þ=c, we define dimensionless spin vectors
χ⃗i ¼ cS⃗i=ðGm2

i Þ and spin magnitudes ai ¼ cjS⃗ij=ðGm2
i Þ. If

the spins have a component in the orbital plane, then the
binary’s orbital angular momentum L⃗ and its spin vectors
precess [119,120] around the total angular momentum
J⃗ ¼ L⃗þ S⃗1 þ S⃗2.

TABLE III. Selected source parameters of the 11 confident detections. We report median values with 90% credible intervals that
include statistical errors and systematic errors from averaging the results of two waveform models for BBHs. For GW170817, credible
intervals and statistical errors are shown for IMRPhenomPv2NRTwith a low spin prior, while the sky area is computed from TaylorF2
samples. The redshift for NGC 4993 from Ref. [94] and its associated uncertainties are used to calculate source-frame masses for
GW170817. For BBH events, the redshift is calculated from the luminosity distance and assumed cosmology as discussed in
Appendix B. The columns show source-frame component masses mi and chirp massM, dimensionless effective aligned spin χeff , final
source-frame massMf , final spin af , radiated energy Erad, peak luminosity lpeak, luminosity distance dL, redshift z, and sky localization
ΔΩ. The sky localization is the area of the 90% credible region. For GW170817, we give conservative bounds on parameters of the final
remnant discussed in Sec. V E.

Event m1=M⊙ m2=M⊙ M=M⊙ χeff Mf=M⊙ af Erad=ðM⊙c2Þ lpeak=ðerg s−1Þ dL=Mpc z ΔΩ=deg2

GW150914 35.6þ4.7
−3.1 30.6þ3.0

−4.4 28.6þ1.7
−1.5 −0.01þ0.12

−0.13 63.1þ3.4
−3.0 0.69þ0.05

−0.04 3.1þ0.4
−0.4 3.6þ0.4

−0.4 × 1056 440þ150
−170 0.09þ0.03

−0.03 182

GW151012 23.2þ14.9
−5.5 13.6þ4.1

−4.8 15.2þ2.1
−1.2 0.05þ0.31

−0.20 35.6þ10.8
−3.8 0.67þ0.13

−0.11 1.6þ0.6
−0.5 3.2þ0.8

−1.7 × 1056 1080þ550
−490 0.21þ0.09

−0.09 1523

GW151226 13.7þ8.8
−3.2 7.7þ2.2

−2.5 8.9þ0.3
−0.3 0.18þ0.20

−0.12 20.5þ6.4
−1.5 0.74þ0.07

−0.05 1.0þ0.1
−0.2 3.4þ0.7

−1.7 × 1056 450þ180
−190 0.09þ0.04

−0.04 1033

GW170104 30.8þ7.3
−5.6 20.0þ4.9

−4.6 21.4þ2.2
−1.8 −0.04þ0.17

−0.21 48.9þ5.1
−4.0 0.66þ0.08

−0.11 2.2þ0.5
−0.5 3.3þ0.6

−1.0 × 1056 990þ440
−430 0.20þ0.08

−0.08 921

GW170608 11.0þ5.5
−1.7 7.6þ1.4

−2.2 7.9þ0.2
−0.2 0.03þ0.19

−0.07 17.8þ3.4
−0.7 0.69þ0.04

−0.04 0.9þ0.0
−0.1 3.5þ0.4

−1.3 × 1056 320þ120
−110 0.07þ0.02

−0.02 392

GW170729 50.2þ16.2
−10.2 34.0þ9.1

−10.1 35.4þ6.5
−4.8 0.37þ0.21

−0.25 79.5þ14.7
−10.2 0.81þ0.07

−0.13 4.8þ1.7
−1.7 4.2þ0.9

−1.5 × 1056 2840þ1400
−1360 0.49þ0.19

−0.21 1041

GW170809 35.0þ8.3
−5.9 23.8þ5.1

−5.2 24.9þ2.1
−1.7 0.08þ0.17

−0.17 56.3þ5.2
−3.8 0.70þ0.08

−0.09 2.7þ0.6
−0.6 3.5þ0.6

−0.9 × 1056 1030þ320
−390 0.20þ0.05

−0.07 308

GW170814 30.6þ5.6
−3.0 25.2þ2.8

−4.0 24.1þ1.4
−1.1 0.07þ0.12

−0.12 53.2þ3.2
−2.4 0.72þ0.07

−0.05 2.7þ0.4
−0.3 3.7þ0.4

−0.5 × 1056 600þ150
−220 0.12þ0.03

−0.04 87

GW170817 1.46þ0.12
−0.10 1.27þ0.09

−0.09 1.186þ0.001
−0.001 0.00þ0.02

−0.01 ≤ 2.8 ≤ 0.89 ≥ 0.04 ≥ 0.1 × 1056 40þ7
−15 0.01þ0.00

−0.00 16

GW170818 35.4þ7.5
−4.7 26.7þ4.3

−5.2 26.5þ2.1
−1.7 −0.09þ0.18

−0.21 59.4þ4.9
−3.8 0.67þ0.07

−0.08 2.7þ0.5
−0.5 3.4þ0.5

−0.7 × 1056 1060þ420
−380 0.21þ0.07

−0.07 39

GW170823 39.5þ11.2
−6.7 29.0þ6.7

−7.8 29.2þ4.6
−3.6 0.09þ0.22

−0.26 65.4þ10.1
−7.4 0.72þ0.09

−0.12 3.3þ1.0
−0.9 3.6þ0.7

−1.1 × 1056 1940þ970
−900 0.35þ0.15

−0.15 1666

B. P. ABBOTT et al. PHYS. REV. X 9, 031040 (2019)

031040-12

Figure 31: Parameter estimation results summary from the first Gravitational Wave Tran-
sient Catalogue published by the LIGO/Virgo collaboration (Phys. Rev. X 9 031040 (2019)).
Results are presented as the median and 90% symmetric credible interval of the Bayesian
posterior distribution.

• Ashton, G., et al. (2019), Astrophys. J. Supp. 241, 27

and the software can be downloaded from

• https://git.ligo.org/lscsoft/bilby

As well as providing tables summarising the median and symmetric credible intervals
for the observed sources, LIGO papers typically include plots of the full Bayesian posterior
distributions. These take various forms. Two-dimensional joint posterior distributions are
often given for pairs of parameters that are correlated, such as the chirp mass and mass
ratio or the final mass and spin of the remnant black hole produced by the merger or the
sky location of the merger event. Examples of two-dimensional posterior distributions are
shown in Figure 32 and Figure 33. One dimensional posteriors are often plotted as “violin
plots” to allow comparison between the results for multiple events. The violin plot plots the
parameter value on the y-axis and the posterior density on the x-axis, which is opposite to the
usual convention. Additionally, the posterior is reflected in the y-axis so that it is symmetric
about that axis for each event. The width of the resulting violin plot is proportional to the
posterior probability for the corresponding value of the parameter. An example is shown
in Figure 34. Posteriors in the spins of the black holes, which is fundamentally a three-
dimensional quantity, are typically represented by semi-circular density plots such as those
shown in Figure 35. The full 3D posterior is marginalised over the (poorly constrained)
azimuthal direction of the spin, and the resulting 2D posterior is represented on a semi-circle
with the spin-magnitude as the radial direction and the angle between the spin vector and
the orbital angular momentum as the angular direction. The density of the colour in these
plots is proportional to the posterior density for the corresponding spin vector.

LALInference is also used to obtain posterior deviations on parameters characterising
deviations from general relativity, to facilitate tests of GR. More details can be found, along
with results from analysis of the O1 and O2 events, in Abbott, B.P., et al., Phys. Rev. D
100, 104036.
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Figure 32: Joint two dimensional posterior on mass and mass ratio (left) and on final mass
and spin (right) for all of the events observed by LIGO/Virgo during the O1 and O2 observing
runs. Reproduced from Abbott et al. (2019), Phys. Rev. X 9 031040.

Figure 33: Sky location posterior distribution for all events observed by LIGO/Virgo during
the O1 and O2 observing runs. Reproduced from Abbott et al. (2019), Phys. Rev. X 9
031040.
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Figure 34: One-dimensional marginalised posteriors on the mass ratio (left) and e↵ective
spin (right) for all the events observed by LIGO/Virgo during the O1 and O2 observing
runs. The one-dimensional posteriors are represented as “violin plots” as described in the
text. Reproduced from Abbott et al. (2019), Phys. Rev. X 9 031040.

Figure 35: Posteriors on the spins of the two components in the binary for all of the events
observed by LIGO/Virgo during the O1 and O2 observing runs. The distance from the
origin represents the magnitude of the spin, and the angle represents the direction of the
spin. The two halves of the plot are for the primary (left) and secondary (right) object in
the binary. The density of colour is proportional to the posterior density for that spin value.
Reproduced from Abbott et al. (2019), Phys. Rev. X 9 031040.
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8.2 Reduced order modelling

LIGO parameter estimation codes are computationally expensive, primarily due to the cost of
evaluating models of the gravitational waveforms to compute likelihoods. To make inference
more e�cient, it is advantageous to have models of the signals that are quicker to evaluate.
This has been achieved by building reduced order models and surrogate models. The
principle of both approaches is quite similar. First, a basis for the space of waveforms is
found that has lower dimensionality than the number of samples in the original waveforms.
Then either a fast interpolant is constructed to map physical parameters to the weights of
the basis functions (in the case of some surrogate models, the interpolant is built directly
for the waveform itself) or a reduced order quadrature representation of the likelihood
is constructed. In the latter approach, a projection of the target waveform onto the reduced
basis is obtained not by using overlaps to find the best projection, but instead by requiring
the target waveform to exactly match a linear combination of basis waveforms at a number
of points, called quadrature interpolation points, equal to the number of functions in
the basis. This allows the likelihood quadrature to be reduced to a sum over the target
waveform evaluated at the quadrature points weighted by data-dependent constants that
can be computed prior to running inference from overlaps of the basis functions with the
data

⇣
h(~�)|d

⌘
= 4<

Z 1

0

h̃(~�)d̃⇤(f)

Sh(f)
df

⇡ 4<

2

4
N/2X

k=0

d⇤(fk)~e
T (fk)�fA�1

3

5~h(~�)

= 4<
mX

k=1

!kh(Fk;~�). (109)

Reduced order quadrature approximations to likelihoods are the state of the art in LIGO
parameter estimation, but they require being able to evaluate the target waveform at certain
frequencies quickly and so can only really be used with frequency-domain waveform approx-
imants. Surrogate models can be used to accelerate inference with time-domain waveform
models.

8.3 Population inference

Inference on the properties of the population of sources form which the observed LIGO
events are drawn also uses Bayesian methods, specifically Bayesian hierarchical modelling.
We encountered one example of this in Section 4.9, which is the inference of cosmological
parameters using gravitational wave observations of binary neutron star mergers with coun-
terparts. Other examples include inference on the rate of mergers of di↵erent types of source
in the Universe, and on the distributions of masses and spins of black holes and neutron
stars. Full details on the range of population analyses carried out for the O1 and O2 events
can be found in Abbott, B.P., et al., Astrophys. J. Lett. 882, L24 (2019) and references
therein, but we summarise some of the key analyses here.
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8.3.1 Rate estimation

Accurate estimation of the rate of events in the Universe is complicated by confusion with
detector noise, i.e., identifying which events are real gravitational wave events and which
are instrumental artefacts, and by the need to make assumptions about the distribution of
parameters of sources in the population. The first problem was tackled in Farr, W., Gair,
J.R., Mandel, I., and Cutler, C., Phys. Rev. D 91, 023005 (2014). If the output of the
detector is represented by a sequence of values of a detection statistic, x, and any statistic
value that exceeds some threshold, xmin, is regarded as a detection, then the observed data
is a set of detection statistic values above threshold, {xi}. Some of these events correspond
to real foreground events, while others arise due to noise fluctuations in the detector and are
background. We introduce an (unobserved) parameter fi for each event such that fi = 1 is
it is a foreground event and fi=0 if it is background. The foreground and background events
are assumed to be generated by independent Poisson processed with rates

dNf

dx
= Rf f̂(x, ✓f ),

dNb

dx
= Rbb̂(x, ✓b)

and corresponding cumulative distributions F̂ (x, ✓f ), B̂(x, ✓b). Here Rf and Rb are the fore-
ground and background rates respectively and ✓f and ✓b represent any unknown parameters
that characterise the foreground and background distributions. The combined posterior for
the rates, event flags and distribution parameters is

p(fi, Rf , Rb, ✓|dto, N) =
↵

p(dto, N)N !

2

4
Y

i|fi=1

Rf f̂(xi, ✓)

3

5

2

4
Y

i|fi=0

Rbb̂(xi, ✓)

3

5 exp[�(Rf+Rb)]
p(✓)p
RfRb

where p(✓) is the prior on the posterior parameters and we are using a Je↵reys’ prior p(R) /
1/

p
R on the rates. The subscript on dto indicates that we are using time-ordered data. The

data could also be analysed ordered by ranking statistic. This posterior can be marginalised
over the unknown flags to give posteriors on the rates, or over the rates to give posterior
probabilities for fi = 1 for each event.

One complication with this approach is that it relies on a model for the foreground and
background distributions. These can be estimated by injections and time-slides, but, since
LIGO is not equally sensitive to all types of CBC event, the former requires imposing some
model of the astrophysical population from which the events are drawn. One approach to
this is to assume that all events in the Universe are the same as the one that has been
observed. This approach was used in Kim, Kalogera and Lorimer (Astrophys. J. 584, 985
(2003)) to estimate the rate of double neutron star mergers and so is often referred to as the
“KKL method”. In the first LIGO detection paper, for GW150914, the combination of the
rate estimation accounting for confusion (FGMC) and the KKL method was used to infer
the rate of binary black hole mergers. The application of this “alphabet soup” method was
complicated by the fact that the data being analysed to infer the background for GW150914
contained a second CBC trigger, LVT151012. The parameters of this event were completely
di↵erent to GW150914, so the KKL method could still be applied, but generalising to the
case where all events in the Universe were either like GW150914 or LVT151012. Further
details can be found in Abbott, B.P., et al. Astrophys. J. Lett. 833, 1 (2016) and Abbott,
B.P., et al. Astrophys. J. Supp. 227, 14 (2016).

One additional trigger, GW151226, was present in the LIGO O1 data, and that again
had su�ciently distinct parameters that the KKL approach could be used. In O2, the events



134 Introduction to Statistics for GWs

began to have much more posterior overlap and so this method could no longer be used.
Now, a model of the population is assumed in event rate estimation. Recent analyses have
used both a power-law mass distribution or a flat in log-mass distribution in an attempt
to bound the range of possible rate, but future results are likely to shift towards a single
combined analysis of the population parameters and rate.

8.3.2 Black hole mass distribution

The mass distribution of stellar-origin black holes in binaries can be inferred from LIGO/Virgo
observations in a hierarchical analysis by placing a prior on the mass of individual events
that depends on some unknown parameters that can be constrained from analysing the full
set of events. In Abbott, B.P., et al., Astrophys. J. Lett. 882, L24 (2019) three di↵erent
models of the mass function were used. Models A and B assumed a power law distribution
on mass and mass ratio

p(m1,m2|mmin,mmax,↵, �q) /
⇢

C(m1)m
�↵
1

q�q if mmin  m2  m1  mmax

0 otherwise
.

In model A, mmin = 5M�, �q = 0 and the only free parameters are mmax and ↵. In model
B, all four parameters are allowed to vary. The third model mixes a power-law component
of the above form, with a Gaussian component, designed to fit any excess of events near the
lower mass limit of the pair-instability supernova mass gap. The model is

p(m1|✓) =

(1 � �m)A(✓)m

�↵
1

⇥(mmax � m1) + �mB(✓) exp

✓
�(m1 � µm)2

2�2
m

◆�
S(m1,mmin, �m)

p(q = m2/m1|m1, ✓) = C(m1, ✓)q
�qS(m2,mmin, �m). (110)

The mass distribution obtained by fitting these models to the O1 and O2 data is shown in
Figure 36.

8.3.3 Black hole spin distribution

A hierarchical analysis of LIGO/Virgo events can also provide insight into the spin distribu-
tion. This can be done either parametrically or non-parametrically and both analyses were
done for the O1 and O2 events in Abbott, B.P., et al., Astrophys. J. Lett. 882, L24 (2019).
The parametric approach models the spin magnitude using a Beta distribution

p(ai|↵a, �a) =
a↵a�1

i (1 � ai)�a�1

B(↵a, �a)

while the non-parametric analysis models the spin-magnitude distribution as a set of heights
of a binned distribution, with the bin heights free parameters to be determined by the obser-
vations. For example, a three-bin distribution (Farr, B., Holz, D., and Farr, W., Astrophys.
J. 854, L9 (2018))

p(a) =

8
<

:

A1/3 0  a  1/3
A2/3 1/3  a  2/3
1 � (A1 + A2)/3 2/3  a  1

.

The posteriors obtained from applying these models to the O1 and O2 events are shown in
Figure 37.
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15

Mass Parameters Spin Parameters

Model � mmax mmin �q �m µm �m �m E[a] Var[a] � �i

A [-4, 12] [30, 100] 5 0 0 N/A N/A N/A [0, 1] [0, 0.25] 1 [0, 10]

B [-4, 12] [30, 100] [5, 10] [-4, 12] 0 N/A N/A N/A [0, 1] [0, 0.25] 1 [0, 10]

C [-4, 12] [30, 100] [5, 10] [-4, 12] [0, 1] [20, 50] (0, 10] [0, 10] [0, 1] [0, 0.25] [0, 1] [0, 4]

Table 2. Summary of models used in Sections 3, 4, and 5, with the prior ranges for the population parameters. The fixed
parameters are in bold. Each of these distributions is uniform over the stated range. All models in this Section assume rates
which are uniform in the comoving volume (� = 0). The lower limit on mmin is chosen to be consistent with Abbott et al.
(2018).

Figure 1. Inferred di�erential merger rate as a function of primary mass, m1, and mass ratio, q, for three di�erent assumptions.
For each of the three increasingly complex assumptions A, B, C described in the text we show the PPD (dashed) and median
(solid), plus 50% and 90% symmetric credible intervals (shaded regions), for the di�erential rate. The results shown marginalize
over the spin distribution model. The fallo� at small masses in models B and C is driven by our choice of the prior limits on
the mmin parameter (see Table 2). All three models give consistent mass distributions within their 90% credible intervals over
a broad range of masses, consistent with their near-unity evidence ratios (Table 3); in particular, the peaks and trough seen in
Model C, while suggestive, are not identified at high credibility in the mass distribution.

constraints on the presence or absence of a mass gap at
low black hole mass.

Models B and C also allow the distribution of mass ra-
tios to vary according to �q. In these cases the inferred
mass-ratio distribution favors comparable-mass binaries
(i.e., distributions with most support near q ' 1), see
panel two of Figure 1. Within the context of our pa-
rameterization, we find �q = 6.7+4.8

�5.9 for Model B and
�q = 5.8+5.5

�5.8 for Model C. These values are consistent
with each other and are bounded above zero at 95% con-

fidence, thus implying that the mass ratio distribution
is nearly flat or declining with more extreme mass ra-
tios. The posterior on �q returns the prior for �q & 4.
Thus, we cannot say much about the relative likelihood
of asymmetric binaries, beyond their overall rarity.

The distribution of the parameter controlling the frac-
tion of the power law versus the Gaussian component in
Model C is �m = 0.4+0.3

�0.3, which peaks away from zero,
implying that this model prefers a contribution to the
mass distribution from the Gaussian population in ad-

Figure 36: Black hole mass function inferred from LIGO/Virgo events observed in the O1
and O2 observing runs. Figure reproduced from Abbott, B.P., et al., Astrophys. J. Lett.
882, L24 (2019).
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23

Mass Model Spin Parameters

Model E[a] Var[a] �a, �a � �i

Gaussian (G) C [0, 1] [0, 0.25] � 1 1 [0, 4]

Mixture (M) C [0, 1] [0, 0.25] � 1 [0, 1] [0, 4]

Table 6. Summary of spin distribution models examined in Section 5.1, with prior ranges for the population parameters
determining the spin models. The fixed parameters are in bold. Each of these distributions is uniform over the stated range,
with boundary conditions such that the inferred parameters �a, �a must be � 1. Details of the mass model listed here is
described in Table 2.

Figure 7. Inferred distribution of spin magnitude for
a parametric (top) and non-parametric binned model (bot-
tom). The solid lines show the median and the dashed line
shows the PPD. The shaded regions denote the 50% and 90%
symmetric intervals. In the bottom panel, the distribution
of spin magnitude is inferred over five bins, assuming either
perfectly aligned (green) or isotropic (blue) population. The
solid lines denote the median, and the shaded regions denote
the central 90% posterior credible bounds. In both cases,
the magnitude is consistent within the uncertainties with the
parametric results.

et al. (2018). We show in the bottom panel of Figure 7
that under the perfectly aligned scenario there is pref-
erence for small black hole spin, inferring 90% of black
holes to have spin magnitudes below 0.6+0.24

�0.28. However,
when spins are assumed to be isotropic the distribution

is relatively flat, with 90% of black hole spin magni-
tudes below 0.8+0.15

�0.24. Thus, the non-parametric analy-
sis produces conclusions consistent with our parametric
analyses described above. These conclusions are also
reinforced by computing the Bayes factor for a set of
fixed parameter models of spin magnitude and orienta-
tion in Appendix B. There we find that the very low
spin magnitude model is preferred in all three orienta-
tion configurations tested (see Figure 11 and Table 7 for
details).

Figure 8 shows the inferred distribution of the pri-
mary spin tilt for the more massive black hole. These
results were obtained without including the e�ects of
component spins on the detection probability: see Ap-
pendix A for further discussion. In the Gaussian model
(� = 1), all black hole spin orientations are drawn from
spin tilt distributions which are preferentially aligned
and parameterized with �i. In that model, the �i dis-
tributions do not di�er appreciably from the their flat
priors. As such, the inferred spin tilt distribution are in-
fluenced by large �i and the result resembles an isotropic
distribution. The Mixture distribution does not return
a decisive measurement of the mixture fraction, obtain-
ing � = 0.5+0.4

�0.5. Since the Gaussian model is a subset of

Figure 8. Inferred distribution of cosine spin tilt for
the more massive black hole for two choices of prior (see
Section 2.4). The dash-dotted line denotes a completely
isotropic distribution (see Appendix B). The solid lines show
the median. The shaded regions denote the 50% and 90%
symmetric intervals and the dashed line denotes the PPD.

Figure 37: Black hole spin distribution inferred from LIGO/Virgo events observed in the O1
and O2 observing runs, using a parametric (top panel) or non-parametric (bottom panel)
approach. Figures reproduced from Abbott, B.P., et al., Astrophys. J. Lett. 882, L24
(2019).
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The spin direction is also a parameter of interest astrophysically, as di↵erent formation
scenarios predict either isotropically distributed spin directions, or a preference for spins to
be aligned with the angular momentum of the binary. To capture this, the analysis of the
O1 and O2 data used a mixture model

p(cos t1, cos t2|�1, �2, ⇣) =
(1 � ⇣)

4
+

2⇣

⇡

Y

i2{1,2}

exp(�(1 � cos ti)2/2�2

1
)

�ierf(
p
2/�i)

.

At present, LIGO measurements are not su�ciently informative about spins to strongly
constrain the parameters of the model.

8.3.4 Rate evolution

The FGMC+KKL method described earlier assumes that the rate of mergers is constant,
but in principle this could evolve over cosmic history (the FGMC framework can handle this,
but the interpretation of Rf is di↵erent, as the average rate over the sensitive volume of the
detector). An evolution of the rate can be explicitly included and constrained by introducing
an extra parameter into the rate density

dR

d⇠
(z|✓) = R0p(⇠|✓)(1 + z)�.

The analysis of the O1 and O2 events provided weak evidence for an evolution in rate with
redshift, but this was mostly due to the event GW170729, which was the most marginal
detection. The rate evolution will be better constrained by the order of magnitude increase
in events expected in O3 and future observing runs.

8.4 Model selection

Bayesian methods are also applied to model selection using the LIGO/Virgo observations,
through the evaluation of evidence ratios or Bayes factors for pairs of alternative hy-
potheses for the data. Some examples of applications to gravitational wave data are

• Test for the presence of a signal in the data after the end of the merger of the two
neutron stars in GW170817. Such a signal might be evidence that the merger project
was a hypermassive neutron star rather than a black hole. For GW170817 the Bayes
factor for the noise model over the signal model was 256.79 (Abbott, B.P. ,et al., Phys.
Rev. X 9 011001 (2019)), providing strong evidence that no such signal was present.

• Test of the polarisation state of gravitational waves. Possible models are that the
gravitational waves have tensor polarisation, as expected in GR, or have scalar polar-
isation or vector polarisation. The analysis of GW170818 gave Bayes factors of 12 for
tensor versus vector polarisation and 407 for tensor versus scalar, while the analysis of
GW170814 gave Bayes’ factors of 30 and 220 respectively (Abbott, B.P. ,et al., Phys.
Rev. D 100 104036 (2019)).

• Tests of the no-hair property of the remnant black hole formed in a merger, by compar-
ing the properties of the observed ringdown radiation to that predicted by GR (Brito,
Buonanno and Raymond, Phys. Rev. D 98, 084038 (2018)).
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• Probing alternative theories of gravity. For example, looking for evidence for dynamical
gravity with the polarisation of continuous gravitational waves (Isi et al., Phys. Rev.
D 96, 042001 (2017)).

8.5 Source reconstruction

Although Bayesian inference relies on the existence of models, it is also possible to use these
methods to recover “unmodelled” sources. One such implementation is the BayesWave
algorithm. The method works by modelling the noise and signals in the data from the
various detectors as a superposition of simple components. BayesWave represents the
noise as a combination of a smooth PSD component, described by a cubic spline, lines
represented by Lorentzians and glitches modelled by wavelets. Signals in the data are also
modelled by wavelets, but with parameters that are common across the detectors, as opposed
to the noise components which are independent in di↵erent detectors. Wavelets are simple
functions that are compact in both time and frequency. We will encounter these again in the
non-parametric regression section of this course. There are many di↵erent wavelet families,
but the wavelets used in BayesWave are known as the Morley-Gabor basis.

BayesWave fits itsmodel using reversible jump MCMC. The reversible jump element is
required to add or remove wavelet or line components, as the number of these required is
not known a priori. Further details on the BayesWave algorithm can be found in

• Cornish, N.J., and Littenberg, T.B., Class. Quantum Grav. 32, 135012 (2015).

• Littenberg, T.B., and Cornish, N.J., Phys. Rev. D 91, 084034 (2015).

BayeWave is used in LIGO analyses for PSD estimation, glitch removal and for non-
parametric waveform reconstruction. The good agreement between the BayesWave recon-
structed waveform and the best fit model found by parameter estimation for GW150914 (see
Figure 38) provided extra support to the fact that this was a true signal.

8.6 Rapid localisation

Since the start of the O1 observing run, LIGO/Virgo have been sending out triggers to
facilitate follow-up of gravitational wave events by electromagnetic telescopes. To avoid
delays to these alerts, it is necessary to rapidly estimate the sky location of the triggers so
that astronomers know where to point their telescopes. Bayesian techniques are also used
for this purpose. Full Bayesian parameter estimation is not possible in low-latency, so the
rapid localisation algorithms are not truly Bayesian, but make approximations in evaluating
the posterior that allow it to be computed quickly.

The Bayestar algorithm replaces the full likelihood by the autocorrelation likelihood,
which is the likelihood evaluated at the maximum likelihood parameter values, as returned
by the online search algorithms. This autocorrelation likelihood takes the form
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where ⇢i denotes the signal to noise ratio in detector i, �i and ⌧i are the phase and time of
arrival of the trigger in detector i and zi(t) is the time-series of the matched filter overlap
in detector i. The marginalisation of this integral over all parameters except sky location is
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Figure 38: BayesWave reconstruction of GW150914 (labelled “unmodelled”), compared to
the waveform corresponding to the maximum a posteriori parameters obtained by param-
eter estimation (labelled “modelled”) and a numerical relativity waveform with consistent
parameters. Figure reproduced from Abbott, B.P., et al., Phys. Rev. Lett. 116, 061102
(2016).
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accelerated using approximations to the marginalisation integrals and by employing look-up
tables. The result of running the algorithm is a sky map probability density, i.e., a weighting
of pixels on the sky by their relative probability of being the true location of the observed
transient.

More details on the Bayestar algorithm can be found in

• Singer, L., and Price, L., Phys. Rev. D 93, 024013 (2016).

Another rapid localisation algorithm used in LIGO is LALInferenceBurst or LIB.
In this case, computational savings in the model are obtained by representing an arbitrary
signal as a single sine-Gaussian

h+(t) = cos(↵)
hrssp

Q(1 + cos(2�0)e�Q2)/4f0

p
⇡

sin(2⇡f0(t � t0) + �0)e
�(t�t0)

2/⌧2
.

While this simple model cannot accurately describe all signals, it does represent the rela-
tive amplitudes of the signal in di↵erent detectors correctly and that is enough to obtain
reasonable sky-localisation accuracies.

There is also an online version of LIB, called oLIB, that uses Bayesian evidences com-
puted by LIB to assess triggers identified in a time-frequency analysis. The evidences for the
triggers being noise versus signal and being coherent in di↵erent detectors versus incoherent
are used to identify potentially interesting candidate events for follow-up. oLIB was running
at the time of GW150914 and, along with CWB, was the first algorithm to identify this
signal in the data.

More details on the LALInferenceBurst algorithm and on oLIB, can be found in

• Essick, R., Vitale, S., Katsavounidis, E., Vedovato, G., and Klimenko, S., Astrophys.
J. 800, 81 (2015).

• Lynch, R., Vitale, S., Essick, R., Katsavounidis, E., and Robinet, F., Phys. Rev. D
95, 104046 (2017).

8.7 LISA parameter estimation

Bayesian methods have also been used in the context of data analysis development for LISA,
mostly in the framework of the sequence of Mock LISA Data Challenges (MLDCs) that took
place between 2006 and 2010. Bayesian techniques, with some frequentist simplifications
such as the use of the F -statistic, were used not only to characterise the identified sources,
but also to search for sources in the data set. A variety of techniques were employed,
including Markov Chain Monte Carlo algorithms, genetic algorithms and nested sampling.
These methods were successfully able to find and characterise sources in the sample data sets,
although these were somewhat simplified, containing only Gaussian instrumental noise with
known PSD and a reduced number of astrophysical sources. In Figure 39 we show a table of
parameter measurement precisions of supermassive black hole mergers for all submissions to
the third round of the MLDC. The final two columns of the table show the fitting factor, i.e.,
overlap, of the submitted entry with the true source in each of the two independent LISA
data channels, A and E.

The use of Bayesian techniques for searches as well as parameter estimation in the LISA
context is motivated by the nature of the data. In the LIGO/Virgo context, most sources are
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Figure 39: Summary of the fractional errors in the recovery of parameters of the supermassive
black hole binary mergers in the third MLDC data challenge. The final two columns, labelled
FFA and FFE, give the overlap (or “fitting factor”) of the waveform corresponding to the
recovered parameters with the true injected waveform. Each row represents a separate entry
from one of the groups responding to the challenge. Table reproduced from Babak, S., et
al., Class. Quantum Grav. 27, 084009 (2010).
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Figure 40: Maximum a posteriori parameter values (labelled “Found”) recovered for all five
EMRIs in the MLDC data set 1B (upper rows) and two additional random chosen sources.
These are compared to the “Ture” parameters which were used ot generate the injected
signals. Table reproduced from Babak, S., Gair, J.R., and Porter, E.K., Class. Quantum
Grav.26, 135004 (2009).

of short duration relative to the time between signals, and so it is necessary to e�ciently sift
through large amounts of data to find candidate sources of interest. In the LISA context, the
source duration is comparable to the length of the data stream and so the entire data stream
is relevant for the analysis of all sources. It is natural therefore to find and characterise
sources simultaneously.

While the MLDCs demonstrated the e↵ectiveness of the use of Bayesian methods to find
and characterise most source types, several open questions remain, in particular related to
the impact of non-stationary noise and instrumental artefacts such as gaps, the full extent of
source confusion and the detection and characterisation of extreme-mass-ratio inspirals (EM-
RIs). While the EMRI sources in the MLDC data sets were successfully characterised under
simplified assumptions (see Figure 41), the likelihood for an EMRI is very complicated, with
many secondary maxima in parameter space. The successful algorithms relied on knowledge
of the structure of the likelihood surface, which was specific to the simplified model of the
EMRI employed in the MLDC, and the fact that all identified secondaries were generated by
the same EMRI signal. While the structure of the likelihood surface can probably be learned
for more accurate waveform models, the correct grouping of secondary modes will be much
more challenging for real LISA data which could contain many hundreds of EMRIs.

Nested sampling has also been used in the context of LISA data analysis. In fact, the first
application of the MultiNest nested sampling algorithm in a gravitational wave context
was to the characterisation of supermassive black hole mergers in LISA data (Feroz, F., Gair,
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Figure 41: Left panel: posterior on the parameters characterising one of the cosmic string
cusp gravitational wave bursts in the MLDC round 3 cosmic string data set. Right panel:
evidence ratio in favour of the true (cosmic string cusp) model versus an alternative (sine-
Gaussian) model for the burst, as a function of the burst signal-to-noise ratio. Figures
reproduced from Feroz, F., Gair, J.R., Gra↵, P., Hobson, M.P., and Lasenby, A., Class.
Quantum Grav. 27, 075010 (2010).

J.R., Hobson, M.P., and Porter, E.K., Class. Quantum Grav. 26, 215003). MultiNest was
also used to find and characterise supermassive black hole mergers and gravitational wave
bursts from cosmic string cusps in MLDC data. In the latter case, the computed Bayesian
evidences were used to test the hypothesis that the burst signals were consistent with a
cosmic string cusp as opposed to a generic sine-Gaussian burst model (see Figure ?? and
Feroz, F., Gair, J.R., Gra↵, P., Hobson, M.P., and Lasenby, A., Class. Quantum Grav. 27,
075010 (2010)).

Further details on LISA data analysis can be found in the MLDC papers, and references
therein:

• Arnaud, K.A., et al. The Mock LISA Data Challenges: An overview, AIP Conf. Proc.
873, 619 (2006).

• Arnaud, K.A., et al., A How-To for the Mock LISA Data Challenges, AIP Conf. Proc.
873, 625 (2006).

• Arnaud, K.A., et al., Report on the first round of the Mock LISA Data Challenges,
Class. Quantum Grav. 24, S529 (2007).

• Arnaud, K.A., et al., An overview of the second round of the Mock LISA Data Chal-
lenges, Class. Quantum Grav. 24, S551 (2007).

• Babak, S., et al., Report on the second Mock LISA Data Challenge, Class. Quantum
Grav. 25, 114037 (2008).

• Babak, S., et al., The Mock LISA Data Challenges: from Challenge 1B to Challenge
3, Class. Quantum Grav. 25, 184026 (2008).
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• Babak, S., et al., The Mock LISA Data Challenges: from Challenge 3 to Challenge 4,
Class. Quantum Grav. 27, 084009 (2010).


