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7 Examples of frequentist statistics in gravitational wave
astronomy

In this section we will describe some of the applications of frequentist statistical methods
to gravitational wave detection. Fundamental to frequentist statistics is the likelihood. As
described in the previous chapter, for gravitational wave detectors, we assume that the
output of the detector, s(t), is a linear combination of a signal, h(t|~�), determined by a finite
set of (unknown) parameters, ~�, and instrumental noise, n(t). We assume in addition that
the noise is Gaussian with a (usually known) power spectral density Sh(f)

s(t) = n(t) + h(t|~�), hñ⇤(f)ñ(f 0)i = Sh(f)�(f � f 0).

The signal is deterministic, but the noise is a random process. The likelihood, for parameters
~�, is therefore the probability that the observed noise realisation would take the value n(t) =
s(t) � h(t|~�), which can be seen to be

L(s|~�) = p(n(t) = s(t) � h(t|~�)) / exp


�1

2
(s � h(~�)|s � h(~�))

�
(100)

where the noise weighted overlap is as given in the last lecture

(a|b) =
Z 1

�1

ã⇤(f)b̃(f) + ã(f)b̃⇤(f)

Sh(f)
df.

7.1 The Fisher Matrix

We introduced the Fisher Matrix in the discussion of the Cramer-Rao bound on the variance
of an estimator, which, for a multivariate unbiased estimator, �̂, is given by
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In the above l denotes the log-likelihood. For the gravitational wave log-likelihood in
Eq. (100), the derivative is
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It therefore follows, from the result given in Eq. (93), that
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The Fisher Matrix gives a lower bound on the variance of any unbiased estimator of the
parameters of the signal, and hence it provides a guide to how accurately the parameters can
be measured. We know that the maximum likelihood estimator is asymptotically e�cient,
i.e., it achieves this Fisher Matrix bound, which is why it might be expected to provide a
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good guide to parameter measurement precision. However, asymptotic e�ciency refers to
making many repeated measurements of the same parameter, which we do not typically do
in gravitational wave observations. But it can be seen that the Fisher Matrix provides a
good guide to measurement precision even for a single observation, as follows. We suppose
that the true parameters of the signal are given by ~�0, and expand to leading order about
those parameters

~� = ~�0 +�~�, h(t|~�) = h(t|~�) + @ih(t|~�)��i

where @i denotes the derivative with respect to �i and the last term employs Einstein sum-
mation convention. This approximation is known as the linear signal approximation.
The likelihood can then be expanded as

L(s|~�) / exp
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The latter term is sub-dominant since it is O(1) compare to the middle term which is of
order of the signal amplitude, or SNR. The middle term is a Gaussian, centred at ��i =
(��1)ik(n|@kh(t|~�)), and with covariance matrix given by the Fisher Matrix. The latter
therefore provides an estimate of the width of the likelihood distribution and hence can be
used as a guide to the uncertainty. In addition, the maximum likelihood estimator

c��
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= (��1)ik(n|@kh(t|~�))

has mean and variance
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which again confirms the interpretation of the Fisher Matrix as the uncertainty in the pa-
rameter estimate. The fractional corrections to the Fisher Matrix estimate scale like the
inverse of the signal-to-noise ratio and therefore the Fisher Matrix is a good approximation
in the high signal-to-noise ratio limit.

The Fisher Matrix has been widely used in a gravitational wave context to assess the
measurability of parameters using observations with present or future detectors. While the
Fisher Matrix is only an approximation, it can be directly calculated by evaluating a small
number of waveforms, rather than requiring samples to be obtained all over the waveform
parameter space, and so it is much cheaper computationally. This makes it a good tool for
Monte Carlo simulations over parameter space, to survey parameter estimation accuracies
over a wide parameter range.

7.2 Matched filtering

In the previous chapter we introduced the idea of matched filtering, motivated by maximising
the signal to noise ratio of a filtered data stream. The optimal filter has a frequency-domain
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kernel K̃(f) / h̃(f)/Sh(f). The use of the output of the optimal filter as a test statistic for
a search can also be motivated by the frequentist concepts that we encountered in previous
chapters. Suppose that we write h(�) = Aĥ(�), where (ĥ(�)|ĥ(�)) = 1, to separate out the
amplitude of the gravitational wave source from the other parameters. The log-likelihood
can be written

l(�) = �1

2
(s � Aĥ(�)|s � Aĥ(�)) = �1

2

h
(s|s) � 2A(s|ĥ) + A2
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i
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Fora given �, this is maximized by the choice A = (s|ĥ), for which the log-likelihood /
(s|ĥ)2 � (s|s). The maximum likelihood estimator for parameters other than the amplitude
is thus given by the maximum of the optimal filter output over the parameter space. So,
optimal filtering is just maximum likelihood estimation. To do this in practice, the optimal
filter must be evaluated over the whole parameter space. In the analysis of gravitational
wave data, from LIGO in particular, this is achieved using a template bank, which is a set
of templates that cover the whole parameter space. The overlap of each template with the
detector data is evaluated, and the maximum of those template overlaps is used as a test
statistic to identify whether or not there is a signal in the data.

The question that we want to ask is “Is there a gravitational wave signal in the data?”.
Assuming that the parameters � are fixed, this can formulated as a hypothesis test on the
signal amplitude

H0 : A = 0, vs. H1 : A > 0.

From the Neyman-Pearson lemma the optimal statistic for testing the simple hypothesis
A = 0 versus A = A1 is the likelihood ratio, which is

exp


A1(s|ĥ(�)) � 1

2
A2

1

�
.

This is large for large values of the optimal filter (s|ĥ(�)) and so we deduce that the optimal
filter is also the most powerful detection statistic. As the detection statistic does not depend
on A1, this test is uniformly most powerful for the composite hypothesis A > 0. In the more
usual case that � is unknown, although the maximum of the optimal filter statistic is still the
maximum likelihood estimator, this is no longer a uniformly most powerful test, although it
remains quite close to being so.

LIGO matched filtering searches typically use a large number of templates, distributed
throughout the parameter space in a template bank. The matched filter output is evaluated
for all of these templates, and the maximum filter output over the template bank is used as
a detection statistic. Template banks are typically characterised by their minimal match,
MM. This is defined as the minimum over all possible signals of the maximum overlap of
that signal with one of the templates in the bank

min
~�


max

htemp,i:i=1,...,N
(h(~�)|htemp,i)

�
& MM

where {htemp,i : i = 1, . . . , N} are the N templates in the template bank. The minimal match
is the worst possible detection statistic that a randomly chosen signal could have. Setting
this minimal match to some value close to 1 ensures that very few signals will be missed. A
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typical value of the minimal match used in practice would be 0.97. For a uniform distribution
of sources in a Euclidean Universe, the fraction of sources that would be missed is 1�0.973 =
0.087.

Template banks can be constructed analytically using the Fisher Matrix as a metric. This

follows from expanding the overlap of two normalised templates, ĥ(~�) = h(~�)/
q

(h(~�)|h(~�)),
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ĥ(~�)

�����
@ĥ

@�i
(~�)

!
��i+

1

2
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The first term is 1 because of the normalisation. The second term vanishes since
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The third term can be simplified using
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@ĥ

@�i
(~�)

!
= 0 )

 
@ĥ
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ĥ(~�)

�����
@2ĥ
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We deduce

(ĥ(~�)|ĥ(~�+�~�)) = 1 � 1

2
�ij��

i��j.

The Fisher Matrix (of normalised templates) thus provides a metric on parameter space,
which can be used to place templates. This is only practical in low numbers of dimensions. In
higher numbers of dimensions, it is easier to use stochastic template banks. A stochastic
bank is constructed as follows

1. At step 1, choose the first template, ĥ(�1), randomly from parameter space. Add it to
the template bank, T .

2. At step i � 2, set the counter to 1 and then repeat the following steps:

(a) Draw a random set of parameter values, ~�i, and evaluate the match, M , with the
current template bank

M =


max

htemp2T
(h(~�i)|htemp)

�
.

(b) IfM < MM , add h(~�i) to the template bank and advance to step i+1. Otherwise,
increment the counter. If the counter has reached Nmax, stop. Otherwise return
to step (a).
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7.3 LIGO searches

LIGO employs two di↵erent matched filtering algorithms to search for signals, pycbc and
gstlal. They di↵er in various details, including how the template overlaps are computed. We
will not discuss these in detail here, but refer the interested reader to relevant publications.
For gstlal these are

• Cannon, K., Cariou, R., Chapman, A., et al. (2012), Astrophys. J. 748, 136, doi:
10.1088/0004-637X/748/2/136.

• Privitera, S., Mohapatra, S. R. P., Ajith, P., et al. (2014), Phys. Rev. D 89, 024003,
doi: 10.1103/PhysRevD.89.024003

• Messick, C., Blackburn, K., Brady, P., et al. (2017), Phys. Rev. D 95, 042001, doi:
10.1103/PhysRevD.95.042001

• Sachdev, S., Caudill, S., Fong, H., et al. (2019), arXiv:1901.08580

• Hanna, C., Caudill, S., Messick, C., et al. (2019), arXiv:1901.02227

For pycbc the relevant references are

• Nitz, A., Harry, I., Brown, D., et al. (2019), gwastro/pycbc: PyCBC Release v1.15.2,
doi: 10.5281/zenodo.3596447

• Nitz, A. H., Dal Canton, T., Davis, D., & Reyes, S. (2018), Phys. Rev. D 98, 024050,
doi: 10.1103/PhysRevD.98.024050

• Usman, S. A., Nitz, A. H., Harry, I. W., et al. (2016), Class. Quantum Grav. 33,
215004, doi: 10.1088/0264-9381/33/21/215004

Both searches adopt a traditional frequentist framework, in that the output of the pipeline
is used as a detection statistic. If the detection statistic exceeds a threshold then the data
is flagged as interesting, i.e., potentially containing a signal. The threshold is determined
based on the behaviour of the search pipeline in the absence of any signals in the data. This
background distribution is estimated using time slides. Both searches rely on consistency
between triggers in two or more detectors. Any astrophysical gravitational wave signal must
pass through both detectors within an interval of 10ms. If the data of one detector is time
shifted relative to the other by more than this amount, then any coincident triggers in the
two instruments must be due to instrumental noise only. By doing many di↵erent time
shifts in this way, the background distribution can be estimated for much longer e↵ective
observation times.

In hypothesis testing, we discussed the notion of a significance or p-value. This makes
sense if the size of the data set is fixed, but gravitational wave detectors are continuously
taking data. Therefore it makes sense to quantify significance instead by a false alarm rate
or FAR, which is the frequency at which triggers as extreme as the one observed, or more
extreme, occur in the data. LIGO quotes FARs for all events that are distributed publicly.

We will now give an overview of a few techniques that are used in LIGO searches to
improve their speed and e�ciency.
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7.3.1 Waveform consistency

The assumptions that lead to the optimal filter assume that the noise is stationary. This
is approximately true for gravitational wave detectors, but they are also observed to have
large glitches quite often. While the glitches do not match any of the templates well, there
is often su�cient power in the glitch that they can trigger the detection statistic to exceed
the threshold. To mitigate for this problem, LIGO searches use waveform consistency
checks. These verify that after subtracting the best-fit template signal from the data, the
resulting time series is consistent with being stationary Gaussian noise with the estimated
PSD. If the template ĥ coincides with the true signal, the quantity

�2 =
NX

k=1

|ŝk � ĥk|2
Sh(fk)

is the sum of squares of N(0, 1) distributed random variables, and hence follows a chi-squared
distribution with N degrees of freedom. The mean of a �2

N random variable is N , so �2/N
should be expected to be close to 1 if the template is a good match to the data, and much
bigger otherwise. LIGO uses something called e↵ective SNR as a detection statistic. This is
defined as

⇢̂ =
⇢

(1 + (�2/N)3)
1
6

.

For real signals, this is close to the true SNR, while for glitches it is much smaller. The
e↵ective SNR is used as the detection statistic by pycbc.

7.3.2 Marginalisation over phase and time

A template bank requires templates in all parameters, so it is useful to reduce the dimen-
sionality of the parameter space whenever possible. This can be done straightforwardly for
the initial phase and time of coalescence. For a monochromatic signal

h(t|A, f0, tc,�0) = A cos(2⇡f0(t�tc)+�0) = A cos(2⇡f0(t�tc)) cos�0�A sin(2⇡f0(t�tc) sin�0

the matched filter overlap is

(s|h) = A cos�0Oc�A sin�0Os, where Oc = (s| cos(2⇡f0(t�tc))), Os = (s| sin(2⇡f0(t�tc))).

Di↵erentiating with respect to �0 and equating it to zero, we find that the value of �0 that
maximises the overlap is

tan�0 = �Os

Oc
) max

�0

(s|h)2 = A2(O2

c +O2

s).

If this is used instead of the standard overlap, then the template bank automatically max-
imises over phase and this parameter direction does not need to be covered by templates.

To maximize over the unknown coalescence time we use

h̃(f |A, f0, tc,�0) = h̃(f |A, f0, 0,�0) exp(�2⇡iftc)

and observe that

(s|h(t|A, f0, tc,�0)) = 2<
Z 1

�1

s̃⇤(f)h̃(f |A, f0, 0,�0)

Sh(f)
exp(�2⇡iftc)df.
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This is just the inverse Fourier transform of

s̃⇤(f)h̃(f |A, f0, 0,�0)

Sh(f)
.

Inverse Fourier transforms can be computed cheaply (in n log n time) using the fast Fourier
transform. Therefore, the time of coalescence can be e�ciently maximized over by computing
the quantity above, taking its inverse fast Fourier transform, and then finding the maximum
of the components of the resulting vector.

7.3.3 The F-statistic

The F -statistic is an extension of the above ideas to more of the extrinsic parameters of the
signal. It is not used so much for LIGO, but has been used extensively in LISA data analysis
work (see for example Cornish & Porter (2007), Phys. Rev. D75, 021301; Class. Quantum
Grav. 24, 5729). The idea is to write the signal as a sum of modes, such that the coe�cients
depend only on a (subset of) the extrinsic parameters, and then analytically maximise over
those coe�cients. For SMBH binaries in LISA the decomposition takes the form

h(t) =
4X

i=1

ai(◆, , DL,�c)A
i(t|Mc, µ, tc, ✓,�)

where

a1 = ⇤[(1 + cos2 ◆) cos 2 cos�c � 2 cos ◆ sin 2 sin�c]

a2 = �⇤[(1 + cos2 ◆) sin 2 cos�c + 2 cos ◆ cos 2 sin�c]

a3 = ⇤[(1 + cos2 ◆) cos 2 sin�c + 2 cos ◆ sin 2 cos�c]

a4 = �⇤[(1 + cos2 ◆) sin 2 sin�c � 2 cos ◆ cos 2 cos�c]

A1 = M⌘x(t)D+ cos(�)

A2 = M⌘x(t)D⇥ cos(�)

A3 = M⌘x(t)D+ sin(�)

A4 = M⌘x(t)D⇥ sin(�). (104)

Here the waveform parameters are inclination ◆, polarization angle,  , luminosity distance,
DL, phase at coalescence, �c, chirp mass, Mc, reduced mass ratio, µ, time of coalescence, tc,
colatitude, ✓, and azimuth, �. We denote the waveform phase by �(t) and x = (GM!/c3)2/3,
where ! is the orbital frequency and M = m1 + m2 is the total mass. The quantities D+

and Dx are the two components of LISA’s time-dependent response function.
Writing N i = (s|Ai), the matched filter overlap is

(s|h) = ajN
j

and we want to maximise this subject to the constraint that the waveform is normalised
which becomes

aiM
ijaj = 1,0 where M ij = (Ai|Aj).

This is a standard optimisation problem with solution

ai = (M�1)ijN
j = MijN

j.
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The maximized value of the log-likelihood is the F-staistic

F =
1

2
MijN

iN j.

This can be used to automatically maximise over extrinsic parameters in a search, reducing
the dimensionality of the parameter space to just that of the intrinsic parameters. Note
that in the above we have taken the coe�cients, ai, to be independent of one another and
unconstrained, while in practice they are correlated and take a potentially limited range
of values because they all depend on the same set of four extrinsic parameters. Thus, we
are finding the maximum over a space that is somewhat larger than the true space, and
contains some unphysical values. If there is a signal in the data, then the maximization
must nonetheless still give the right extrinsic parameter values (in the absence of noise).

7.3.4 Power spectral density estimation

The likelihood contains the spectral density of noise in the detector, which is usually not
known precisely. LIGO searches (and parameter estimation codes) need to use a PSD that
has been estimated from the data. This is accomplished by considering a number of other
sections of data, distributed either side of the section of data that is of interested because it
is believed to contain a signal. The power spectrum (i.e., the norm squared of the Fourier
transform) is computed for each of the empty segments, �2

i (f), and then these can be com-
bined to give an estimate of the PSD in the segment of interest. The averaging can be done
by taking the mean

�2

0
(f) =

1

2N

NX

k=1

(s2

k + s2

�k)

but in LIGO analyses it is more usual to use the median. The median is less susceptible to
outliers in the data arising from non-stationary features in the noise.

7.4 Unmodelled searches

For burst sources matched filtering cannot be used, as it is not possible to build templates of
potential signals. LIGO uses a number of di↵erent searches for unmodelled sources. Again,
we won’t describe these in detail, but refer to papers that give full details on the algorithms:

• Coherent Wave Burst (CWB):

– S. Klimenko et al. (2016), Phys. Rev. D 93, 042004, arXiv:1511.05999.

• MBTA:

– Adams, T., Buskulic, D., Germain, V., et al. (2016), Class. Quantum Grav. 33,
175012, doi: 10.1088/0264-9381/33/17/175012

• SPIIR:

– Luan, J., Hooper, S., Wen, L., & Chen, Y. (2012), Phys. Rev. D 85, 102002, doi:
10.1103/PhysRevD.85.102002

– Hooper, S., Chung, S. K., Luan, J., et al. (2012), Phys. Rev. D 86, 024012, doi:
10.1103/PhysRevD.86.024012
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Figure 27: Example of a time-frequency spectrogram. Reproduced from Wen & Gair (2005).

– Chu, Q. (2017), PhD thesis, University of Western Australia

– Guo, X., Chu, Q., Chung, S. K., et al. 2018, Co. Phys. C 231, 62, doi:
10.1016/j.cpc.2018.05.002

• X-pipeline:

– Sutton, P. J., Jones, G., Chatterji, S., et al. (2010), N J Phys. 12, 053034

– Was, M., Sutton, P. J., Jones, G., & Leonor, I. (2012), Phys. Rev. D 86, 022003

All of these algorithms search for clusters in time-frequency spectrograms of the data.
The full data stream is divided into (usually overlapping) time segments, windowed and
Fourier-transformed to obtain a frequency-domain representation of that chunk of data.
The norm of these spectra is computed and they are then arranged next to one another in
a grid. An example of a spectrogram is shown in Figure 27. Real astrophysical sources tend
to produce coherent groups of bright pixels, or tracks, in these spectrograms. The patterns
will be similar in di↵erent detectors in the network. The various time-frequency algorithms
typically first evaluate bright pixels in the spectrograms, by thresholding on the power or
some derived quantities. Then they cluster the pixels into groups, apply consistency criteria
for the location of groups in two or more detectors in the network, and hence identify triggers
of interest.

Time-frequency methods have also been applied to analysis of simulated LISA data, in
the context of the LISA Mock Data Challenges (e.g., Gair, J.R. and Jones, G.J. (2007), Class.
Quantum Grav. 24, 1145; Gair, J.R., Mandel, I. and Wen, L. (2008), Class. Quantum Grav.
25, 184031; Gair, J.R. and Wen, L. (2005), Class. Quantum Grav. 22, S1359; Wen, L. and
Gair, J.R. (2005), Detecting extreme mass ratio inspirals with LISA using time-frequency
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methods, Class. Quantum Grav. 22, S445.). While these algorithms were successful in
simplified situations (i.e., with many fewer sources in the data than we would expect to see
in practice) they are unlikely to be very e↵ective when applied to real LISA data, due to the
very large number of expected sources that will be overlapping in both time and frequency.

7.5 Semi-coherent searches

For continuous gravitational wave signals, e.g., rotating neutron stars in LIGO data, or
very long-lived inspiral signals, e.g., extreme-mass-ratio inspirals in LISA data, matched
filtering is possible in the sense that templates of the signals can be generated. however, it
is computationally impossible, because the number of templates required to ensure a dense
coverage of parameter space is extremely large. In these cases, it is possible to use semi-
coherent search methods. These involve dividing the data stream into shorter segments,
analysing each of those segments with matched filtering, and them adding up the power
in the matched filter outputs along trajectories through the segments that correspond to
physical inspirals. This approach is summarised in Figure 28. The semi-coherent approach
is more computationally e�cient, because the number of templates required to densely cover
the parameter space for shorter observation times is much smaller.

A discussion of the use of a semi-coherent technique for detection of extreme-mass-ratio
inspirals may be found in Gair, J.R. et al. (2004), Class. Quantum Grav. 21, S1595. In that
context, the coherent phase used 2 week segments of data, out of 1 year long LISA data sets.
The coherent phase also employs the F -statistic described above to automatically maximize
over some of the extrinsic parameters.The impact of using the semi-coherent method rather
than fully coherent matched filtering is to increase the estimated matched-filtering signal-
to-noise ratio threshold for detection from ⇢ = 14 to ⇢ = 30.

In the context of the ground-based detectors, similar methods are used to search for
continuous gravitational wave signals from rotating pulsars. The most recent LIGO results
from the O2 science run are described in this paper

• Abbott, B.P. et al. (2019), All-sky search for continuous gravitational waves from
isolated neutron stars using Advanced LIGO O2 data, Phys. Rev. D 100, 024004.

LIGO uses two primary search methods. The time-domain F-statistic uses the same
technique as the EMRI search described above. In fact, the latter was based on the former.
Further details can be found in

• Aasi, J. et al. (2014), Class. Quantum Grav. 31, 165014

• Jaranowski, P., Królak, A. and Schutz, B.F. (1998), Phys. Rev. D 58, 063001

• Astone, P., Borkowski, K.M., Jaranowski, P., Pietka M. and Królak, A. (2010), Phys.
Rev. D 82, 022005

• Pisarski, A. and Jaranowski, P. (2015), Class. Quantum Grav. 32, 145014

LIGO also employs a second method, called the Hough transform. The first stage of this
algorithm is the same as the stack-slide method, i.e., coherent matched filtering on shorter
segments of data. The second stage is slightly di↵erent, using the Hough transform, which
is a technique for edge-detection in images, to identify tracks through the coherent template
overlaps that might correspond to true signals. Further details can be found in
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Figure 28: Illustration of the semi-coherent search method. The data is divided into shorter
segments, which are searched coherently using waveform templates. The power in the tem-
plates is then summed incoherently along trajectories through the templates that correspond
to EMRI inspiral trajectories. Reproduced from Gair et al. (2005).
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• Astone, P., Colla, A., D?Antonio, S., Frasca, S. and Palomba, C. (2014), Phys. Rev.
D 90, 042002

• Antonucci, F., Astone, P., D?Antonio, S., Frasca, S. and Palomba, C. (2008), Class.
Quantum Grav. 25, 184015

• Krishnan, B., Sintes, A.M., Papa, M.A., Schutz, B.F., Frasca, S. and Palomba, C.
(2004), Phys. Rev. D 70, 082001

7.6 Searches for stochastic backgrounds

Stochastic backgrounds require di↵erent search techniques again. It is di�cult to identify
a background in a single detector, as it is essentially a noise source which is therefore chal-
lenging to distinguish from instrumental noise. Instead, background searches make use of
multiple detectors and cross-correlate them to identify the common component of the noise.
A typical detection statistic takes the form

YQ =

Z T

0

dt1

Z T

0

dt2 s1(t1)Q(t1 � t2)s2(t2)

=

Z 1

�1
df

Z 1

�1
df 0 �T (f � f 0)s̃⇤

1
(f)Q̃(f 0)s̃2(f

0). (105)

In the above, Q(t) is a filter, which is analogous to the filter introduced in the single source
detection case discussed earlier. The function �T (f) is a finite time approximation to the
Dirac delta function

�T (f) =

Z T/2

�T/2

e�2⇡iftdt =
sin(⇡fT )

⇡f
.

A generic gravitational wave background can be decomposed into a superposition of plane
waves and a sum over polarisation states

hij(t, ~x) =

Z 1

�1
df

Z

S2

d⌦

k̂
e2⇡if(t�k̂·~x)HA(f, k̂)e

A
ij(k̂).

Here A labels the polarisation state, which for gravitational waves in general relativity is
either plus or cross, A = {+,⇥}, but in general metric theories could also include scalar
and vector modes. The quantities eA

ij(k̂) are the polarisation basis tensors for the individual
polarisation modes

e+

ij(k̂) = l̂il̂j � m̂im̂j, e⇥ij(k̂) = l̂im̂j + m̂il̂j

where

k̂ = sin ✓ cos� x̂+ sin ✓ sin� ŷ + cos ✓ ẑ

l̂ = cos ✓ cos� x̂+ cos ✓ sin� ŷ � sin ✓ ẑ

m̂ = � sin� x̂+ cos� ŷ (106)

are the standard spherical-polar coordinate basis vectors on the sky at colatitude ✓ and
longitude �. The quantities HA(f, k̂) are the amplitudes of the various modes. For an unpo-
larised, stationary and statistically isotropic gravitational wave background, the expectation
value of pairs of these amplitudes is given by

D
HA(f, k̂)HA0⇤(f 0, k̂0)

E
= H(f)�(f � f 0)�2(k̂, k̂0)�AA0 , (107)
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where H(f) is a real-valued function that depends on the energy density in the gravitational
wave background and can be related to ⌦GW(f), as introduced in the previous chapter, by

H(f) =
3H2

0

32⇡3

⌦GW(f)

|f |3 .

The response of a particular gravitational wave detector, labelled by I, to a gravitational
wave field can be written in the form

sI(t) =

Z 1

�1
d⌧

Z

R3

d3~y hij(t � ⌧, ~x � ~y)Rij
I (⌧, ~y)

= (2⇡)3
Z 1

�1
df

Z

R3

d3~k h̃ij(f,~k)R̃
ij
I (f,

~k)ei(2⇡ft�~k·~xI ) (108)

where Rij(t, ~x) is the impulse response of the detector, and the integral is over the spatial
extent of the detector. Combining Eq. (108) with Eq. (107) we obtain

hYQi = T

2

Z 1

�1
�12(|f |)Q̃(f)H(f)df

where �(|f |) is the overlap reduction function, which depends on the relative separation
and orientation of the two detectors and is defined by

�12(|f |) =
Z

S2

d⌦k̂ R̃
A
1
(f, k̂)R̃A⇤

2
(f, k̂)e�2⇡if k̂·(~x1�~x2)

where
R̃A

I (f, k̂) = (2⇡)eeA
ij(k̂)R̃

ij
I (f, 2⇡fk̂).

The overlap reduction function for various combinations of ground-based interferometers
and resonant bar detectors is shown in Figure 29. Stochastic backgrounds generated by
large numbers of supermassive black hole binary inspirals are also the primary source for
pulsar timing arrays. In that case, the “detector” is the measured redshift of a pulsar. The
overlap reduction function for the detection of an isotropic stochastic background by cross-
correlation of the measured redshifts of two di↵erent pulsars must be a function of only the
angular separation between the pulsars on the sky. The resulting overlap reduction function
curve is called the Hellings and Downs curve and is shown in Figure 30. Overlap reduction
functions for non-isotropic backgrounds, for example anisotropic or correlated backgrounds,
of backgrounds with non-GR polarisations, look di↵erent, providing a diagnostic for these
physical properties of any observed stochastic background.

As in the case of the optimal filter, it is possible to maximise the signal-to-noise ratio of
the filtered output. This takes a similar form to the optimal filter result

Q̃(f) / �(|f |)⌦GW(|f |)
|f |3S1(|f |)S2(|f |)

where S1(|f |) and S2(|f |) are the power spectral densities of the noise in the two detectors.



126 Introduction to Statistics for GWs

Figure 29: Overlap reduction function of the LIGO Livingston detector with LIGO Hanford
(lower purple curve), Virgo (red curve), GEO (upper purple curve), TAMA (now obsolete)
(blue curve) and the resonant bar detector Allegro (green curve), which was also sited in
Louisiana. This was the network of detectors operating at the time of initial LIGO’s science
runs.
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Figure 30: Overlap reduction function for the cross-correlation of the redshifts of two pul-
sars observed in a pulsar timing array, as a function of the angular separation of the two
pulsars on the sky. This is known as the Hellings and Downs curve and the observation of a
cross-correlation pattern that matches with this expectation is critical for the pulsar timing
detection of gravitational waves.


