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9 Time Series

We encountered the notion of a time series, or stochastic process, in Section 6 when we
discussed modelling of the noise in gravitational wave detectors. In this section we will
described some more general properties of time series, and several families of time series that
might be encountered when analysing data. The basic idea of a time series if that it is an
ordered sequence of random variables, such that each subsequent value depends on (in the
sense of being correlated with) previous values. There are two main types of time series

• Available data are part of a random sequence {Xt}, which is only defined at integer
values of the time t.

• Available data are values of a random function, X(t), that is defined for arbitrary
t 2 R, but is only observed at a finite number of times.

Random functions can be represented as random sequences, e.g., by integrating or averaging,
but in general this throws away information, so where possible it is better to treat the function
as continuous when performing an analysis.

We conclude this preamble with some definitions. Let {Xt}t2T be a stochastic process,
then

1. if E(Xt) < 1, then the mean (or expectation) of the process is

µt = E(Xt).

If µt is non-constant, i.e., it depends on t, then µt is sometimes called the trend.

2. if var(Xt) < 1 for all t 2 T , then the (auto)covariance function of the random
process is defined as

�(s, t) = cov(Xs, Xt) = E {(Xs � µs)(Xt � µt)} , s, t 2 T

and the (auto)correlation function of the process is defined by

⇢(s, t) =
�(s, t)

{�(s, s)�(t, t)}1/2
, s, t 2 T .

Note that var(Xt) =cov(Xt, Xt) = �(t, t) and |⇢(s, t)|  1 for all s, t 2 T from the
Cauchy-Schwarz inequality. In addition, the function �(s, t) is semi-positive definite,
i.e., X

aiaj�(ti, tj) � 0

for any {a1, . . . , ak} 2 R and any {t1, . . . , tk}.

9.1 General properties of time series

9.1.1 Stationarity

If S is a set, then we use u+ S to denote the set {u+ s : s 2 S}, and XS to denote the set
of random variables {Xs : s 2 S. A stochastic process is said to be

• strictly stationary if for any finite subset S ⇢ T and any u such that u + S ⇢ T ,
the joint distributions of XS and XS+u are the same;
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• second-order stationary (or weakly stationary) if the mean is constant and the
covariance function �(s, t) depends only on |s � t|.

When T = Z = {0,±1,±2, . . .} and the process is stationary

�(t, t+ h) = �(0, h) = �(0,�h) ⌘ �|h| = �h, h 2 Z,

where h is called the lag. Similarly ⇢(t, t + h) ⌘ ⇢|h| = ⇢h for h 2 Z. So, in the stationary
case the covariance and correlation functions are symmetric around h = 0.

In practice, it is impossible to verify strict stationarity and many computations require
only second-order stationarity. Elsewhere in this chapter when we refer to “stationarity” we
will mean second-order stationarity. Third and higher-order stationarity is defined analo-
gously, by extending the definition to third or higher correlation moments. In cases where
there is a trend or seasonality in the data, the time series will often be preprocessed to remove
the trend and leave a stationary stochastic process that can be analysed using methods that
assume stationarity. One way to do this is to use di↵erencing.

9.1.2 Examples of stochastic processes

1. A stochastic process is called white noise if its elements are uncorrelated, E(Xt) = 0
and variance var(Xt) = �2. If the elements are normally distributed then it is a
Gaussian white noise process, Xt ⇠iid N(0, �2). As all elements of the series are
independent, this is clearly a stationary stochastic process.

2. A random walk is defined by

Xt = Xt�1 + wt, t = 1, 2, . . . .

The expectation value of this process is 0, and the autocorrelation is �h = 1 for all h.
However, it is not a stationary process because var(Xt) is infinite.

9.1.3 Di↵erencing

We define the backshift operator B by BXt = Xt�1 and the first di↵erence of the series
{Xt} by {rXt}, where

rXt = (I � B)Xt = Xt � Xt�1

and higher-order di↵erences, such as the second di↵erence {r2Xt} by

r2Xt = r(rXt) = r(Xt � Xt�1) = Xt � 2Xt�1 +Xt�2

and so on. If Xt = p(t)+wt, where p(t) is a polynomial of degree k and {wt} is a stationary
stochastic process, then {rkXt} is stationary, i.e., k’th order di↵erencing removes the poly-
nomial trend. For example, first-order di↵erencing reduces a random walk to a stationary
process. This procedure will be exploited when discussing ARIMA processes later in this
chapter. When dealing with observed time-series, it is normal to apply successive di↵erences
to the data until the resulting time series appears to be stationary.
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9.1.4 Causal processes

Suppose that the process {Xt} can be written in the linear form

Xt =
1X

j=�1

 jwt�j

where {wt} is white noise,
P

| j| < 1, and  0 = 1. The process is called causal if
 �1 =  �2 = · · · = 0, so the linear expression for Xt does not involve the future values of
wt.

Using the backshift operator B we can write wt�j = Bjwt, so

Xt =
1X

j=�1

 jB
jwt =  (B)wt,

where

 (u) =
1X

j=�1

 ju
j

is an infinite series and  (B) the corresponding operator. The properties of the polyno-
mial defined here are crucial for determining properties of stationary time series such as
invertibility, as we will see in the following sections.

9.2 Moving-average (MA) processes

One of the most commonly encountered types of stationary stochastic process is a moving
average process. Let {wt} ⇠ (0, �2) be a white noise process for t 2 Z. Then the time series
{Xt} is said to be a moving average process of order q (denoted MA(q)) if

Xt = wt + ✓1wt�1 + · · · + ✓qwt�q

where ✓1, . . . , ✓q are real valued constants.
The mean of Xt is

E[Xt] = E[wt + ✓1wt�1 + · · · + ✓qwt�q]

= E[wt] + ✓1E[wt�1] + · · · + ✓qE[wt�q] = 0. (111)

Setting ✓0 = 1 the autocovariance is

�(k) = cov(Xt, Xt+k) = E[XtXt+k] � 02

= E[(✓0wt + · · · + ✓qwt�q)(✓0wt+k + · · · + ✓qwt+k�q)]

=
qX

r=0

qX

s=0

✓r✓sE[wt�rwt+k�s]. (112)

This can be simplified by noting

E[wt�swt+k�r] =

⇢
�2 if t � r = t+ k � s
0 otherwise (since wt are uncorrelated).
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When r, s  q then t � r 6= t+ k � s for any r, s if |k| > q and so

�(k) =

⇢
0 if |k| > q

�2
Pq�|k|

r=0
✓r✓r+|k| if |k|  q.

Since the mean is constant and �(k) does not depend on t, we see that MA(q) is a stationary
stochastic process. The variance is

var(Xt) = �0 = �2

qX

r=0

✓2

r

and the autocorrelation function is

⇢(k) =

⇢
0 if |k| > qPq�|k|

r=0
✓r✓r+|k|/

Pq
r=0

✓2

r if |k|  q.

Note that ⇢(k) = 0 for |k| > q. This fact is useful when detecting MA(q) processes in
observed data.

The moving average process is a weighted sum of a finite number of white noise events.
Applications within economics include modelling the e↵ects of strikes on economic output
(the white noise events are the strikes, but the impact on economic output at any given
time is not only due to any current strikes, but also previous strikes), or modelling the sales
of white goods (people replace white goods when they break, and those breakages are the
white noise processes, but people might not all replace immediately, so there will be some
influence of lags).

The autocorrelation function does not convey all information about a moving average
process, since two di↵erent moving average processes may have the same auto-correlation
function. This is most easily seen by an example. Consider the two processes

Xt = wt + ✓wt�1 and Xt = wt +
1

✓
wt�1.

The autocorrelation function of both of these processes is

⇢(1) = ⇢(�1) =
✓

1 + ✓2
, ⇢(k) = 0 for |k| > 1.

However, we can rearrange the first process to give

wt = Xt � ✓Xt�1 + ✓2Xt�2 � · · ·

while rearranging the second process we obtain

wt = Xt � 1

✓
Xt�1 +

1

✓2
Xt�2 � · · · .

If |✓| < 1 the series of coe�cients converges for the first model and not the second, and vice
versa for |✓ > 1. This ambiguity leads to the notion of invertibility.
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9.2.1 Invertible moving average processes

A general MA(q) process {Xt} is said to be invertible if it can be written as a convergent
sum of present and past values of Xt of the form

wt =
1X

j=0

⇡jXt�j

where
P

|⇡j| < 1. There is only one invertible MA(q) process associated with each autocor-
relation function ⇢(k) and so this notion eliminates the ambiguity identified in the previous
example. To determine if a MA(q) process is invertible we can use the backshift operator
introduced above to write

Xt = wt + ✓1wt�1 + · · · + ✓qwt�q

= (1 + ✓1B + ✓2B
2 + · · · + ✓qB

q)wt

= ✓(B)wt (113)

where ✓(B) is the polynomial

✓(B) = 1 + ✓1B + ✓2B
2 + · · · + ✓qB

q.

Although this polynomial defines an operator, it can be manipulated in the same way as
standard polynomials. In this way, it can be seen that the process is invertible if the roots
of ✓(B) all lie outside the unit circle, i.e., all (possibly complex) solutions to ✓(z) = 0
have |z| > 1.

Example: The MA(1) model Xt = wt + ✓1wt�1 can be written as

Xt = (1 + ✓1B)wt ) ✓(B) = 1 + ✓1B

which has a single root at B = �1/✓1. Therefore the process is invertible if |✓1| < 1.

9.3 Autoregressive (AR) processes

Another commonly encountered type of stationary stochastic process is an auto-regressive
process. Let wt ⇠ (0, �2) for t 2 Z as in the previous section. The time series {Xt} is said
to be an autoregressive process of order p (denoted AR(p)) if

Xt = ↵1Xt�1 + ↵2Xt�2 + · · · + ↵pXt�p + wt

where ↵1,↵2, . . . ,↵p are constants. Autoregressive models assume current values of a time
series depend on a fixed number of previous values (plus some random noise). An example
from forensic science is the concentration of cocaine on bank notes in a bundle. Cocaine
transfers between the notes and therefore there will be a correlation between consecutive
notes in the bundle (ordering of the notes in the bundle is a proxy for time in this example).

Example: The autoregressive process of order one is

Xt = ↵1Xt�1 + wt
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which is closely related to the random walk process defined earlier. Through repeated sub-
stitution we see

Xt = ↵1(↵1Xt�2 + wt�1) + wt = wt + ↵1wt�1 + ↵2

1
wt�2 + · · ·

so an AR(1) process can be written as in infinite order moving average process. The mean
is

E[Xt] = E[wt + ↵1wt�1 + ↵2

1
wt�2 + · · · ] = 0

and the autocovariance function is

�(k) = cov(Xt, Xt+k) = E
" 1X

i=0

↵i
1
wt�i

! 1X

j=0

↵j
1
wt+k�j

!#

= �2

1X

i=0

↵i
1
↵k+i

1
for k � 0 since E[wt�iwt+k�j] = 0 unless j = k + i

=
�2↵k

1

(1 � ↵2

1
)
if |↵1| < 1. (114)

Hence an AR(1) process with |↵1| < 1 is stationary, with var(Xt) = �(0) = �2/(1 � ↵2

1
) and

autocorrelation ⇢(k) = �(k)/�(0) = ↵|k|
1
.

For the general AR(p) process, we can write

Xt � ↵1Xt�1 � ↵2Xt�2 � . . . � ↵pXt�p = wt

(1 � ↵1B � ↵2B
2 � . . . � ↵pB

p)Xt = wt

�(B)Xt = wt. (115)

Recall that a time series is causal if there exists  (B) = 1 +  1B +  2B2 + . . . such thatP1
i=0

| i| < 1 and Xt =  (B)wt. From the above result, any such  (B) must be the inverse
of �(B). We deduce that the AR(p) process is causal if and only if all of the roots of the
polynomial �(u) lie outside the unit circle. If this is true, then the coe�cients  i can be
found from the expansion of the function 1/�(B) in the usual way.

The mean and covariance of a causal AR(p) process can be found from the decomposition
Xt =

P
 iwt�i The mean is clearly zero and the covariance can be found from

�(k) = cov(Xt, Xt+k)

= E
" 1X

i=0

 iwt�i

! 1X

j=0

 jwt+k�j

!#

= �2

1X

i=0

 i i+k for k � 0. (116)

The auto-covariance function converges (and hence {Xt} is weakly stationary) if
P

| i|
converges, which was the condition for the series to be causal. So an AR(p) process is
weakly stationary if it is causal.

Example: consider the AR(1) process

Xt = ↵1Xt�1 + wt.
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This may be written

�(B)Xt = wt, where �(B) = (1 � ↵1B).

The root of �(B) is B = 1/↵1, which lies outside the unit circle if |↵1| < 1. Therefore, AR(1)
models are causal (and weakly stationary) if |↵1| < 1. If this is true then we can write

Xt =
1

�(B)
wt

= (1 � ↵1B)�1wt

= (1 + ↵1B + (↵1B)2 + . . .)wt

=  0wt +  1wt�1 +  2wt�2 + . . . (117)

with  i = ↵i
1
for i 2 {0, 1, 2, . . .}. This agrees with the result obtained previously by repeated

substitution of the original equation.

9.4 Estimating properties of stationary time series

9.4.1 Estimation

Suppose we have observed values x1, . . . , xn of a time series {Xt} at times t = 1, 2, . . . , n.
We suppose that {Xt} is weakly stationary so that E[Xt] = µ, �(k) and ⇢(k) exist. These
three quantities can be estimated as follows

• We estimate µ by the sample mean

x̄ =
1

n

nX

t=1

xi.

• We estimate �(k) at lag k by

ck =
1

n � k � 1

n�kX

t=1

(xt � x̄)(xt+k � x̄).

The estimator ck is called the sample autocovariance coe�cient at lag k.

• We estimate ⇢(k) at lag k by

rk =
ck

c0

,

and this estimator is referred to as the sample autocorrelation coe�cient at lag
k. A plot of rk against k is called a correlogram.

The latter two formulas are only valid if k is small relative to n, roughly k < n/3.
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9.4.2 Tests for a white noise process

If {Xt} is a white noise process (plus possibly a constant mean), then for large n

rk⇠̇N(0, 1/n).

To test the hypothesis H0 that the process {Xt} is white noise we can use the values of the
rk’s. Rather than treating each r+k as an independent test statistic, it is better to count the
number of rk’s that exceed a relevant threshold. For example, for a 5% significance test we
compare each |rk| to 1.96/

p
n and count the number, b say, that exceed this value. Under

H0

b⇠̇Bin(m, 0.05)

where m is the number of rk’s being computed. Roughly speaking, if b exceeds m/20 then
we would reject H0.

Another test for white noise is the portmanteau test (Box and Pierce 1970; Ljung and
Box 1978). If m ⌧ n and n � 1, then

Qm = n(n+ 2)
mX

h=1

(n � h)�1⇢̂2

h⇠̇�m.

The sensitivity of Qm to di↵erent types of departure from white noise depends on m. If m is
too large, sensitivity is reduced because some of the ⇢̂h will contribute no information about
the lack of fit. If m is too small then sensitivity is reduced because some of the ⇢̂h that
convey information about the lack of fit are missing.

9.4.3 Testing for stationarity

One common test for stationarity is based on fitting the model

Xt = ⇠t+ ⌘t + ✏t, ⌘t = ⌘t�1 + wt, wt ⇠iid (0, �2

w)

where {✏t} is assumed to be stationary. If �2

w > 0 then the sequence is a random walk. If
�w = 0 and ⇠ = 0 then the series is called level stationary since {Xt} is stationary. If
�w = 0 but ⇠ 6= 0 it is called trend stationary as then {Xt � ⇠t} is stationary.

The KPSS test for stationarity is based on a score test for the hypothesis that �2

w = 0,
leading to

C(l) = �̂(l)�2

nX

t=1

S2

t , where St =
tX

j=1

ej, t = 1, . . . , n,

where e1, . . . , en are the residuals from a straight-line regression to the data, Xt = ↵+�t+✏t,
and �̂(l)2 is the estimated variance based on residuals truncated at lag l. Under certain
assumptions, C(l) has a tractable asymptotic distribution (integral of a squared Brownian
bridge).

9.4.4 Detection of MA(q) processes

As discussed earlier, ⇢(k) = 0 for |k| > q for an MA(q) process. Hence if {Xt} are from a
MA(q) process, we would expect

1. r1, r2, . . . , rq will be fairly close to ⇢(1), ⇢(2), . . . , ⇢(q) (and hence not close to 0).
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2. rq+1, rq+2, . . . will be randomly distributed about zero.

Inspection of the sample autocorrelation coe�cients can thus identify moving average pro-
cesses. For example, if |r1| was large but r2, r3, . . . are close to zero, there would be evidence
that is was a MA(1) process.

9.4.5 Detection of AR(p) processes

In an AR(1) process Xt = ↵1Xt�1 + wt, the autocorrelation function is given by

⇢(k) =
�(k)

�(0)
= ↵|k|

1
.

Therefore, the sample autocorrelation coe�cient, r1, gives an estimate of ↵1, and the other
sample autocorrelation coe�cients should scale like r|k|

1
. Note that, unlike the MA(q) model,

the coe�cients, rk, do not drop to zero above some threshold.
For a general AR(p) process, detecting the order of the process by inspection of the

coe�cients is di�cult. Instead, to fit the general AR(p) model

Xt =
pX

i=1

↵iXt�i + wt

we can find the coe�cients that minimize

1

n

nX

t=p+1

 
xt �

pX

i=1

↵ixt�i

!2

.

The resulting estimates ↵̂1, ↵̂2, . . . , ↵̂p are known as least squares estimates for obvious rea-
sons. The estimate ↵̂p is also called the sample partial autocorrelation coe�cient
at lag p. This provides an estimate of the the autocorrelation at lag p that is not ac-
counted for by the autocorrelation at smaller lags, hence the term “partial”. A plot of the
sample partial autocorrelation coe�cients versus lag is called the partial autocorrelation
function (pacf) and is analogous to the correlogram. For an AR(p) process, the partial
autocorrelation coe�cients ↵̂p+1, ↵̂p+2, . . . should drop to around zero. Hence, they can be
used to estimate the order of an AR process in the same way that the correlogram can be
used to estimate the order of a MA process. The partial autocorrelation coe�cient at lag
k is significantly di↵erent from zero at the 5% significance level if it is outside the range
(�2/

p
n, 2/

p
n).

9.4.6 Time series residuals

The residuals of a time series are defined as

ŵt = observation � fitted value.

For example, for an AR(1) model, Xt = ↵Xt�1+wt, with observations {xt}, t 2 {1, 2, . . . , n},
the residuals are given by

ŵt = xt � ↵̂xt�1,
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where ↵̂ is the estimate of the parameter ↵, obtained for example from the least squares
estimation procedure described above. The fitted value at time t is the forecast of xt, made
at time t � 1.

For a model that fits well, the residuals {wt} will be approximately white noise, with
constant variance. There are three standard approaches to assessing time series residuals

1. Plotting the residuals versus time. The residuals should be uncorrelated and randomly
distributed about zero. Any patterns in the data, or significant outliers suggest that
the model is not well fitted.

2. Use the Ljung-Box statistic defined above.

3. Looking at the correlogram of the residuals. Any autocorrelation coe�cients lying
outside the range ±2/

p
n can be said to be significantly di↵erent from zero at the 5%

significance level.

Note that the residuals are not exactly white noise, so these tests must not be used precisely,
but are guidelines.

9.5 ARMA processes

An ARMA(p, q) process is a combination of an MA(q) and an AR(p) process. The time
series {Xt} is said to be an ARMA(p, q) process if Xt is given by

Xt = ↵1Xt�1 + ↵2Xt�2 + . . .+ ↵pXt�p + wt + ✓1wt�1 + . . .+ ✓qwt�q

where wt ⇠ (0, �2) is a white noise process as usual. Using the backshift operator we can
write the ARMA(p, q) process as

�(B)Xt = ✓(B)wt

where �(B) = 1�↵1B�↵2B2 � . . .�↵pBp and ✓(B) = 1+✓1B+✓2B2+ . . .+✓qBq. Moving
average, autoregressive and white noise process are all special cases of ARMA models. An
MA(q) process is an ARMA(0, q) model, an AR(p) process is ARMA(p, 0) and white noise
is an ARMA(0, 0) process.

It is useful for ARMA(p, q) models to be both causal and invertible and the conditions
for this are the same as the conditions for invertibility of the MA(q) process and causality
of the AR(p) process, namely

• For an ARMA(p, q) process to be invertible, the roots of ✓(B) must lie outside the
unit circle.

• For an ARMA(p, q) process to be causal, the roots of �(B) must lie outside the unit
circle.

If an ARMA(p, q) process is both invertible and causal then it can be expressed both as an
infinite order moving average process and as an infinite order autoregressive process.

An ARMA(p, q) process is regular if

1. It is both invertible and causal,

2. ✓(B) and �(B) have no common roots.
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The second condition is necessary because if the two functions have a common root, the
process can be simplified to one with fewer terms.

If an ARMA(p, q) process is regular then it maybe written

Xt =
✓(B)

�(B)
wt =  (B)wt

where

 (B) =
✓(B)

�(B)
=  0 +  1B +  2B

2 + . . . =
1X

i=0

 iB
i

with  0 = 1 and
P1

i=0
| i < 1. In other words

Xt = wt +  1wt�1 +  2wt�2 + . . .

This is an infinite order moving average process and is known as the Wold decomposition
of Xt.

In the same way, it is also possible to express wt in terms of Xt using

wt =
�(B)

✓(B)
Xt = ⇡(B)Xt =

1X

i=0

⇡iXt�i

where

⇡(B) =
�(B)

✓(B)
= 1 + ⇡1B + ⇡2B

2 + . . . =
1X

i=0

⇡iB
i

with ⇡0 = 1. This inversion formula is used in some forecasting methods.
For a regular ARMA(p, q) process we have

⇢(k) =

P1
i=0

 i i+kP1
i=0

 2

i

for k = 1, 2, . . . .

This can be proved as follows. Firstly we note

�(k) = cov(Xt, Xt+k) = E[XtXt+k] � 0

= E
" 1X

i=0

 iwt�i

! 1X

j=0

 jwt+k�j

!#

=
1X

i=0

1X

j=0

 i jE(wt�iwt+k�j). (118)

Now

E[wt�iwt+k�j] =

⇢
�2 if j = i+ k
0 otherwise (since wt are uncorrelated.

Therefore

�(k) = �2

1X

i=0

 i i+k

and

�(0) = �2

1X

i=0

 2

i .
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Taking the ratio ⇢(k) = �(k)/�(0) we deduce the result quoted above.

Example: Consider an ARMA(1,1) process defined by

Xt = ↵Xt�1 + wt + �wt�1

where ↵, � 6= 0 and {wt} is a Gaussian white noise process. Using the previous notation we
have

�(B) = (1 � ↵B), ✓(B) = (1 + �B).

The process is regular if the roots of �(B) and ✓(B) lie outside the unit circle and there are
no roots in common. This is satisfied if

|↵| < 1, |�| < 1 and ↵ 6= ��.
If we now assume that these conditions are satisfied so the process is regular, we can use the
Wold decomposition to obtain the variance and auto-correlation function. First we note

Xt =
1 + �B

1 � ↵B
wt

= (1 + ↵B + ↵2B2 + . . .)(1 + �B)wt

= [(1 + ↵B + ↵2B2 + . . .) + (�B + �↵B2 + �↵2B3 + . . .)]wt

= [1 + (↵ + �)B + (↵2 + ↵�)B2 + (↵3 + ↵2�)B3 + . . .]wt

=
1X

i=0

 iwt�i (119)

where  i = (↵ + �)↵i�1 for i = 1, 2, . . . and  0 = 1. Using this decomposition we can
compute the variance

var[Xt] =
1X

i=0

 2

i var[wt�i] = �2

1X

i=0

 2

i

= [1 + (↵ + �)2 + (↵ + �)2↵2 + (↵ + �)2↵4 + . . .]�2

=


1 +

(↵ + �)2

(1 � ↵2)

�
�2. (120)

The autocorrelation function can be found from the formula

⇢(k) =

P1
i=0

 i i+kP1
i=0

 2

i

.

For example, for k = 1, we have from the variance result
1X

i=0

 2

i =


1 +

(↵ + �)2

(1 � ↵2)

�
=

1 + 2↵� + �2

1 � ↵2

and note

 0 1 +  1 2 +  2 3 + . . . = (↵ + �) + [(↵ + �)2↵ + (↵ + �)2↵3 + . . .]

= (↵ + �) +


(↵ + �)2↵

1 � ↵2

�
. (121)

Hence we find

⇢(1) =
(↵ + �)[(1 � ↵2) + (↵ + �)↵]

1 + 2↵� + �2
=

(↵ + �)[1 + ↵�]

1 + 2↵� + �2
.
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9.5.1 ARMA(p, q) with constant mean

The ARMA(p, q) model can be generalised to

Xt = c+ ↵1Xt�1 + ↵2Xt�2 + . . .+ ↵pXt�p + wt + ✓1wt�1 + . . .+ ✓qwt�q

or equivalently
�(B)Xt = c+ ✓(B)wt

where c 6= 0. This is called an ARMA(p, q) model with constant mean. By letting

µ =
c

1 � ↵1 � ↵2 � . . . � ↵p
= E[Xt]

the problem may be converted to a model with no constant term by considering

Yt = Xt � µ.

We can see that

�(B)Yt = �(B)(Xt � µ) = �(B)Xt � �(B)µ

= c+ ✓(B)wT � c = ✓(B)wt (122)

so Yt ⇠ARMA(p, q). If the ARMA process is regular then

Yt =
✓(B)

�(B)
wt =  (B)wt

and Xt = Yt + µ, from which we deduce

Xt = µ+
1X

i=0

 iwt�i.

The autocorrelation function ⇢(k) is the same for Xt and Yt, as it does not depend on the
value of µ.

9.6 ARIMA processes

The ARMA(p, q) models describe stationary time series, but often an observed time series
{Xt} is not stationary. To fit a stationary model to the data it is necessary to first remove the
non-stationary behaviour, for example if the trend, E[Xt], is not constant. One approach is
to consider di↵erences of the time series, as these will remove polynomial trends as discussed
earlier.

We denote the backward di↵erence operator, (I � B), by r. If {Xt} has a trend which
follows a polynomial of degree  d in time, t, then we consider the d-th order di↵erence
process

Wt = rdXt = (I � B)dXt.

If the time series {Wt} generated in this way can be modelled using an ARMA(p, q) pro-
cess, then the series is called an autoregressive integrated moving-averaged (ARIMA)
model and is denoted by ARIMA(p, d, q). The process {Wt} may be a zero mean ARMA(p, q)
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process, in which case the trend of the original series, E[Xt], is a polynomial of degree  d�1
and we may write

�(B)Wt = ✓(B)wt.

Alternatively, the process {Wt} may have a constant mean, in which case E[Xt] is a polyno-
mial of degree d and we may write

�(B)Wt = c+ ✓(B)wt with c 6= 0.

If the ARMA(p, q) process that models {Wt} is regular then the polynomials �(B) and ✓(B)
have no roots outside the unit circle. Writing

�(B) = �(B)(I � B)d

we have
�(B)Xt = �(B)(I � B)dXt = �(B)Wt = ✓(B)wt.

The process {Xt} is invertible since the roots of ✓(B) lie outside the unit circle and so we
may write

wt =
�(B)

✓(B)
Xt = ⇧(B)Xt = Xt + ⇡1Xt�1 + ⇡2Xt�2 + . . . .

In addition we note that
1 + ⇡1 + ⇡2 + . . . = 0.

This follows from the fact that

⇧(B)✓(B) = �(B) = �(B)(I � B)d ) ⇧(1)✓(1) = 0 ) ⇧(1) = 0.

The last step follows from the fact that ✓(1) 6= 0 since by assumption alll of the roots of
✓(B) lie outside the unit circle. While ARIMA(p, q) processes are invertible, they are not
causal, since (I �B)d has d roots on the unit circle and hence so does �(B). Thus the Wold
decomposition cannot be used for ARIMA processes.

Example: Consider the model

Xt = Xt�1 + wt � ✓wt�1, with 0 < |✓| < 1 and E[Xt] = µ.

We can write
Wt = Xt � Xt�1 = wt � ✓wt�1

so Wt ⇠ARMA(0, 1) and hence Xt ⇠ARIMA(0, 1, 1). We have

�(B)Xt = ✓(B)wt, where �(B) = (I � B), ✓(B) = I � ✓B.

We can invert this process to obtain

wt = ⇧(B)Xt =
I � B

I � ✓B
Xt

= (1 � B)(1 + ✓B + ✓2B2 + . . .)Xt

= [1 � (1 � ✓)B � (1 � ✓)✓B2 � (1 � ✓)✓2B3 + . . .]Xt

=
1X

i=0

⇡iXt�i (123)
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where ⇡i = �(1 � ✓)✓i�1. We can also confirm

1X

i=1

⇡i = �(1 � ✓)
1X

i=0

✓i = �(1 � ✓)
1

1 � ✓
= �1 ) 1 +

1X

i=1

⇡i = 0.

9.6.1 ARIMA processes with a constant term

Suppose that we have
�(B)(I � B)dXt = c+ ✓(B)wt,

where c 6= 0. This means that {Xt} has a trend term which is a polynomial of degree d. To
work with such a series we define a new series, {Yt}, as

Yt = Xt � Atd, where A =
c

d!(1 � ↵1 � ↵2 � . . . � ↵p)
.

The new series is an ARIMA model without a constant term

�(B)(I � B)dYt = ✓(B)wt

and so can be used for forecasting. Forecasts of Xt can be obtained by adding Atd to the
forecasts of Yt.


