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Parameter Estimation: LIGO



LIGO Parameter Estimation
❖ LIGO parameter estimation uses Bayesian methods. Results are quoted as posterior 

distributions, or posterior median values and credible intervals.

and calibration have not changed, a reanalysis is valuable
for the following reasons: (i) Parameter estimation analyses
use an improved method for estimating the power spectral
density of the detector noise [53,54] and frequency-depen-
dent calibration envelopes [98]; (ii) we use two waveform
models that incorporate precession and combine their
posteriors to mitigate model uncertainties.
Key source parameters for the ten BBHs and one BNS are

shown in Table III. We quote the median and symmetric 90%
credible intervals for inferred quantities. For BBH coales-
cences, parameter uncertainties include statistical and sys-
tematic errors from averaging posterior probability
distributions over the two waveform models, as well as
calibration uncertainty. Apart from GW170817, all posterior
distributions of GW events are consistent with originating
from BBHs. Posterior distributions for all GW events are
shown in Figs. 4–8. Mass and tidal deformability poste-
riors for GW170817 are shown in Fig. 9. For BBH
coalescences, we present combined posterior distributions
from an effective precessing spin waveform model
(IMRPhenomPv2) [25,26,49] and a fully precessing
model (SEOBNRv3) [27,28,30]. For the analysis of
GW170817, we present results for three frequency-
domain models IMRPhenomPv2NRT [25,26,32,49,99],
SEOBNRv4NRT [29,32,77,99], and TaylorF2 [35,36,
38,100–112] and two time-domain models SEOBNRv4T
[31] and TEOBResumS [33,113]. Details on Bayesian
parameter estimation methods, prior choices, and wave-
form models used for BBH and BNS systems are provided
in Appendix B, B 1, and B 2, respectively. We discuss an

analysis including higher harmonics in the waveform in
Appendix B 3 and find results broadly consistent with the
analysis presented below. The impact of prior choices on
selected results is discussed in Appendix C.

A. Source parameters
The GW signal emitted from a BBH coalescence

depends on intrinsic parameters that directly characterize
the binary’s dynamics and emitted waveform, and extrinsic
parameters that encode the relation of the source to the
detector network. In general relativity, an isolated BH is
uniquely described by its mass, spin, and electric charge
[114–118]. For astrophysical BHs, we assume the electric
charge to be negligible. A BBH undergoing quasicircular
inspiral can be described by eight intrinsic parameters, the
two masses mi, and the two three-dimensional spin vectors
S⃗i of its component BHs defined at a reference frequency.
Seven additional extrinsic parameters are needed to
describe a BH binary: the sky location (right ascension
α and declination δ), luminosity distance dL, the orbital
inclination ι and polarization angle ψ , the time tc, and phase
ϕc at coalescence.
Since the maximum spin a Kerr BH of mass m can

reach is ðGm2Þ=c, we define dimensionless spin vectors
χ⃗i ¼ cS⃗i=ðGm2

i Þ and spin magnitudes ai ¼ cjS⃗ij=ðGm2
i Þ. If

the spins have a component in the orbital plane, then the
binary’s orbital angular momentum L⃗ and its spin vectors
precess [119,120] around the total angular momentum
J⃗ ¼ L⃗þ S⃗1 þ S⃗2.

TABLE III. Selected source parameters of the 11 confident detections. We report median values with 90% credible intervals that
include statistical errors and systematic errors from averaging the results of two waveform models for BBHs. For GW170817, credible
intervals and statistical errors are shown for IMRPhenomPv2NRTwith a low spin prior, while the sky area is computed from TaylorF2
samples. The redshift for NGC 4993 from Ref. [94] and its associated uncertainties are used to calculate source-frame masses for
GW170817. For BBH events, the redshift is calculated from the luminosity distance and assumed cosmology as discussed in
Appendix B. The columns show source-frame component masses mi and chirp massM, dimensionless effective aligned spin χeff , final
source-frame massMf , final spin af , radiated energy Erad, peak luminosity lpeak, luminosity distance dL, redshift z, and sky localization
ΔΩ. The sky localization is the area of the 90% credible region. For GW170817, we give conservative bounds on parameters of the final
remnant discussed in Sec. V E.

Event m1=M⊙ m2=M⊙ M=M⊙ χeff Mf=M⊙ af Erad=ðM⊙c2Þ lpeak=ðerg s−1Þ dL=Mpc z ΔΩ=deg2

GW150914 35.6þ4.7
−3.1 30.6þ3.0

−4.4 28.6þ1.7
−1.5 −0.01þ0.12

−0.13 63.1þ3.4
−3.0 0.69þ0.05

−0.04 3.1þ0.4
−0.4 3.6þ0.4

−0.4 × 1056 440þ150
−170 0.09þ0.03

−0.03 182

GW151012 23.2þ14.9
−5.5 13.6þ4.1

−4.8 15.2þ2.1
−1.2 0.05þ0.31

−0.20 35.6þ10.8
−3.8 0.67þ0.13

−0.11 1.6þ0.6
−0.5 3.2þ0.8

−1.7 × 1056 1080þ550
−490 0.21þ0.09

−0.09 1523

GW151226 13.7þ8.8
−3.2 7.7þ2.2

−2.5 8.9þ0.3
−0.3 0.18þ0.20

−0.12 20.5þ6.4
−1.5 0.74þ0.07

−0.05 1.0þ0.1
−0.2 3.4þ0.7

−1.7 × 1056 450þ180
−190 0.09þ0.04

−0.04 1033

GW170104 30.8þ7.3
−5.6 20.0þ4.9

−4.6 21.4þ2.2
−1.8 −0.04þ0.17

−0.21 48.9þ5.1
−4.0 0.66þ0.08

−0.11 2.2þ0.5
−0.5 3.3þ0.6

−1.0 × 1056 990þ440
−430 0.20þ0.08

−0.08 921

GW170608 11.0þ5.5
−1.7 7.6þ1.4

−2.2 7.9þ0.2
−0.2 0.03þ0.19

−0.07 17.8þ3.4
−0.7 0.69þ0.04

−0.04 0.9þ0.0
−0.1 3.5þ0.4

−1.3 × 1056 320þ120
−110 0.07þ0.02

−0.02 392

GW170729 50.2þ16.2
−10.2 34.0þ9.1

−10.1 35.4þ6.5
−4.8 0.37þ0.21

−0.25 79.5þ14.7
−10.2 0.81þ0.07

−0.13 4.8þ1.7
−1.7 4.2þ0.9

−1.5 × 1056 2840þ1400
−1360 0.49þ0.19

−0.21 1041

GW170809 35.0þ8.3
−5.9 23.8þ5.1

−5.2 24.9þ2.1
−1.7 0.08þ0.17

−0.17 56.3þ5.2
−3.8 0.70þ0.08

−0.09 2.7þ0.6
−0.6 3.5þ0.6

−0.9 × 1056 1030þ320
−390 0.20þ0.05

−0.07 308

GW170814 30.6þ5.6
−3.0 25.2þ2.8

−4.0 24.1þ1.4
−1.1 0.07þ0.12

−0.12 53.2þ3.2
−2.4 0.72þ0.07

−0.05 2.7þ0.4
−0.3 3.7þ0.4

−0.5 × 1056 600þ150
−220 0.12þ0.03

−0.04 87

GW170817 1.46þ0.12
−0.10 1.27þ0.09

−0.09 1.186þ0.001
−0.001 0.00þ0.02

−0.01 ≤ 2.8 ≤ 0.89 ≥ 0.04 ≥ 0.1 × 1056 40þ7
−15 0.01þ0.00

−0.00 16

GW170818 35.4þ7.5
−4.7 26.7þ4.3

−5.2 26.5þ2.1
−1.7 −0.09þ0.18

−0.21 59.4þ4.9
−3.8 0.67þ0.07

−0.08 2.7þ0.5
−0.5 3.4þ0.5

−0.7 × 1056 1060þ420
−380 0.21þ0.07

−0.07 39

GW170823 39.5þ11.2
−6.7 29.0þ6.7

−7.8 29.2þ4.6
−3.6 0.09þ0.22

−0.26 65.4þ10.1
−7.4 0.72þ0.09

−0.12 3.3þ1.0
−0.9 3.6þ0.7

−1.1 × 1056 1940þ970
−900 0.35þ0.15

−0.15 1666
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LIGO PE codes

❖ In O1 and O2, LIGO parameter estimation used the LALInference code. This includes 
two separate algorithms

❖ LALInferenceMCMC: A Markov Chain Monte Carlo code based on the 
Metropolis-Hastings algorithm. Proposal distributions are tuned to features of 
the likelihood expected for CBC inspirals.

❖ LALInferenceNest: A bespoke nested sampling algorithm. New live points are 
drawn by evolving mini-MCMC chains until an independent point is obtained.

❖ During O3 a new software package, Bilby, has become available (also with a parallel 
implementation, parallel bilby). The sampling algorithms in Bilby are not bespoke. 
Instead it uses freely available packages such as dynesty. LALInference will continue 
to be used for O3, with Bilby used for cross-checks. It is anticipated that Bilby



LIGO PE results: examples
two. The inferred component masses are shown in Fig. 2.
The formof the two-dimensional distribution is guidedby the
combination of constraints on M and M. The binary was
composed of two black holeswithmassesm1 ¼ 31.2þ8.4

−6.0M⊙
and m2 ¼ 19.4þ5.3

−5.9M⊙; these merged into a final black hole
of mass 48.7þ5.7

−4.6M⊙. This binary ranks second, behind
GW150914’s source [5,37], as themost massive stellar-mass
binary black hole system observed to date.
The black hole spins play a subdominant role in the

orbital evolution of the binary, and are more difficult to
determine. The orientations of the spins evolve due to
precession [62,63], and we report results at a point in the
inspiral corresponding to a gravitational-wave frequency of
20 Hz [37]. The effective inspiral spin parameter χeff ¼
ðm1a1 cos θLS1 þm2a2 cos θLS2Þ=M is the most important
spin combination for setting the properties of the inspiral
[64–66] and remains important through to merger [67–71];
it is approximately constant throughout the orbital evolu-
tion [72,73]. Here θLSi ¼ cos−1ðL̂ · ŜiÞ is the tilt angle
between the spin Si and the orbital angular momentum L,
which ranges from 0° (spin aligned with orbital angular
momentum) to 180° (spin antialigned); ai ¼ jcSi=Gm2

i j is
the (dimensionless) spin magnitude, which ranges from 0 to
1, and i ¼ 1 for the primary black hole and i ¼ 2 for the
secondary. We use the Newtonian angular momentum for
L, such that it is normal to the orbital plane; the total orbital
angular momentum differs from this because of post-
Newtonian corrections. We infer that χeff ¼ −0.12þ0.21

−0.30 .
Similarly to GW150914 [5,37,44], χeff is close to zero with
a preference towards being negative: the probability that
χeff < 0 is 0.82. Our measurements therefore disfavor a
large total spin positively aligned with the orbital angular
momentum, but do not exclude zero spins.
The in-plane components of the spin control the amount

of precession of the orbit [62]. This may be quantified by
the effective precession spin parameter χp which ranges
from 0 (no precession) to 1 (maximal precession) [39].
Figure 3 (top) shows the posterior probability density for
χeff and χp [39]. We gain some information on χeff ,
excluding large positive values, but, as for previous events
[3,5,37], the χp posterior is dominated by the prior (see
Sec. III of the Supplemental Material [11]). No meaningful
constraints can be placed on the magnitudes of the in-plane
spin components and hence precession.
The inferred component spin magnitudes and orienta-

tions are shown in Fig. 3 (bottom). The lack of constraints
on the in-plane spin components means that we learn
almost nothing about the spin magnitudes. The secondary’s
spin is less well constrained as the less massive component
has a smaller impact on the signal. The probability that the
tilt θLSi is less than 45° is 0.04 for the primary black hole
and 0.08 for the secondary, whereas the prior probability is
0.15 for each. Considering the two spins together, the
probability that both tilt angles are less than 90° is 0.05.

FIG. 3. Top: Posterior probability density for the effective
inspiral and precession spin parameters, χeff and χp. The
one-dimensional distributions show the posteriors for the two
waveform models, their average (black), and the prior distribu-
tions (green). The dashed lines mark the 90% credible interval for
the average posterior. The two-dimensional plot shows the 50%
and 90% credible regions plotted over the posterior density
function. Bottom: Posterior probabilities for the dimensionless
component spins, cS1=ðGm2

1Þ and cS2=ðGm2
2Þ, relative to the

normal of the orbital plane L̂. The tilt angles are 0° for spins
aligned with the orbital angular momentum and 180° for spins
antialigned. The probabilities are marginalized over the azimuthal
angles. The pixels have equal prior probability (1.6 × 10−3);
they are spaced linearly in spin magnitudes and the cosine
of the tilt angles. Results are given at a gravitational-wave
frequency of 20 Hz.

PRL 118, 221101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
2 JUNE 2017

221101-4
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We describe the dominant spin effects by introducing
effective parameters. The effective aligned spin is defined
as a simple mass-weighted linear combination of the spins
[23,24,121] projected onto the Newtonian angular momen-
tum L̂N , which is normal to the orbital plane (L̂ ¼ L̂N for
aligned-spin binaries)

χeff ¼
ðm1χ⃗1 þm2 χ⃗2Þ · L̂N

M
; ð4Þ

whereM ¼ m1 þm2 is the total mass of the binary andm1 is
defined to be the mass of the larger component of the binary,
such thatm1 ≥ m2.Different parameterizations of spin effects
are possible and can bemotivated from their appearance in the
GW phase or dynamics [122–124]. χeff is approximately
conserved throughout the inspiral [121]. To assess whether a
binary is precessing, we use a single effective precession spin
parameter χp [125] (see Appendix C).
During the inspiral, the phase evolution depends at

leading order on the chirp mass [34,126,127]

M ¼ ðm1m2Þ3=5

M1=5 ; ð5Þ

which is also the best measured parameter for low-mass
systems dominated by the inspiral [63,101,122,128]. The
mass ratio

q ¼ m2

m1

≤ 1 ð6Þ

and effective aligned spin χeff appear in the phasing at
higher orders [101,121,123].
For precessing binaries, the orbital angular momentum

vector L⃗ is not a stable direction, and it is preferable to
describe the source inclination by the angle θJN between

the total angular momentum J⃗ (which typically is approx-
imately constant throughout the inspiral) and the line-of-
sight vector N⃗ instead of the orbital inclination angle ι
between L⃗ and N⃗ [119,129]. We quote frequency-
dependent quantities such as spin vectors and derived
quantities as χp at a GW reference frequency fref ¼ 20 Hz.
Binary neutron stars have additional degrees of freedom

(d.o.f.) related to their response to a tidal field. The
dominant quadrupolar (l ¼ 2) tidal deformation is
described by the dimensionless tidal deformability Λ ¼
ð2=3Þk2½ðc2=GÞðR=mÞ&5 of each neutron star (NS), where
k2 is the dimensionless l ¼ 2 Love number and R is the NS
radius. The tidal deformabilities depend on the NS mass
m and the equation of state (EOS). The dominant tidal
contribution to the GW phase evolution is encapsulated in
an effective tidal deformability parameter [130,131]:

Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

M5
: ð7Þ

B. Masses

In the left panel in Fig. 4, we show the inferred
component masses of the binaries in the source frame as
contours in them1-m2 plane. Because of the mass prior, we
consider only systems with m1 ≥ m2 and exclude the
shaded region. The component masses of the detected
BH binaries cover a wide range from about 5 M⊙ to about
70 M⊙ and lie within the range expected for stellar-mass
BHs [132–134]. The posterior distribution of the heavier
component in the heaviest BBH, GW170729, grazes the
lower boundary of the possible mass gap expected from
pulsational pair instability and pair instability supernovae at

FIG. 4. Parameter estimation summary plots I. Posterior probability densities of the component masses and final masses and spins of
the GW events. For the two-dimensional distributions, the contours show 90% credible regions. Left: Source-frame component masses
m1 and m2. We use the convention that m1 ≥ m2, which produces the sharp cut in the two-dimensional distribution. Lines of constant
mass ratio q ¼ m2=m1 are shown for 1=q ¼ 2, 4, 8. For low-mass events, the contours follow lines of constant chirp mass. Right: The
massMf and dimensionless spin magnitude af of the final black holes. The colored event labels are ordered by source-frame chirp mass.
The same color code and ordering (where appropriate) apply to Figs. 5–8.
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LIGO PE results: examples
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approximately 60–120 M⊙ [135–138]. The lowest-mass
BBH systems, GW151226 and GW170608, have 90%
credible lower bounds on m2 of 5.6 M⊙ and 5.9 M⊙,
respectively, and therefore lie above the proposed BH mass
gap region [139–142] of 2–5 M⊙. The component masses
of the BBHs show a strong degeneracy with each other.
Lower-mass systems are dominated by the inspiral of the
binary, and the component mass contours trace out a line of
constant chirp mass Eq. (5) which is the best measured
parameter in the inspiral [34,63,122]. Since higher-mass
systems merge at a lower GW frequency, their GW signal is
dominated by the merger of the binary. For high-mass
binaries, the total mass can be measured with an accuracy
comparable to that of the chirp mass [143–146].
We show posteriors for the ratio of the component

masses Eq. (6) in the top left in Fig. 5. This parameter
is much harder to constrain than the chirp mass. The
width of the posteriors depends mostly on the SNR, and
so the mass ratio is best measured for the loudest
events, GW170817, GW150914, and GW170814. Even

though GW170817 has the highest SNR of all events,
its mass ratio is less well constrained, because the
signal power comes predominantly from the inspiral,
while the merger contributes little compared to the
BBH [147]. GW151226 and GW151012 have posterior
support for more unequal mass ratios than the other
events, with lower bounds of 0.28 and 0.29, respec-
tively, at 90% credible level.
The final mass, radiated energy, final spin, and peak

luminosity of the BH remnant from a BBH coalescence are
computed using averages of fits to numerical relativity
(NR) results [15,148–153]. Posteriors for the mass and spin
of the BH remnant for BBH coalescences are shown in the
right in Fig. 4. Only a fraction ð0.02–0.07Þ of the binary’s
total mass is radiated away in GWs. The amount of radiated
energy scales with its total mass. The heaviest remnant BH
found is GW170729, at 79.5þ14.7

−10.2 M⊙ while the lightest
remnant BH is GW170608, at 17.8þ3.4

−0.7 M⊙.
GW mergers reach extraordinary values of peak lumi-

nosity which is independent of the total mass. While it

FIG. 5. Parameter estimation summary plots II. Posterior probability densities of the mass ratio and spin parameters of the GWevents.
The shaded probability distributions have equal maximum widths, and horizontal lines indicate the medians and 90% credible intervals
of the distributions. For the two-dimensional distributions, the contours show 90% credible regions. Events are ordered by source-frame
chirp mass. The colors correspond to the colors used in summary plots. For GW170817, we show results for the high-spin prior
ai < 0.89. Top left: The mass ratio q ¼ m2=m1. Top right: The effective aligned spin magnitude χeff . Bottom left: Contours of 90%
credible regions for the effective aligned spin and mass ratio of the binary components for low- (high-) mass binaries are shown in the
upper (lower) panel. Bottom right: The effective precession spin posterior (colored) and its effective prior distribution (white) for BBH
(BNS) events. The priors are conditioned on the χeff posterior distributions.

B. P. ABBOTT et al. PHYS. REV. X 9, 031040 (2019)
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FIG. 6. Parameter estimation summary plots III. Posterior probability distributions for the dimensionless component spins cS⃗1=ðGm2
1Þ

and cS⃗2=ðGm2
2Þ relative to the normal to the orbital plane L⃗, marginalized over the azimuthal angles. The bins are constructed linearly in

spin magnitude and the cosine of the tilt angles and are assigned equal prior probability. Events are ordered by source-frame chirp mass.
The colors correspond to the colors used in summary plots. For GW170817, we show results for the high-spin prior ai < 0.89.

GWTC-1: A GRAVITATIONAL-WAVE TRANSIENT CATALOG … PHYS. REV. X 9, 031040 (2019)
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FIG. 7. Parameter estimation summary plots IV. Posterior probability densities of distance dL, inclination angle θJN , and chirp mass
M of the GWevents. For the two-dimensional distributions, the contours show 90% credible regions. For GW170817, we show results
for the high-spin prior ai < 0.89. Left: The inclination angle and luminosity distance of the binaries. Right: The luminosity distance (or
redshift z) and source-frame chirp mass. The colored event labels are ordered by source-frame chirp mass.

FIG. 8. Parameter estimation summary plots V. The contours show 90% and 50% credible regions for the sky locations of all GWevents in a
Mollweide projection. The probable position of the source is shown in equatorial coordinates (right ascension is measured in hours, and
declination is measured in degrees). 50% and 90% credible regions of posterior probability sky areas for the GW events. Top: Confidently
detectedO2GWevents [22] (GW170817, GW170104, GW170823, GW170608, GW170809, andGW170814) for which alerts were sent to
EM observers. Bottom: O1 events (GW150914, GW151226, and GW151012), along with O2 events (GW170729 and GW170818) not
previouslyreleased toEMobservers.Whereapplicable, the initial skymapssharedwithEMpartners in lowlatencyareavailable fromRef. [185].
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for the high-spin prior ai < 0.89. Left: The inclination angle and luminosity distance of the binaries. Right: The luminosity distance (or
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Mollweide projection. The probable position of the source is shown in equatorial coordinates (right ascension is measured in hours, and
declination is measured in degrees). 50% and 90% credible regions of posterior probability sky areas for the GW events. Top: Confidently
detectedO2GWevents [22] (GW170817, GW170104, GW170823, GW170608, GW170809, andGW170814) for which alerts were sent to
EM observers. Bottom: O1 events (GW150914, GW151226, and GW151012), along with O2 events (GW170729 and GW170818) not
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depends on the mass ratio and spins, the posteriors overlap
to a large degree for the observed BBH events. Because of
its relatively high spin, GW170729 has the highest value
of lpeak ¼ 4.2þ0.9

−1.5 × 1056 erg s−1.

C. Spins

The spin vectors of compact binaries can a priori point in
any direction. Particular directions in the spin space are
easier to constrain, and we focus on these first. An averaged
projection of the spins parallel to the Newtonian orbital

angular momentum of the binary can be measured best.
This effective aligned spin χeff is defined by Eq. (4).
Positive (negative) values of χeff increase (decrease) the
number of orbits from any given separation to merger with
respect to a nonspinning binary [38,154]. We show
posterior distributions for this quantity in the top right in
Fig. 5. Most posteriors peak around zero. The posteriors for
GW170729 and GW151226 exclude χeff ¼ 0 at > 90%
confidence, but see Sec. V F. As can be seen from Table III,
the 90% intervals are 0.11–0.58 for GW170729 and
0.06–0.38 for GW151226.

FIG. 9. Posterior distributions for component masses and tidal deformability for GW170817 for the waveform models:
IMRPhenomPv2NRT, SEOBNRv4NRT, TaylorF2, SEOBNRv4T, and TEOBResumS. Top: 90% credible regions for the component
masses for the high-spin prior ai < 0.89 (left) and low-spin prior ai < 0.05 (right). The edge of the 90% credible regions is marked by
points; the uncertainty in the contour is smaller than the thickness shown because of the precise chirp mass determination. 1D marginal
distributions are renormalized to have equal maxima, and the vertical and horizontal lines give the 90% upper and lower limits onm1 and
m2, respectively. Bottom: Posterior distributions of the effective tidal deformability parameter Λ̃ for the high-spin (left) and low-spin
(right) priors. These PDFs are reweighted to have a flat prior distribution. The original Λ̃ prior is shown in yellow. 90% upper bounds are
represented by vertical lines for the high-spin prior (left). For the low-spin prior (right), 90% highest posterior density (HPD) credible
intervals are shown instead. Gray PDFs indicate seven representative equations of state (EOSs) using masses estimated with the
IMRPhenomPv2NRT model.
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❖ Bayesian methods are also used for tests of general relativity, e.g., to place bounds 
on pPN deviations in the observed waveform.

LIGO PE results: examples

10

FIG. 3. Combined posteriors for parametrized violations of GR, obtained from all events in Table I with a significance of FAR < (1000 yr)�1

in both modeled searches. The horizontal lines indicate the 90% credible intervals, and the dashed horizontal line at zero corresponds to the
expected GR values. The combined posteriors on 'i in the inspiral regime are obtained from the events which in addition exceed the SNR
threshold in the inspiral regime (GW150914, GW151226, GW170104, GW170608, and GW170814), analyzed with IMRPhenomPv2 (grey
shaded region) and SEOBNRv4 (black outline). The combined posteriors on the intermediate and merger-ringdown parameters �i and ↵i
are obtained from events which exceed the SNR threshold in the post-inspiral regime (GW150914, GW170104, GW170608, GW170809,
GW170814, and GW170823), analyzed with IMRPhenomPv2.
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained here (from GW170608). The cor-
responding best �1PN bound coming from the double pulsar
PSR J0737�3039, is a few orders of magnitude tighter still,
at |�'̂�2| . 10�7 [104, 107]. At 0PN we find that the bound

from GW170608 beats the one from GW170817, but remains
weaker than the one from the double pulsar by one order of
magnitude [107, 108]. For all other PN orders, GW170608
also provides the best bounds, which at high PN orders are
of the same order of magnitude as the ones from GW170817.
Our results can be compared statistically to those obtained by
performing the same tests on simulated GR and non-GR wave-
forms given in [100]. The results presented here are consistent
with those of GR waveforms injected into realistic detector
data. The combined bounds are the tightest obtained so far,
improving on the bounds obtained in [5] by factors between
1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [109] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.14 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to

14 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [110].

LVC TGR with GWTC-1 (2019)



Accelerating Inference: Reduced Order Modelling
❖ Stochastic sampling requires a large 

number of likelihood evaluations. This 
can become prohibitively expensive for 
complex likelihoods or large parameter 
spaces.

❖ In a gravitational wave context, reduced 
order modelling has been used to 
generate develop computationally more 
efficient likelihood calculations.

❖ Methods combine a compact 
representation of the waveform space 
with an efficient interpolation across 
parameters (Field, Galley, Pürrer, 
Tiglio…).

❖ Typically get order(s) of magnitude 
computational saving.
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❖ Final step - construct a quadrature rule to 
approximate overlap

❖ Reduced order quadrature (ROQ) is state of the 
art for LIGO PE, but don’t have ROQs for all 
models.

❖ Models not yet good enough for LISA!

Reduced Order Modelling
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Population Inference



Population Inference

❖ LIGO employs Bayesian hierarchical models to constrain the parameters of the 
astrophysical population from which the sources are drawn.

❖ Examples

❖ Cosmological parameter inference: estimation of the Hubble constant or other 
cosmological parameters from sets of events (see lecture 6).

❖ Rate estimation: estimation of the rate of mergers of different types occurring in 
the Universe, and its evolution with redshift.

❖ Source population properties: inference on the distribution of masses and spins 
of black holes etc.



Rate Estimation
❖ Alternative approach to rate estimation - simultaneously model foreground and 

background distributions and try to measure rates.

❖ Data is a set of observed statistic values, xi, e.g., max template SNR, evidence etc. 
Each event has an (unknown) flag, fi, labelling it as either foreground (fi =1) or 
background (fi =0).

❖ Foreground and background events are Poisson distributed with rates

❖ and corresponding cumulative distributions                                      .

d = {xi|i = 1, . . . , N}
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❖ The posterior distribution on flag and rate parameters is

❖ For example, consider events ranked by maximum SNR over a template bank with 
Gaussian noise, with threshold SNR xmin.

❖ Do not need to identify fore/background events to estimate rates.

Rate Estimation
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❖ The posterior distribution on flag and rate parameters is

❖ For example, consider events ranked by maximum SNR over a template bank with 
Gaussian noise, with threshold SNR xmin.

❖ Do not need to identify fore/background events to estimate rates.

❖ Uncertainty in foreground rate is insensitive to threshold.

Rate Estimation
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❖ The posterior distribution on flag and rate parameters is

❖ For example, consider events ranked by maximum SNR over a template bank with 
Gaussian noise, with threshold SNR xmin.

❖ Do not need to identify fore/background events to estimate rates.

❖ Uncertainty in foreground rate is insensitive to threshold.

❖ Fore and background can only be separated if they have different shapes. Must 
assume form or estimate (injections and time-slides?).

Rate Estimation
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Rate estimation: GW150914
❖ Rate estimation requires foreground distribution. This was complicated for 

GW150914 by the presence of another, lower significance event, LVT151012.
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❖ Parameter estimation follow-up done for the second event (LVT151012) 
indicates another BBH system, with somewhat lower component 
masses. This events dominates “alphabet soup” rate estimates.
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❖ Estimate rate using three different 
extrapolations to other BBH 
systems

❖ Reference (“alphabet soup”): 
assume all BBHs look like either 
GW150914 or like LVT151012.

❖ Flat: assume black hole mass 
distribution is flat in log-mass for 
both components and uniform in 
spin.

❖ Power-law: assume p(m1) ~ m1-2.35 

and q=m2/m1 distributed 
uniformly.
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❖ Final rate estimates.

7

Table 1. Rates of BBH mergers esti-
mated under various assumptions. See
Section 2.2.

Mass Distribution R/
�
Gpc�3 yr�1

�

pycbc gstlal Combined

GW150914 16+38
�13 17+39

�14 17+39
�13

LVT151012 61+152
�53 62+164

�55 62+165
�54

Both 82+155
�61 84+172

�64 83+168
�63

Astrophysical

Flat 33+64
�26 32+65

�25 33+62
�26

Power Law 102+198
�79 99+203

�79 100+201
�79

bers are quoted as a posterior median with a symmetric
90% credible range. All together, our rate estimates lie
in the conservative range 2–400 Gpc�3 yr�1.

All our rate estimates are consistent within their sta-
tistical uncertainties, and these estimates are also con-
sistent with the broad range of rate predictions re-
viewed in Abadie et al. (2010) with only the low end
(< 1 Gpc�3 yr�1) of rate predictions being excluded.
The astrophysical implications of the GW150914 detec-
tion and these inferred rates are further discussed in Ab-
bott et al. (2016b).

The results presented here depend on assumptions
about the masses, spins and cosmological distribution of
sources. As GW detectors acquire additional data and
their sensitivities improve, we will be able to test these
assumptions and deepen our understanding of BBH for-
mation and evolution in the Universe.

2. RATE INFERENCE

A rate estimate requires counting the number of sig-
nals in an experiment and then estimating the sensitivity
to a population of sources to transform the count into an
astrophysical rate. Individually, the count of signals and
the sensitivity will depend on specific detection thresh-
olds imposed by the pipeline, but the estimated rates
should not depend strongly on such thresholds. We con-
sider various methods of counting signals and employ two
distinct search pipelines and obtain a range of broadly
consistent rate estimates.

2.1. Counting Signals

Two independent pipelines searched the coincident
data for signals matching a compact binary coalescence
(CBC) (Abbott et al. 2016d), each producing a set of co-
incident search triggers. Both the pycbc pipeline (Usman
et al. 2015) and the gstlal pipeline (gstlal 2016) perform
matched-filter searches for CBC signals using aligned-
spin templates (Taracchini et al. 2014; Pürrer 2015) when
searching the BBH parts of the CBC parameter space.

In these searches, single-detector triggers are recorded
at maxima of the signal-to-noise ratio (SNR) time series
for each template (Allen et al. 2012); coincident search
triggers are formed when pairs of triggers, one from each
detector, occur in the same template with a time dif-
ference of ±15 ms or less. In the pycbc pipeline, the
single-detector SNR is re-weighted by a chi-squared fac-
tor (Allen 2005) to account for template-data mismatch
(Babak et al. 2013); the re-weighted single-detector SNRs
are combined in quadrature to produce a detection statis-
tic for search triggers. The gstlal pipeline’s detection
statistic, however, is based on a likelihood ratio (Cannon
et al. 2013, 2015) constructed from the single-detector
SNRs and a signal-consistency statistic formed by com-
paring the observed SNR time series with that expected
from a signal. An analytic estimate of the distribution of
astrophysical signals in multiple-detector SNR and sig-
nal consistency statistic space is compared to a measured
distribution of single-detector triggers without a coinci-
dent counterpart in the other detector to form a multiple-
detector likelihood ratio.

The Farr et al. (2015) framework considers two classes
of triggers: those whose origin is astrophysical and those
whose origin is terrestrial. Terrestrial triggers are the
result of either instrumental or environmental e↵ects in
the detector. The two types of sources produce triggers
with di↵erent densities in the space of detection statis-
tics, which we denote as x. Triggers appear in a Poisson
process with number density in detection space

dN

dx
= ⇤1p1(x) + ⇤0p0(x), (1)

where the subscripts “1” and “0” refer to the astrophys-
ical and terrestrial origin, ⇤1 and ⇤0 are the Poisson
mean numbers of triggers of astrophysical and terrestrial
type, and p1 and p0 are the (normalised) density of trig-
gers of astrophysical and terrestrial origin over detection
space. In particular, ⇤1 is the mean number of signals
of astrophysical origin above the chosen threshold; it is
not the mean number of signals confidently detected (see
Section 4). The likelihood for a trigger set with detection
statistics {xj |j = 1, . . . , M} is (Farr et al. 2015)

L ({xj |j = 1, . . . , M} |⇤1, ⇤0)

=

8
<

:

MY

j=1

[⇤1p1 (xj) + ⇤0p0 (xj)]

9
=

; exp [�⇤1 � ⇤0] . (2)

The gstlal pipeline natively determines the functions
p0(x) and p1(x) for its detection statistic x (the logarithm
of the likelihood ratio). For this analysis a threshold of
xmin = 5 was applied, which is su�ciently low that the
trigger density is dominated by terrestrial triggers near
threshold. There were M = 15 848 triggers observed
above this threshold.

Rate estimation: GW150914



Rate estimation: GWTC-1

source population fθg and the astrophysical rate density Ri.
The terrestrial ΛT and astrophysical Λi count parameters
are determined by fitting the mixture of ΛTpðxjTÞ and a
given ΛipðxjAi; fθgÞ. Since each model is computed from
the outputs of a given search, for the purposes of computing
quantities such as the probability of astrophysical origin,
each pipeline is treated separately.
Figure 11 shows the resulting astrophysical foreground

and terrestrial background models, as well as the observed
number of events above a ranking statistic threshold: on
the left, PyCBC results, restricted to events with masses
compatible with a BBH, with chirp mass > 4.35 M⊙ (so
that BNS candidate events including GW170817 are not
plotted); on the right, GstLAL results including all events,
with the signal counts summed over the three astrophysical
categories BNS, NSBH, and BBH. In both searches, the
background model falls exponentially with the detection
statistic, with no non-Gaussian tails. The different detection
statistic used in the PyCBC and GstLAL searches leads to
differently shaped signal models. However, both searches
show agreement between the search results and the sum of
the foreground and terrestrial background models. In both
panels in Fig. 11, we see three regions: At the high-ranking
statistic threshold, the signal model dominates and the
observed events are inconsistent with terrestrial noise; at
the low-ranking statistic threshold, the noise model

dominates and the observed events are fully consistent
with terrestrial noise; and a narrow intermediate region
where both noise and signal models are comparable, and
the observed events are consistent with the sum of the two
models. The list of marginal events in Tables II and IV
come from that narrow intermediate region.
The accessible spacetime volume hVTi is estimated by

injecting synthesized signals with parameters drawn from
fθg and recovering them using the search pipeline. For
all fθg, the injections are assumed to be uniformly
distributed in the comoving volume. Then the detection
efficiency over redshift fðzjfθgÞ derived from the recovery
campaign measures the fraction of the differential volume
dV=dz which is accessible to the network:

hVTifθg ¼ Tobs

Z
∞

0
fðzjfθgÞ dV

dz
1

1þ z
dz: ð8Þ

The total hVTi is then the product of the accessible volume
for a given population with the observational time Tobs.
The angle brackets indicate that the volume is averaged
over members of the population drawn from fθg. In the
following, we suppress the fθg dependence on hVTi and
pðxjAiÞ and, instead, indicate specific populations where
they are relevant. The factor of 1þ z arises from the

FIG. 11. Astrophysical signal and terrestrial noise event models compared with results for the matched-filter searches, PyCBC (left)
and GstLAL (right), versus the respective search’s ranking statistic: ϱ for PyCBC [73] and lnL for GstLAL [9,82]. These ranking
statistics are not the same as the SNRs reported in Table I; see citations for details. For each panel, the solid colored lines show the
median estimated rate (“model”) of signal, noise, or signal plus noise events above a given ranking statistic threshold, while shaded
regions show the estimated model uncertainties on the combined and individual models at 68% and 95% confidence. The observed
number of events above the ranking statistic threshold is indicated by the black line, with confidently detected events (Sec. IV B) labeled.
The PyCBC signal model and observed events are restricted to events with masses compatible with a BBH, with a chirp mass
> 4.35 M⊙ (so that BNS candidate events including GW170817 are not plotted); the GstLAL signal model includes all events, with the
signal counts summed over the three astrophysical categories BNS, NSBH, and BBH. The different ranking statistic used in the PyCBC
and GstLAL searches lead to differently shaped signal models. The black dashed line in the GstLAL plot shows a realization of the
cumulative counts in time-shifted data, reinforcing its consistency with the noise model.

GWTC-1: A GRAVITATIONAL-WAVE TRANSIENT CATALOG … PHYS. REV. X 9, 031040 (2019)

031040-23

not have a specific event type corresponding to NSBH or
BNS; thus, we treat all cWB search events as BBH
candidates. The astrophysical probabilities from PyCBC
are estimated by applying simple chirp mass cuts to the set
of events with ranking statistic ρ > 8: Events with M<2.1
are considered as candidate BNS, those with M > 4.35 as
candidate BBH, where the lower bound assumes two 5 M⊙
BHs, and all remaining events as potential NSBH. We note
that the value of the boundary between NSBH and BBH is
chosen somewhat arbitrarily, given the uncertainty as to
the exact value in our current understanding due to, for
example, the formation and environment of the source.
The astrophysical probabilities from GstLAL in Table IV
are estimated using the pipeline response to injected
synthetic signals, where neutron stars are assumed to
have masses in the range 1–3 M⊙ and black holes are
assumed to have masses of 3 M⊙ or larger. The details
can be found in Ref. [89]. We note that the different
definitions used by these three pipelines in classifying
events as BNS, NSBH, or BBH reflect current astro-
physical uncertainties in such classifications. Other, yet
different definitions are used in order to compute event
rates in the following subsections.

B. Binary black hole event rates

After the detection of GW170104, the event rate of
BBH mergers had been measured to lie between 12 and
213 Gpc−3 y−1 [15]. This measurement included the four
events identified at that time. The hVTi, and hence the
rates, are derived from a set of assumed BBH populations.
InO1, two distributions of the primary mass—one uniform
in the log and one a power law pðm1Þ ∝ m−α

1 with an index
of α ¼ 2.3—are used as representative extremes. In both
populations shown here, the mass distribution cuts off at a
lower mass of 5 M⊙. The mass distributions cut off at a
maximum mass of 50 M⊙. The detector network is
sensitive to binaries with a larger mass; however, the
new cutoff is motivated by both more sophisticated
modeling of the mass spectrum [55] preferring maximum
BH masses much smaller than the previous limit of
100 M⊙, as well as astrophysical processes which are
expected to truncate the distribution [136]. The BH spin
distribution has magnitude uniform in [0, 1]. The PyCBC
search uses a spin tilt distribution which is isotropic over
the unit sphere, and GstLAL uses a distribution that aligns
BH spins to the orbital angular momentum.
The posteriors on the rate distributions are shown

in Fig. 12. Including all events, the event rate is now
measured to be R ¼ 56þ44

−27 Gpc−3 y−1 (GstLAL) and R ¼
57þ47

−29 Gpc−3 y−1 (PyCBC) for the power-law distribution.
For the uniform in log distribution, we obtain R ¼
18.1þ13.9

−8.7 Gpc−3 y−1 (GstLAL) and R¼19.5þ15.2
−9.7 Gpc−3y−1

(PyCBC). The difference in hVTi and rate distributions
between the two spin populations is smaller than the

uncertainty from calibration. Therefore, we present in
Fig. 12 the rate distribution for both assumed mass distri-
butions, combined over searches as an averaging over the
spin configurations. The union of the intervals combined
over both populations lies in 9.7–101 Gpc−3 y−1.
GW170608 is included in the estimation of Λ for BBH,
but, given difficulties in characterizing the amount of time
in which it could have occurred, its analysis period is not
included in the overall hVTi. We believe this exclusion
introduces a bias that is no larger than the already accounted
for calibration uncertainty.
A more detailed analysis [4] previously showed that both

of the assumed populations used here are consistent with an
inferred fit to the power-law index α as measured from the
population of events known at the time. An update to this
analysis using all current detections and examining a
variety of plausible mass and spin distributions is explored
in Ref. [55]. Allowing for a self-consistent fit to the event
rate while varying a power-law model with a spectral index
and maximum and minimum primary mass, the rate interval
is found to be 53þ56

−28 Gpc−3 y−1. This result is consistent
with the intervals obtained from the fixed parameter
populations used here. Within the same model, we obtain
a 90% interval of the distribution for the power-law index
of α ¼ 1.3þ1.4

−1.7 . Compared with the earlier analysis [4], this
result favors somewhat shallower power-law indices.

C. Binary neutron star event rates

The discovery of GW170817 is the only unambiguous
BNS candidate obtained in O2. Regardless, it provides a
means to independently measure the rate of binary neutron
star mergers. Previous estimates [211–213] from observa-
tions are derived from the properties of neutron star binaries

FIG. 12. This figure shows the posterior distribution—
combined from the results of PyCBC and GstLAL—on the
BBH event rate for the flat in log (blue) and power-law (orange)
mass distributions. The symmetric 90% confidence intervals are
indicated with vertical lines beneath the posterior distribution.
The union of intervals is indicated in black.
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Population inference: masses
❖ Infer mass distribution of black holes by using hierarchical models with different 

forms for the mass prior.

❖ Simplest model is a power law

❖ LIGO analysis uses two variants

- A: minimum mass fixed to 5 solar masses, flat in mass ratio;

- B: all parameters allowed to vary.

❖ Also consider a more sophisticated model designed to identify an excess of black 
holes at the edge of the pair-instability supernova mass gap
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↵ Spectral index of m1 for the power-law distributed component of the mass spectrum.

mmax Maximum mass of the power-law distributed component of the mass spectrum.

mmin Minimum black hole mass.

�q Spectral index of the mass ratio distribution.

�m Fraction of binary black holes in the Gaussian component.

µm Mean mass of black holes in the Gaussian component.

�m Standard deviation of masses of black holes in the Gaussian component.

�m Mass range over which black hole mass spectrum turns on.

⇣ Fraction of binaries with isotropic spin orientations.

�i Width of the preferentially aligned component of the distribution of black hole spin orientations.

E[a] Mean of the Beta distribution of spin magnitudes.

Var[a] Variance of the Beta distribution of spin magnitudes.

� How the merger rate evolves with redshift.

Table 1. Parameters describing the binary black hole population. See the text for a more thorough discussion and the functional
forms of the models.

p(m1,m2|mmin,mmax,↵,�q) /

8
<

:
C(m1)m

�↵
1 q�q if mmin  m2  m1  mmax

0 otherwise
, (2)

where C (m1) is chosen so that the marginal distribution
is a power law in m1: p (m1|mmin,mmax,↵,�q) = m�↵

1 .
Model A fixes mmin = 5M� and �q = 0, whereas

Model B fits for all four parameters. Equation 2 implies
that the conditional mass ratio distribution is a power-
law with p(q | m1) / q�q . When �q = 0, C(m1) /
1/(m1 � mmin), as assumed in Abbott et al. (2016b,
2017c).
Model C (from Talbot & Thrane (2018)) further builds

upon the mass distribution in Equation 2 by allowing for
a second, Gaussian component at high mass, as well as
introducing smoothing scales �m, which taper the hard
edges of the low- and high-mass cuto↵s of the primary

and secondary mass power-law. The second Gaussian
component is designed to capture a possible build-up
of high-mass black holes created from pulsational pair
instability supernovae. The tapered low-mass smooth-
ing reflects the fact that parameters such as metallicity
probably blur the edge of the lower mass gap, if it exists.
Model C therefore introduces four additional model pa-
rameters, the mean, µm, and standard deviation, �m,
of the Gaussian component, �m, the fraction of primary
black holes in this Gaussian component, and �m the
smoothing scale at the low mass end of the distribution.
The full form of this distribution is

p(m1|✓) =

(1� �m)A(✓)m�↵

1 ⇥(mmax �m1) + �mB(✓) exp

✓
� (m1 � µm)2

2�2
m

◆�
S(m1,mmin, �m),

p(q|m1, ✓) = C(m1, ✓)q
�qS(m2,mmin, �m).

(3)

The factors A, B, and C ensure each of the power-law
component, Gaussian component, and mass ratio distri-
butions are correctly normalized. S is a smoothing func-
tion which rises from zero at mmin to one at mmin + �m
as defined in Talbot & Thrane (2018). ⇥ is the Heaviside
step function.

2.4. Parameterized Spin Models

The black hole spin distribution is decomposed into
independent models of spin magnitudes, a, and orienta-
tions, t. For simplicity and lacking compelling evidence
to the contrary, we assume both black hole spin magni-
tudes in a binary, ai, are drawn from a beta distribution
(Wysocki et al. 2018):

p(ai|↵a,�a) =
a↵a�1
i (1� ai)�a�1

B(↵a,�a)
. (4)
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where C (m1) is chosen so that the marginal distribution
is a power law in m1: p (m1|mmin,mmax,↵,�q) = m�↵

1 .
Model A fixes mmin = 5M� and �q = 0, whereas

Model B fits for all four parameters. Equation 2 implies
that the conditional mass ratio distribution is a power-
law with p(q | m1) / q�q . When �q = 0, C(m1) /
1/(m1 � mmin), as assumed in Abbott et al. (2016b,
2017c).
Model C (from Talbot & Thrane (2018)) further builds

upon the mass distribution in Equation 2 by allowing for
a second, Gaussian component at high mass, as well as
introducing smoothing scales �m, which taper the hard
edges of the low- and high-mass cuto↵s of the primary

and secondary mass power-law. The second Gaussian
component is designed to capture a possible build-up
of high-mass black holes created from pulsational pair
instability supernovae. The tapered low-mass smooth-
ing reflects the fact that parameters such as metallicity
probably blur the edge of the lower mass gap, if it exists.
Model C therefore introduces four additional model pa-
rameters, the mean, µm, and standard deviation, �m,
of the Gaussian component, �m, the fraction of primary
black holes in this Gaussian component, and �m the
smoothing scale at the low mass end of the distribution.
The full form of this distribution is

p(m1|✓) =

(1� �m)A(✓)m�↵

1 ⇥(mmax �m1) + �mB(✓) exp

✓
� (m1 � µm)2

2�2
m

◆�
S(m1,mmin, �m),

p(q|m1, ✓) = C(m1, ✓)q
�qS(m2,mmin, �m).

(3)

The factors A, B, and C ensure each of the power-law
component, Gaussian component, and mass ratio distri-
butions are correctly normalized. S is a smoothing func-
tion which rises from zero at mmin to one at mmin + �m
as defined in Talbot & Thrane (2018). ⇥ is the Heaviside
step function.

2.4. Parameterized Spin Models

The black hole spin distribution is decomposed into
independent models of spin magnitudes, a, and orienta-
tions, t. For simplicity and lacking compelling evidence
to the contrary, we assume both black hole spin magni-
tudes in a binary, ai, are drawn from a beta distribution
(Wysocki et al. 2018):

p(ai|↵a,�a) =
a↵a�1
i (1� ai)�a�1

B(↵a,�a)
. (4)
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Figure 3. One- and two-dimensional posterior distributions for the hyperparameters describing Model C. This model consists
of the power-law distribution in Model B with an additional Gaussian component at high mass. The parameters ↵, �, mmax,
and mmin describe the power-law component. The Gaussian has mean µm and standard deviation �m. The fraction of black
holes in the Gaussian component is �m. This model also allows for a gradual turn-on at low masses over a mass range �m.

Population inference: masses

LVC BBH properties from GWTC-1 (2019)



15

Mass Parameters Spin Parameters

Model ↵ mmax mmin �q �m µm �m �m E[a] Var[a] ⇣ �i

A [-4, 12] [30, 100] 5 0 0 N/A N/A N/A [0, 1] [0, 0.25] 1 [0, 10]

B [-4, 12] [30, 100] [5, 10] [-4, 12] 0 N/A N/A N/A [0, 1] [0, 0.25] 1 [0, 10]

C [-4, 12] [30, 100] [5, 10] [-4, 12] [0, 1] [20, 50] (0, 10] [0, 10] [0, 1] [0, 0.25] [0, 1] [0, 4]

Table 2. Summary of models used in Sections 3, 4, and 5, with the prior ranges for the population parameters. The fixed
parameters are in bold. Each of these distributions is uniform over the stated range. All models in this Section assume rates
which are uniform in the comoving volume (� = 0). The lower limit on mmin is chosen to be consistent with Abbott et al.
(2018).

Figure 1. Inferred di↵erential merger rate as a function of primary mass, m1, and mass ratio, q, for three di↵erent assumptions.
For each of the three increasingly complex assumptions A, B, C described in the text we show the PPD (dashed) and median
(solid), plus 50% and 90% symmetric credible intervals (shaded regions), for the di↵erential rate. The results shown marginalize
over the spin distribution model. The fallo↵ at small masses in models B and C is driven by our choice of the prior limits on
the mmin parameter (see Table 2). All three models give consistent mass distributions within their 90% credible intervals over
a broad range of masses, consistent with their near-unity evidence ratios (Table 3); in particular, the peaks and trough seen in
Model C, while suggestive, are not identified at high credibility in the mass distribution.

constraints on the presence or absence of a mass gap at
low black hole mass.
Models B and C also allow the distribution of mass ra-

tios to vary according to �q. In these cases the inferred
mass-ratio distribution favors comparable-mass binaries
(i.e., distributions with most support near q ' 1), see
panel two of Figure 1. Within the context of our pa-
rameterization, we find �q = 6.7+4.8

�5.9 for Model B and
�q = 5.8+5.5

�5.8 for Model C. These values are consistent
with each other and are bounded above zero at 95% con-

fidence, thus implying that the mass ratio distribution
is nearly flat or declining with more extreme mass ra-
tios. The posterior on �q returns the prior for �q & 4.
Thus, we cannot say much about the relative likelihood
of asymmetric binaries, beyond their overall rarity.
The distribution of the parameter controlling the frac-

tion of the power law versus the Gaussian component in
Model C is �m = 0.4+0.3

�0.3, which peaks away from zero,
implying that this model prefers a contribution to the
mass distribution from the Gaussian population in ad-

Population inference: masses

LVC BBH properties from GWTC-1 (2019)



Population inference: spins
❖ Describe spin magnitude distribution using 

a Beta distribution (support is in the desired 
range [0,1]).

❖ Or using a non-parametric model where the 
fraction of spin magnitudes in different bins 
are the hyperparameters, e.g., 3-bin model.
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Mass Model Spin Parameters

Model E[a] Var[a] ↵a,�a ⇣ �i

Gaussian (G) C [0, 1] [0, 0.25] � 1 1 [0, 4]

Mixture (M) C [0, 1] [0, 0.25] � 1 [0, 1] [0, 4]

Table 6. Summary of spin distribution models examined in Section 5.1, with prior ranges for the population parameters
determining the spin models. The fixed parameters are in bold. Each of these distributions is uniform over the stated range,
with boundary conditions such that the inferred parameters ↵a,�a must be � 1. Details of the mass model listed here is
described in Table 2.

Figure 7. Inferred distribution of spin magnitude for
a parametric (top) and non-parametric binned model (bot-
tom). The solid lines show the median and the dashed line
shows the PPD. The shaded regions denote the 50% and 90%
symmetric intervals. In the bottom panel, the distribution
of spin magnitude is inferred over five bins, assuming either
perfectly aligned (green) or isotropic (blue) population. The
solid lines denote the median, and the shaded regions denote
the central 90% posterior credible bounds. In both cases,
the magnitude is consistent within the uncertainties with the
parametric results.

et al. (2018). We show in the bottom panel of Figure 7
that under the perfectly aligned scenario there is pref-
erence for small black hole spin, inferring 90% of black
holes to have spin magnitudes below 0.6+0.24

�0.28. However,
when spins are assumed to be isotropic the distribution

is relatively flat, with 90% of black hole spin magni-
tudes below 0.8+0.15

�0.24. Thus, the non-parametric analy-
sis produces conclusions consistent with our parametric
analyses described above. These conclusions are also
reinforced by computing the Bayes factor for a set of
fixed parameter models of spin magnitude and orienta-
tion in Appendix B. There we find that the very low
spin magnitude model is preferred in all three orienta-
tion configurations tested (see Figure 11 and Table 7 for
details).
Figure 8 shows the inferred distribution of the pri-

mary spin tilt for the more massive black hole. These
results were obtained without including the e↵ects of
component spins on the detection probability: see Ap-
pendix A for further discussion. In the Gaussian model
(⇣ = 1), all black hole spin orientations are drawn from
spin tilt distributions which are preferentially aligned
and parameterized with �i. In that model, the �i dis-
tributions do not di↵er appreciably from the their flat
priors. As such, the inferred spin tilt distribution are in-
fluenced by large �i and the result resembles an isotropic
distribution. The Mixture distribution does not return
a decisive measurement of the mixture fraction, obtain-
ing ⇣ = 0.5+0.4

�0.5. Since the Gaussian model is a subset of

Figure 8. Inferred distribution of cosine spin tilt for
the more massive black hole for two choices of prior (see
Section 2.4). The dash-dotted line denotes a completely
isotropic distribution (see Appendix B). The solid lines show
the median. The shaded regions denote the 50% and 90%
symmetric intervals and the dashed line denotes the PPD.
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8
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C(m1)m

�↵
1 q�q if mmin  m2  m1  mmax

0 otherwise
, (2)

where C (m1) is chosen so that the marginal distribution
is a power law in m1: p (m1|mmin,mmax,↵,�q) = m�↵

1 .
Model A fixes mmin = 5M� and �q = 0, whereas

Model B fits for all four parameters. Equation 2 implies
that the conditional mass ratio distribution is a power-
law with p(q | m1) / q�q . When �q = 0, C(m1) /
1/(m1 � mmin), as assumed in Abbott et al. (2016b,
2017c).
Model C (from Talbot & Thrane (2018)) further builds

upon the mass distribution in Equation 2 by allowing for
a second, Gaussian component at high mass, as well as
introducing smoothing scales �m, which taper the hard
edges of the low- and high-mass cuto↵s of the primary

and secondary mass power-law. The second Gaussian
component is designed to capture a possible build-up
of high-mass black holes created from pulsational pair
instability supernovae. The tapered low-mass smooth-
ing reflects the fact that parameters such as metallicity
probably blur the edge of the lower mass gap, if it exists.
Model C therefore introduces four additional model pa-
rameters, the mean, µm, and standard deviation, �m,
of the Gaussian component, �m, the fraction of primary
black holes in this Gaussian component, and �m the
smoothing scale at the low mass end of the distribution.
The full form of this distribution is

p(m1|✓) =

(1� �m)A(✓)m�↵

1 ⇥(mmax �m1) + �mB(✓) exp

✓
� (m1 � µm)2

2�2
m

◆�
S(m1,mmin, �m),

p(q|m1, ✓) = C(m1, ✓)q
�qS(m2,mmin, �m).

(3)

The factors A, B, and C ensure each of the power-law
component, Gaussian component, and mass ratio distri-
butions are correctly normalized. S is a smoothing func-
tion which rises from zero at mmin to one at mmin + �m
as defined in Talbot & Thrane (2018). ⇥ is the Heaviside
step function.

2.4. Parameterized Spin Models

The black hole spin distribution is decomposed into
independent models of spin magnitudes, a, and orienta-
tions, t. For simplicity and lacking compelling evidence
to the contrary, we assume both black hole spin magni-
tudes in a binary, ai, are drawn from a beta distribution
(Wysocki et al. 2018):

p(ai|↵a,�a) =
a↵a�1
i (1� ai)�a�1

B(↵a,�a)
. (4)
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FIG. 4. Evolution of the odds ratio in favor of an isotropic
population over an aligned population for the various sim-
ulated populations using the three-bin model, applied to
aligned populations (top) and isotropic populations (bottom).
Dashed lines indicate an infinite odds ratio, occurring when
a definitive �e↵ < 0 measurement is made. Unlike the 2-
bin model presented in Fig. 1, this model is robust against
very-very-low-spin populations.

depending on the fraction of the population with e↵ective
spins indistinguishable from zero.

E. Constraining Component Spins

In general it is di�cult to infer the spin magnitude
distribution for the component black holes from the mea-
sured distribution of �e↵ , since the relation between the
two distributions depends on mass ratios and spin align-
ments. However, using our simple method to identify the
alignments of the population can dramatically reduce the
complexity of this task. If the population has been deter-
mined to be either completely isotropic or aligned, we can
then use �e↵ measurements to constrain the underlying
BH spin magnitude distribution. We will use a three-bin
model for the spin magnitude distribution

p(a) =

8
><

>:

A1/3 0  a < 1/3

A2/3 1/3  a < 2/3

(1 � (A1 + A2))/3 2/3  a  1

, (12)

FIG. 5. Mean and 90% credible bounds on the spin mag-
nitude distribution of the low-spin isotropic population after
250 detections, under the assumption that the population is
isotropic.

where A1 and A2 are the heights of the low (0  a < 1/3)
and moderate (1/3  a < 2/3) spin bins, respectively.
With this model in hand, assuming either an isotropic
or aligned distribution of orientations leads to a unique
prediction for the distribution of �e↵ that can be used in
place of the two and three bin models described above.
As an example, Figure 5 shows the posterior constraints
on the spin magnitude distribution after detecting 250
events from a low-spin isotropic population.

III. RESULTS FROM LIGO’S BBHS

We now make inferences about the spin distributions of
the BBH population being detected by LIGO. In lieu of
true posterior samples from the LIGO analyses, which
are not publicly available, we approximate the poste-
rior estimates of �e↵ for the four likely GW events de-
tected so far (GW150914, GW151226, GW170104, and
LVT151012) following a similar prescription to that in
[27]. We approximate the posterior as a Gaussian whose
central 90% credible interval matches the stated interval
for each event [3, 4].

Figure 6 shows the marginal posterior density func-
tions from a three-bin analysis of LIGO’s four likely BBH
detections. We find that the information for distinguish-
ing between symmetric and anti-symmetric spin distribu-
tions is dominated by GW151226; the rest of the events
are consistent with the low-�e↵ central bin. Roughly
speaking, in the symmetric case a nonzero �e↵ mea-
surement would have a 50-50% change of being aligned
(�e↵ > 0) or anti-aligned (�e↵ < 0). In the aligned case,
all of these systems would have �e↵ > 0. Thus find-
ing GW151226 with �e↵ > 0, and no definitive systems
with �e↵ < 0, weakly favors aligned versus anti-aligned,
if those are the only two possibilities. Assuming that the



❖ Probe binary formation mechanisms by constraining spin distribution as a 
combination of an isotropic component, and a preferentially aligned component.
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Mass Model Spin Parameters

Model E[a] Var[a] ↵a,�a ⇣ �i

Gaussian (G) C [0, 1] [0, 0.25] � 1 1 [0, 4]

Mixture (M) C [0, 1] [0, 0.25] � 1 [0, 1] [0, 4]

Table 6. Summary of spin distribution models examined in Section 5.1, with prior ranges for the population parameters
determining the spin models. The fixed parameters are in bold. Each of these distributions is uniform over the stated range,
with boundary conditions such that the inferred parameters ↵a,�a must be � 1. Details of the mass model listed here is
described in Table 2.

Figure 7. Inferred distribution of spin magnitude for
a parametric (top) and non-parametric binned model (bot-
tom). The solid lines show the median and the dashed line
shows the PPD. The shaded regions denote the 50% and 90%
symmetric intervals. In the bottom panel, the distribution
of spin magnitude is inferred over five bins, assuming either
perfectly aligned (green) or isotropic (blue) population. The
solid lines denote the median, and the shaded regions denote
the central 90% posterior credible bounds. In both cases,
the magnitude is consistent within the uncertainties with the
parametric results.

et al. (2018). We show in the bottom panel of Figure 7
that under the perfectly aligned scenario there is pref-
erence for small black hole spin, inferring 90% of black
holes to have spin magnitudes below 0.6+0.24

�0.28. However,
when spins are assumed to be isotropic the distribution

is relatively flat, with 90% of black hole spin magni-
tudes below 0.8+0.15

�0.24. Thus, the non-parametric analy-
sis produces conclusions consistent with our parametric
analyses described above. These conclusions are also
reinforced by computing the Bayes factor for a set of
fixed parameter models of spin magnitude and orienta-
tion in Appendix B. There we find that the very low
spin magnitude model is preferred in all three orienta-
tion configurations tested (see Figure 11 and Table 7 for
details).
Figure 8 shows the inferred distribution of the pri-

mary spin tilt for the more massive black hole. These
results were obtained without including the e↵ects of
component spins on the detection probability: see Ap-
pendix A for further discussion. In the Gaussian model
(⇣ = 1), all black hole spin orientations are drawn from
spin tilt distributions which are preferentially aligned
and parameterized with �i. In that model, the �i dis-
tributions do not di↵er appreciably from the their flat
priors. As such, the inferred spin tilt distribution are in-
fluenced by large �i and the result resembles an isotropic
distribution. The Mixture distribution does not return
a decisive measurement of the mixture fraction, obtain-
ing ⇣ = 0.5+0.4

�0.5. Since the Gaussian model is a subset of

Figure 8. Inferred distribution of cosine spin tilt for
the more massive black hole for two choices of prior (see
Section 2.4). The dash-dotted line denotes a completely
isotropic distribution (see Appendix B). The solid lines show
the median. The shaded regions denote the 50% and 90%
symmetric intervals and the dashed line denotes the PPD.
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We can alternatively parameterize the beta distribution
using the mean (E[a]) and variance (Var[a]) of the dis-
tribution, given by

E[a]= ↵a

↵a + �a
;

Var[a]=
↵a�a

(↵a + �a)2(↵a + �a + 1)
. (5)

We adopt a prior on the spin magnitude model param-
eters which are uniform over the values of E[a] and
Var[a] which satisfy ↵a,�a � 1, avoiding numerically-
challenging singular spin distributions.
To describe the spin orientation, we assume that the

tilt angles between each black hole spin and the orbital
angular momentum, ti, are drawn from a mixture of
two distributions: an isotropic component, and a prefer-
entially aligned component, represented by a truncated
Gaussian distribution in cos ti peaked at cos ti = 1 (Tal-
bot & Thrane 2017)

p(cos t1, cos t2|�1,�2, ⇣) =
(1� ⇣)
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�
�(1� cos ti)2/(2�2
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�ierf(
p
2/�i)
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(6)

The parameter ⇣ denotes the fraction of binaries which
are preferentially aligned with the orbital angular mo-
mentum; ⇣ = 1 implies all black hole spins are prefer-
entially aligned and ⇣ = 0 is an isotropic distribution of
spin orientations. The typical degree of spin misalign-
ment is represented by the �i. For spin orientations we
explore two parameterized families of models:

• Gaussian (G): ⇣ = 1.

• Mixture (M): 0  ⇣  1.

The Gaussian model is motivated by formation in iso-
lated binary evolution, with significant natal misalign-
ment, while the mixture scenarios allow for an arbi-
trary combination of this scenario and randomly ori-
ented spins, which arise naturally in dynamical forma-
tion.

2.5. Redshift Evolution Models

The previous two subsections described the probabil-
ity distributions of intrinsic parameters p(⇠) (i.e. masses
and spins) that characterize the population of BBHs.
In addition, we also measure the value of one extrin-
sic parameter of the population: the overall merger rate

density R. The models described in the previous two
subsections assume that the distribution of intrinsic pa-
rameters is independent of cosmological redshift z, at
least over the redshift range accessible to the LIGO and
Virgo interferometers during the first two observing runs
(z . 1). However, we consider an additional model
in which the overall event rate evolves with redshift.
We follow Fishbach et al. (2018) by parameterizing the
evolving merger rate density R(z) in the comoving frame
by

R(z|�) = R0 (1 + z)� , (7)

where R0 is the rate density at z = 0. In this model,
� = 0 corresponds to a merger rate density that is uni-
form in comoving volume and source-frame time, while
� ⇠ 3 corresponds to a merger rate that approximately
follows the star-formation rate in the redshift range rel-
evant to the detections in O1 and O2 (Madau & Dick-
inson 2014). Various BBH formation channels predict
di↵erent merger rate histories, ranging from rate densi-
ties that will peak in the future (� < 0) to rate densities
that peak earlier than the star-formation rate (� & 3).
These depend on the formation rate history and the dis-
tribution of delay times between formation and redshift.
In cases where we do not explicitly write the event rate
density as R(z), it is assumed that the rate density R is
constant in comoving volume and source-frame time.

2.6. Statistical Framework

The general model family, including the distributions
of masses, spins and merger redshift, is therefore given
by the distribution

dN

d⇠dz
(✓) = R (z)


dVc

dz
(z)

�
Tobs

1 + z
p(⇠|✓), (8)

where N is the total number of mergers that occur
within the detection horizon (i.e. the maximum red-
shift considered) over the total observing time, Tobs, as
measured in the detector-frame, ✓ is the collection of
all hyper-parameters that characterize the distribution,
and dVc/dz is the di↵erential comoving volume per unit
redshift. The merger rate density R(z) is related to N
by

R(z) =
dN

dVcdt
(z) , (9)

where t is the time in the source-frame, so that Eq. 8
can be written equivalently in terms of the merger rate
density:

dR

d⇠
(z|✓) = R0p(⇠|✓)(1 + z)�. (10)

We perform a hierarchical Bayesian analysis, account-
ing for measurement uncertainty and selection e↵ects
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in which the overall event rate evolves with redshift.
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evolving merger rate density R(z) in the comoving frame
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where R0 is the rate density at z = 0. In this model,
� = 0 corresponds to a merger rate density that is uni-
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� ⇠ 3 corresponds to a merger rate that approximately
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ties that will peak in the future (� < 0) to rate densities
that peak earlier than the star-formation rate (� & 3).
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where t is the time in the source-frame, so that Eq. 8
can be written equivalently in terms of the merger rate
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We perform a hierarchical Bayesian analysis, account-
ing for measurement uncertainty and selection e↵ects



Population inference: rate evolution

❖ Constrain evolution of the rate of BBH 
mergers by including redshift 
dependence in the rate model

❖ Generate combined constraints on the 
rate evolution exponent and the 
parameters of the simple power-law 
mass function (model A).
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Figure 6. The posterior PDF on the redshift evolution
parameter �, mass power-law slope ↵, and maximum mass
mmax, marginalized over the local rate parameter R0, and
assuming a flat prior on �, ↵, and mmax and a flat-in-log
prior on R0. In order to analyze the stability of the model
against outliers, we repeat the analysis once with the sample
of 10 BBHs (results shown in blue), and once excluding the
most distant and massive event in our sample, GW170729
(results shown in red). The contours show 50% and 90%
credible intervals. The dashed black lines show the values
of hyper-parameters assumed for the fixed-parameter power-
law model. We infer a redshift evolution that is consistent
with a flat in comoving volume and source-frame time merger
rate (� = 0) with a preference for � � 0 at 0.88 credibility
when considering all 10 events. This preference becomes less
significant with the exclusion of GW170729 from the anal-
ysis. The inferred power-law slope and maximum mass is
consistent with the values inferred in Section 3. This analy-
sis recovers a broader posterior on the mass power-law slope
because of the correlation with the redshift evolution pa-
rameter, but the maximum mass remains well-constrained
at . 45M�.

With a few exceptions, current observations of BBH spin
are not consistent with large, aligned black hole spins.
Only GW170729 and GW151226 show significant evi-
dence for positive �e↵; the rest of the posteriors cluster
around �e↵ = 0.
Despite these degeneracies, several tests have been

proposed to use spins to constrain BBH formation chan-
nels (Vitale et al. 2017; Farr et al. 2017, 2018; Steven-
son et al. 2017a; Talbot & Thrane 2017; Wysocki et al.
2018). Drawing upon these methods, we now seek to
estimate the black hole spin magnitude and misalign-

ment distributions, under di↵erent assumptions regard-
ing isotropy or alignment.

5.1. Spin Magnitude and Tilt Distributions

We examine here the individual spin magnitudes and
tilt distributions. Throughout this section, when refer-
ring to the parametric models, we also allow the merger
rate and population parameters describing the most gen-
eral mass model to vary (Model C, see Table 2). Chang-
ing the parameterization of the mass model does not
significantly change our inferences about the spin dis-
tribution. However, to account for degeneracies be-
tween mass and spin that grow increasingly significant
for longer, low-mass signals (Baird et al. 2013), we must
consistently model the mass and spin distributions to-
gether. See Table 6 for a summary of the models and
priors used in this Section.
The inferred distributions of spin magnitude are

shown in Figure 7. The top panel shows the PPD
as well as the median and associated uncertainties on
the spin magnitude inferred from the parametric Mix-
ture model defined in Section 2.4 and using prior dis-
tributions shown in 6. It marginalizes over all other
parameters, including the mass parameters in Model C,
and the spin mixture fraction. We observe that spin
distributions which decline with increasing magnitude
are preferred. In terms of our Beta function parame-
terization — E[a] and Var[a], defined in Equation 5 —
these have mean spin E[a] < 1/2 or equivalently have
�a > ↵a, at posterior probability 0.79. We find that
90% of black hole spins in BBHs are less than a  0.55
from the PPD, and 50% of black hole spins are less
than a  0.27. We find similar conclusions if both black
hole spins are drawn from di↵erent distributions (i.e.,
90% of black hole spins on the more massive black hole
are less than 0.7). The observed distribution also nec-
essarily has a peak, introduced in part by our choice
of prior to avoid singularities in the Beta distributions
(i.e., p(a = 0) = p(a = 1) = 0 for almost all spin
distributions). Based on extended analysis including
a wider range of ↵a and on the model selection calcu-
lations described in Appendix B, we believe the data
could support spin distributions more concentrated to-
wards zero spin. The recovered spin distribution in
the top panel of Figure 7 is driven by disfavoring large
spins, which are di�cult to reconcile with the observed
population.
We also compute the posterior distribution for the

magnitude of black hole spins from �e↵ measurements by
modeling the distribution of black hole spin magnitudes
non-parametrically with five bins, assuming either an
isotropic or perfectly aligned population following Farr

12

We can alternatively parameterize the beta distribution
using the mean (E[a]) and variance (Var[a]) of the dis-
tribution, given by

E[a]= ↵a

↵a + �a
;

Var[a]=
↵a�a

(↵a + �a)2(↵a + �a + 1)
. (5)

We adopt a prior on the spin magnitude model param-
eters which are uniform over the values of E[a] and
Var[a] which satisfy ↵a,�a � 1, avoiding numerically-
challenging singular spin distributions.
To describe the spin orientation, we assume that the

tilt angles between each black hole spin and the orbital
angular momentum, ti, are drawn from a mixture of
two distributions: an isotropic component, and a prefer-
entially aligned component, represented by a truncated
Gaussian distribution in cos ti peaked at cos ti = 1 (Tal-
bot & Thrane 2017)

p(cos t1, cos t2|�1,�2, ⇣) =
(1� ⇣)

4

+
2⇣

⇡

Y

i2{1,2}

exp
�
�(1� cos ti)2/(2�2

i )
�

�ierf(
p
2/�i)

.

(6)

The parameter ⇣ denotes the fraction of binaries which
are preferentially aligned with the orbital angular mo-
mentum; ⇣ = 1 implies all black hole spins are prefer-
entially aligned and ⇣ = 0 is an isotropic distribution of
spin orientations. The typical degree of spin misalign-
ment is represented by the �i. For spin orientations we
explore two parameterized families of models:

• Gaussian (G): ⇣ = 1.

• Mixture (M): 0  ⇣  1.

The Gaussian model is motivated by formation in iso-
lated binary evolution, with significant natal misalign-
ment, while the mixture scenarios allow for an arbi-
trary combination of this scenario and randomly ori-
ented spins, which arise naturally in dynamical forma-
tion.

2.5. Redshift Evolution Models

The previous two subsections described the probabil-
ity distributions of intrinsic parameters p(⇠) (i.e. masses
and spins) that characterize the population of BBHs.
In addition, we also measure the value of one extrin-
sic parameter of the population: the overall merger rate

density R. The models described in the previous two
subsections assume that the distribution of intrinsic pa-
rameters is independent of cosmological redshift z, at
least over the redshift range accessible to the LIGO and
Virgo interferometers during the first two observing runs
(z . 1). However, we consider an additional model
in which the overall event rate evolves with redshift.
We follow Fishbach et al. (2018) by parameterizing the
evolving merger rate density R(z) in the comoving frame
by

R(z|�) = R0 (1 + z)� , (7)

where R0 is the rate density at z = 0. In this model,
� = 0 corresponds to a merger rate density that is uni-
form in comoving volume and source-frame time, while
� ⇠ 3 corresponds to a merger rate that approximately
follows the star-formation rate in the redshift range rel-
evant to the detections in O1 and O2 (Madau & Dick-
inson 2014). Various BBH formation channels predict
di↵erent merger rate histories, ranging from rate densi-
ties that will peak in the future (� < 0) to rate densities
that peak earlier than the star-formation rate (� & 3).
These depend on the formation rate history and the dis-
tribution of delay times between formation and redshift.
In cases where we do not explicitly write the event rate
density as R(z), it is assumed that the rate density R is
constant in comoving volume and source-frame time.

2.6. Statistical Framework

The general model family, including the distributions
of masses, spins and merger redshift, is therefore given
by the distribution
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(✓) = R (z)


dVc

dz
(z)

�
Tobs

1 + z
p(⇠|✓), (8)

where N is the total number of mergers that occur
within the detection horizon (i.e. the maximum red-
shift considered) over the total observing time, Tobs, as
measured in the detector-frame, ✓ is the collection of
all hyper-parameters that characterize the distribution,
and dVc/dz is the di↵erential comoving volume per unit
redshift. The merger rate density R(z) is related to N
by

R(z) =
dN

dVcdt
(z) , (9)

where t is the time in the source-frame, so that Eq. 8
can be written equivalently in terms of the merger rate
density:

dR

d⇠
(z|✓) = R0p(⇠|✓)(1 + z)�. (10)

We perform a hierarchical Bayesian analysis, account-
ing for measurement uncertainty and selection e↵ects
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Model selection

❖ Bayesian inference is also used for model 
selection based on the evidence ratio or 
Bayes factor.

❖ Example applications to LIGO include

• test for presence/absence of 
gravitational radiation after the merger 
of a binary neutron star;

• test of GW polarisation - tensor versus 
scale or vector polarisations.

common EOS using approximate universal relations as
well as directly sampling a parametrized EOS [42,101–
103,142,143].

IV. LIMITS ON POSTMERGER SIGNAL

Having used the inspiral phase of the GW signal to
constrain the properties of the component bodies, we now
place limits on the signal content after the two stars merged
to make inferences about the remnant object. The outcome
of a BNS coalescence depends on the progenitor masses
and the NS EOS. Soft EOSs and large masses result in
the prompt formation of a black hole immediately after the
merger [144]. Stiffer EOS and lower masses result in the
formation of a stable or quasistable NS remnant [145,146].
A hypermassive NS, whose mass exceeds the maximum
mass of a uniformly rotating star but is supported by
differential rotation and possibly thermal gradients [145],
will survive for ≲1s, after which time the NS collapses into
a black hole [147,148]. A supramassive star, whose mass is
lower but still exceeds the threshold for nonrotating NSs,
will spin down on longer timescales before forming a black
hole [149]. Finally, extremely stiff EOSs and low masses
will result in a stable NS.
We use the BAYESWAVE algorithm [39] to form fre-

quency-dependent upper limits on the strain amplitude and
radiated energy by following the approach described in
Ref. [150]. BAYESWAVE models GWs as a superposition of
an arbitrary number of elliptically polarized Morlet-Gabor
wavelets. This signal model has been found to be capable of
accurate waveform reconstruction for a variety of signal
morphologies, including short-duration postmerger signals
[150]. The priors of this analysis are expressed in terms of
the individual wavelet parameters and on the SNR of each
wavelet. Consequently, the priors on the signal amplitude
and waveform morphology are derived from the individual
wavelet priors, rather than being directly specified. The
priors on the wavelet quality factor and phase are flat in
(0,200) and ð0; 2πÞ, respectively. The priors on the central
frequency and time are determined by the analysis duration
and bandwidth described below, while the amplitude prior
is determined through the SNR of each wavelet and
discussed in more detail in Ref. [39].
We use the analysis described in Ref. [150] to estimate

an upper bound on the amplitude of a putative GW signal
assumed to be present but at insufficiently high SNR to
generate a statistically significant detection candidate. We
use coincident data from the two LIGO detectors and from
GEO600 [40], which has comparable sensitivity to Virgo at
high frequency. Indeed, the sky location of GW170817 is
particularly favorable for the GEO600 antenna response so
that any high-frequency signal component observed by
GEO600 will have a SNR greater than or equal to that
expected in Virgo. During this period, the Virgo data above
2 kHz suffer from an abundance of spectral lines and
transient noise and, therefore, are not included in this

analysis. It should also be noted that GEO600 was not in
science mode due to investigations into a degraded
squeezer phase error point signal leading to a reduced
level of squeezing. At the time of the event, the inves-
tigations were passive observations. Otherwise, GEO600
was in nominal running condition. The calibration of the
LIGO detectors is more uncertain above 2 kHz than at
lower frequencies, but it is still within 8% in amplitude and
4 deg in phase [54]. The GEO600 calibration uncertainty is
estimated to be within 15% in amplitude and 15 deg in
phase in the 1–4 kHz band. GEO600 was not used in a
previous search for high-frequency GW emission due to an
insufficient characterization of data quality and analysis
tuning, which would have been required for accurate
background estimation [41]. The analysis reported in this
work, by contrast, is a Bayesian characterization of an
underlying signal, and it involves only the 1 s of data
around the coalescence time of the merger, which relaxes
the data quality requirements somewhat. Furthermore, the
analysis configuration has been chosen based on studies of
the expected signal (i.e., Ref. [150]), and it is not optimized
to eliminate statistical outliers in a background distribution.
We use a 1-s segment of data centered around the time of

coalescence, and we restrict the analysis to waveforms
whose peak amplitude lies within a 250-ms window at the
center of the segment. This window is sufficient to account
for statistical or systematic uncertainties in the time-of-
coalescence measurement inferred from the inspiral signal,
and the total length of segment used encompasses the
duration of postmerger signals predicted by numerical
simulations for hypermassive NSs that eventually collapse
to black holes. The analysis is performed over the 1024–
4096-Hz band, which is sufficient to contain the full
postmerger spectrum.
We determine the relative evidence for two models: that

the on-source data are described by Gaussian noise only, or
by Gaussian noise plus a GW signal as described in
Refs. [151,152]. We find that the Gaussian noise model
is strongly preferred, with a Bayes factor (evidence ratio) of
256.79 over the signal model. This result is consistent with
both prompt collapse to a BH and with a postmerger signal
that is too weak to be measurable with our current
sensitivity. We further characterize the absence of a
detectable signal by forming 90% credible upper limits
on three measures of signal strength: (i) the network SNR,
evaluated over 1–4 kHz, (ii) the strain amplitude spectral
density (ASD), and (iii) the spectral energy density (SED).
We compute the 90% credible upper limit on the network

SNR directly using the reconstructed waveform posterior.
We exclude signal power in our analysis band with ρnet >
6.7 at the 90% level. The top panel of Fig. 13 reports the
upper limits and expectations for the strain ASD induced in
the LIGO-Hanford instrument. These limits are formed
directly from the posterior probability distribution for the
reconstructed waveform in the 1 s of data around the
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expected for a few out of 10 events, simply from Gaussian
noise fluctuations. We have performed simulations of 100 GR
sources with source-frame component masses lying between 25
and 45 M�, isotropically distributed spins with dimensionless
magnitudes up to 0.99, and at luminosity distances between
500 and 800 Mpc. These simulations used the waveform model
IMRPhenomPv2 and considered the Advanced LIGO and Virgo
network, using Gaussian noise with the detectors’ design sen-
sitivity power spectral densities. We found that in about 20 –
30% of cases, the GR quantile lies in the tails of the distribution
(i.e., < 10% or > 90%), when the sources injected are analyzed
using the same waveform model (IMRPhenomPv2).

In order to assess the impact of waveform systematics, we
also analyze some events using the aligned-spin SEOBNRv4
model. We consider GW170729 and GW170814 in depth in
this study because the GR quantiles of the IMRPhenomPv2
results lie in the tails of the distributions, and find that the 90%
upper bounds and GR quantiles presented in Table IV di↵er by
at most a factor of 2.3 for GW170729 and 1.5 for GW170814
when computed using the SEOBNRv4 model. These results
are presented in Sec. 4 of the Appendix.

There are also uncertainties in the determination of the 90%
bounds due to the finite number of samples and the long tails
of the distributions. As in Ref. [6], we quantify this uncertainty
using Bayesian bootstrapping [124]. We use 1000 bootstrap
realizations for each value of ↵ and sign of A↵, obtaining
a distribution of 90% bounds on A↵. We consider the 90%
credible interval of this distribution and find that its width is <
30% of the values for the 90% bounds on A↵ given in Table IV
for all but 10 of the 160 cases we consider (counting positive
and negative A↵ cases separately). For GW170608, A4 < 0,
the width of the 90% credible interval from bootstrapping is
91% of the value in Table IV. This ratio is  47% for all
the remaining cases. Thus, there are a few cases where the
bootstrapping uncertainty in the bound on A↵ is large, but for
most cases, this is not a substantial uncertainty.

VIII. POLARIZATIONS

Generic metric theories of gravity may allow up to six po-
larizations of gravitational waves [125]: two tensor modes
(helicity ±2), two vector modes (helicity ±1), and two scalar
modes (helicity 0). Of these, only the two tensor modes (+
and ⇥) are permitted in GR. We may attempt to reconstruct
the polarization content of a passing GW using a network of
detectors [1, 126–129]. This is possible because instruments
with di↵erent orientations will respond di↵erently to signals
from a given sky location depending on their polarization. In
particular, the strain signal in detector I can be written as
hI(t) =

P
A FA

IhA(t), with FA
I the detector’s response function

and hA(t) the A-polarized part of the signal [1, 130].
In order to fully disentangle the polarization content of a

transient signal, at least 5 detectors are needed to break all
degeneracies [126].21 This limits the polarization measure-

21 Di↵erential-arm detectors are only sensitive to the traceless scalar mode,

ments that are currently feasible. In spite of this, we may
extract some polarization information from signals detected
with both LIGO detectors and Virgo [129]. This was done
previously with GW170814 and GW170817 to provide evi-
dence that GWs are tensor polarized, instead of fully vector
or fully scalar [7, 8]. Besides GW170814, there are three bi-
nary black hole events that were detected with the full network
(GW170729, GW170809, and GW170818). Of these events,
only GW170818 has enough SNR and is su�ciently well lo-
calized to provide any relevant information (cf. Fig. 8 in [14]).
The Bayes factors (marginalized likelihood ratios) obtained in
this case are 12±3 for tensor vs vector and 407±100 for tensor
vs scalar, where the error corresponds to the uncertainty due to
discrete sampling in the evidence computations. These values
are comparable to those from GW170814, for which the latest
recalibrated and cleaned data (cf. Sec. II) yield Bayes factors
of 30 ± 4 and 220 ± 27 for tensor vs vector and scalar respec-
tively.22 Values from these binary black holes are many orders
of magnitude weaker than those obtained from GW170817,
where we benefited from the precise sky-localization provided
by an electromagnetic counterpart [8].

IX. CONCLUSIONS AND OUTLOOK

We have presented the results from various tests of GR per-
formed using the binary black hole signals from the catalog
GWTC-1 [9], i.e., those observed by Advanced LIGO and
Advanced Virgo during the first two observing runs of the ad-
vanced detector era. These tests, which are among the first
tests of GR in the highly relativistic, nonlinear regime of strong
gravity, do not reveal any inconsistency of our data with the
predictions of GR. We have presented full results on four tests
of the consistency of the data with gravitational waveforms
from binary black hole systems as predicted by GR. The first
two of these tests check the self-consistency of our analysis.
One checks that the residual remaining after subtracting the
best-fit waveform is consistent with detector noise. The other
checks that the final mass and spin inferred from the low- and
high-frequency parts of the signal are consistent. The third and
fourth tests introduce parameterized deviations in the wave-
form model and check that these deviations are consistent with
their GR value of zero. In one test, these deviations are com-
pletely phenomenological modifications of the coe�cients in
a waveform model, including the post-Newtonian coe�cients.
In the other test, the deviations are those arising from the prop-
agation of GWs with a modified dispersion relation, which
includes the dispersion due to a massive graviton as a special
case. In addition, we also check whether the observed po-
larizations are consistent with being purely tensor modes (as
expected in GR) as opposed to purely scalar modes or vector
modes.

meaning we can only hope to distinguish five, not six, polarizations.
22 These values are less stringent than those previously published in [7]. This

is solely due to the change in data, which impacted the sky locations inferred
under the non-GR hypotheses.

LVC,  Phys. Rev.  D 100 104036 (2019)



Model selection

❖ Tests of no-hair property: use 
evidence to quantify evidence for 
ringdown modes different to those 
predicted by general relativity.
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FIG. 5. The log Bayes factors for individual sources. The red cir-
cles represent signals with GR waveforms (EOBNR), while the blue
crosses correspond to the non-GR waveforms (pEOBNR). A separa-
tion between the two is visible for SNRRD ⇠ 15, and becomes more
pronounced as the SNR increases.

lustrates the nontrivial fact that even at relatively low SNRs,
Bayesian model selection is able to find statistical evidence
for deviations from GR.

B. Bounding free parameters of the ringdown signal

Given a set of detected GW signals from BBHs for which
QNM frequencies and damping times can be measured, the
natural steps to follow are to first test the compatibility of the
waveform with GR using Bayesian model selection, as done
in the previous subsection, and then quantify how well we
can constrain deviations from GR using parameter estimation.
This can be done for single GW events, but stronger con-
straints can be obtained by combining the information from
all the detections as shown in Ref. [26]. There, two different
approaches were proposed: (i) the odds ratio obtained in the
previous subsection can be combined by just multiplying the
odds ratio coming from all the events, thus allowing to get
stronger evidence for or against GR. For a large group of N
identical events, this method effectively improves the SNR of
the single event case by a factor ⇠N 1/4 [27]; and (ii) assum-
ing that the Bayesian model selection test gives no evidence
for deviations from GR, one combines the posterior density
distributions for ds`m, which measures the fractional devia-
tion from the QNM complex frequencies of a Kerr BH in GR:

slm = sGR
lm (1+dslm) . (9)

Given that in GR dslm = 0, the information from multiple
events can be combined by multiplying the posterior density
distributions of all detections as

p(ds |H ,d1,d2,d3, . . . ,N )=
1

p(ds)1�N

N

’
A=1

p(ds |H ,dA) ,

(10)

where N denotes the number of detections. For a large group
of N identical events, the width of this PDF decreases as ⇠
N �1/2. We emphasize that when using Eq. (10) one assumes
that the value of dslm is the same across all events. Therefore,
since for generic theories of gravity the deviations ds`m could
also be a function of the final BH mass, spin and any other
charges that may be present in the correct theory of gravity,
constraints obtained using this method only make sense if no
evidence for deviations from GR are found after performing
the Bayesian model selection test [26].

More recently Ref. [27] proposed an alternative hypothe-
sis testing method that makes use of the combined informa-
tion from multiple detections and could, in principle, enhance
the efficiency to detect sub-leading modes compared to the
Bayesian model selection method used in Ref. [26]. This
method proposes to make full use of the information com-
ing from the measured BBH parameters, to coherently sum
the ringdown signal of a target mode from multiple events.
It could, in an ideal scenario, effectively improve the SNR
of a single event by a factor ⇠ N 1/2, assuming N identi-
cal events [27]. However, implementing the coherent stacking
method of Ref. [27] is technically very challenging. Here, we
follow Ref. [26] and use Eq. (10) to combine the information
from a population of detected BBHs.

Since for each event we sample on the parameter slm, we
compute the PDFs for dslm a posteriori by using Eq. (9). To
compute sGR

lm we use the fitting formulas in Ref. [24] (see
Appendix E therein) where for the spin and mass of the fi-
nal BH we employ the fitting formulas in Ref. [37] [see Eqs.
(29a) and (29b) therein]. The results for the constraints on
the parameters ds`m, when considering the GR BBH popu-
lation described in the previous subsection9, are displayed in
Fig. 6. In particular, we show how the median and 95% con-
fidence interval evolve with the number of detections ordered
randomly. Although the constraints from a single event can be
quite uninformative, when all sources are taken into account
the 95% confidence interval shrinks to a maximum error away
from the median of ⇠ 0.7%, ⇠ 1.6% and ⇠ 2.4% , for d f220,
d f330 and dt220, respectively. As expected and as shown in
Fig. 7, we find that at large enough N , the error decreases
approximately as N �1/2. Overall, our results are consistent
with previous studies [26], although we remind that Ref. [26]
used damped sinusoids for both the injected GW signal and
the recovery, while we injected and recovered with an IMR
waveform that consistently includes time and phase shifts be-
tween QNMs.

It is worth noticing that if we consider only events with (to-
tal) SNR below 30 (which accounts for 60 events of the entire
population), and combine them, we obtain at 95% confidence
that the maximum errors away from the median are ⇠ 1.7%
⇠ 5.3% and ⇠ 6.7%, for d f220, d f330 and dt220, respectively.
Moreover, we find that d f220 is the quantity for which we gain
less by combining several events, because it is the best mea-
sured quantity — e.g., for some individual events with SNR

9 We note that for this study, unlike what was done in the previous subsec-
tion, we keep all waveform’s parameters free.
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or use a two-damped sinusoid model with relative ampli-
tudes for the (220) and (330) modes fitted to NR as given in
Ref. [25], neglecting all the other modes. Therefore for the
two-damped sinusoid model the free parameters are #RD =
{w220,w330,t220,f220,t330,f330,A,q}, with A an overall am-
plitude, that can be related to the BH final mass and the lumi-
nosity distance, while for the single damped sinusoid model,
the free parameters are simply #RD = {w220,t220,f220,A}.
We note that for both sinusoid models we fix the sky loca-
tion {a,d} and geocentric time at coalescence tc which can
be obtained by first performing parameter estimation using an
IMR model. The damped sinusoid model is then chosen to
start at a given fixed time after the coalescence time such as to
fit only the ringdown part of the signal.

III. INFERENCE WITH THE PARAMETERIZED
INSPIRAL-MERGER-RINGDOWN MODEL

We now use Bayesian analysis [48, 49] to test the ability
of the pEOBNR model to recover the QNM complex frequen-
cies. In particular, we infer the ringdown-signal’s parameters
of GW150914 [1], which, so far, is the loudest BBH event
detected by Advanced LIGO, and the only event with a non-
negligible amount of SNR in the ringdown, and of a few syn-
thetic GW signals injected in Gaussian noise. For the latter we
employ two nonspinning NR waveforms from the SXS cata-
log [40]: (i) one with mass ratio q= 1.5 (SXS:BBH:0007) and
total mass M = 70M�, which mimics the GW150914 event,
and (ii) another with mass ratio q = 6 (SXS:BBH:0166) and
total mass M = 84M�, for which modes with l > 2 are non-
negligible — e.g., at merger the (3,3)-mode is ⇠ 70% smaller
than the dominant (2,2)-mode in the face-on/off binary con-
figuration (see Fig. 1).

We estimate the probability density function (PDF) for a
parameter vector J according to the LIGO ALGORITHM LI-
BRARY sampling algorithm in Ref. [50]. We sample the pos-
terior density p(#|h,d) for the model h given the data d as a
function of # using:

p(#|h,d) µ L (d|#)⇥ p(#) , (4)

where L (d|#) is the likelihood function of the observed
data for given values of the parameters #, and p(#) is the
prior probability density of the unknown parameter vector
#. To obtain the likelihood function L (d|#), we first gen-
erate the GW polarizations h+(#) and h⇥(#) according to
the waveform models described above. We then combine
the polarizations into the two Advanced LIGO and Advanced
Virgo detector responses at design sensitivity, h1,2,3, by pro-
jecting them on the detector antenna patterns [51]: hk(#) =

hk
+(#)F(+)

k (#)+ hk
⇥(#)F(⇥)

k (#). The likelihood is then de-
fined as the sampling distribution of the residuals, assuming
they are distributed as Gaussian noise colored by the power
spectral density (PSD) for each detector [50]:

L (d|#) µ exp

"
�1

2 Â
k=1,2,3

hhk(#)�dk|hk(#)�dki
#
, (5)

where h·|·i denotes the noise-weighted inner product [51].
Here for the Advanced LIGO noise spectral density we use
the ZERO DET high P PSD [52], while for Virgo we use the
PSD in Ref. [53]. We use the common “zero-noise” approxi-
mation, where instead of averaging many PDFs obtained with
different Gaussian noise realizations, we directly obtain this
averaged PDF by setting the noise realisation, dk, to be identi-
cally zero, while keeping the detectors’ PSD when computing
the noise-weighted inner product in Eq. (5).

We follow the choices in Ref. [50] for the prior probabil-
ity density p(#) in Eq. (4). When recovering the signal with
the pEOBNR model, we sample the QNM complex frequen-
cies in the dimensionless parameter GMBHs`m/c3 with a flat
prior GMBHw`m/c3 2 [0.3,1] and GMBH/t`m/c3 2 [0.03,0.2],
where MBH is the mass of the remnant BH. These priors are
chosen such that within this range, the pEOBNR model is rea-
sonably smooth at the matching point between the inspiral-
plunge and merger-ringdown parts. When we use the damped
sinusoids, we employ flat priors for the dimensionful quanti-
ties f`m 2 [50,500]Hz and 1/t`m 2 [50,500]s�1, with 2p f`m =
w`m. Finally, for all runs done, we have not seen that the pos-
teriors for the frequency and damping time of the 220 or 330
modes lean against the prior boundaries, whenever the SNR
after merger of the corresponding mode is above ⇠ 5.
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FIG. 2. 90% credible interval contours for the dominant QNM, using
the pEOBNR model and a damped sinusoid model at starting times
tRD = 1,3,5 ms after merger. The black solid line shows the 90%
credible region for the frequency and decay time of the (220) QNM
inferred from the posterior distributions of the remnant BH mass and
spin parameters, as derived in Ref. [6]. GW150914 is consistent with
the coalescence of two nonspinning BHs, with an inferred total (red-
shifted) mass of M/M� = 70.6+4.6

�4.5, mass ratio q = 0.82+0.17
�0.20 and

luminosity distance DL/Mpc = 410+160
�180 [54].

A. Putting the IMR model to test using GW150914

GW150914 [1] was the first and, so far, loudest BBH’s GW
signal detected by Advanced LIGO and Virgo. Constraints
for the frequency and damping time of the dominant QNM

Brito, Buonanno, Raymond (2019)



Model selection
❖ Another example: Probing dynamical gravity with the polarisation of continuous 

gravitational waves, Isi et al. (2017) Phys. Rev. D 96 042001. (not yet a LIGO search).

With this notation extended to the names of the relevant
hypotheses, we may then write HnGR as the logical union
(“or” junction, ∨)

HnGR ≡Hs ∨ Hv ∨ Hst ∨ Hsv ∨ Htv ∨ Hstv

¼ ⋁
m∈ ~M

Hm; ð31Þ

where, for convenience, we have defined the non-GR
subscript set ~M:

~M≡ fs; v; st; sv; tv; stvg: ð32Þ

Just as before, we may equivalently use the triaxial para-
metrization, Eq. (29), for the tensor modes in the non-GR
hypotheses by instead defining ~M as

~M ¼ fs; v; sv;GRþ s;GRþ v;GRþ svg; ð33Þ

where, for example, GRþ s denotes a signal template like

ΛGRþsðtÞ ¼
h0
2
eiϕ0

!
1

2
ð1þ cos2ιÞFþðt;ψÞ − i cos ιF×ðt;ψÞ

"

þ 1

2
abeiϕbFbðt;ψÞ; ð34Þ

and similarly for GRþ v and GRþ sv, with the added
vector modes. Again, the two definitions of ~M, Eqs. (32)
and (33), are equivalent unless orientation information is
incorporated in the way explained above.
By the same token, the signal hypothesis can be built

from the logical union of HGR or Ht, and HnGR:

HS ≡HGR=t ∨ HnGR ¼ ⋁
m∈M

Hm; ð35Þ

with M defined similarly to ~M, but also including the
tensor-only hypothesis, HGR or Ht:

M ≡ ~M ∪ fGR=tg: ð36Þ

The validity of Eqs. (31) and (35) is contingent on the
mutual logical independence of all the Hm’s. This require-
ment is satisfied by construction, since each of the Hm’s is
defined to exclude regions of parameter space that would
correspond to other hypotheses nested within it (e.g.HGRþs
is defined over all values of the scalar amplitude except
as ¼ 0, to avoid including HGR). In practice, however, it is
not necessary to explicitly exclude these infinitesimal
regions of parameter space, as will be explained in the
following section.

2. Odds

We can construct a Bayesian model forHS starting from
its components: for each subhypothesisHm for m ∈ M, we
use a likelihood function like Eq. (27) with the substitution
jBi;kj → jBi;k − Λm;i;kj, i.e.

pðBjθ⃗;HmÞ ¼
YND

i¼1

YNSi

j¼1

Ai;j

 
XKi;j

k¼κi;j

jBi;k − Λm;i;kj2
!−si;j

ð37Þ

(where Λm;i;k is the template corresponding to modelm, for
detector i and time-bin k), and suitable priors on the model
parameters θ⃗m ∈ Θm; then, we combine the posteriors with
priors on the models themselves to obtain the posterior
for HS. This last step allows us to incorporate our a priori
beliefs about the validity of each of the components. This
procedure is represented schematically in Fig. 3 and fleshed
out below.
The choice of model priors can be made clearer by

considering the posterior probability for the signal model.
Given some set of detector data B and underlying assump-
tions I (suppressed from the following expressions), the
posterior probability for HS is

PðHSjBÞ ¼
X

m∈M
PðHmjBÞ ð38Þ

by Eq. (35) and because the components are all logically
independent [i.e. Hm1

∧ Hm2
¼ False, hence PðHm1

∧
Hm2

jBÞ ¼ 0 for any m1, m2 ∈ M such that m1 ≠ m2].
Note that this is true even for hypotheses that may contain
each other as special cases. For instance, even though
the GR template can be obtained from GRþ s by setting
the scalar amplitude to as ¼ 0, the points in the GRþ s
parameter space satisfying this condition define an
infinitesimally-thin slice in parameter space that offers

FIG. 3. Computation of OS
N. First, the Bayes factor Bm

N is
obtained from the data B and corresponding priors pðθjHmÞ for
each model m ∈ M, by evaluating the integral of Eq. (40) using a
nested sampling algorithm that samples over θ⃗ (step indicated by
integral sign); these values are then added and multiplied by
PðHmÞ=PðHNÞ to obtain OS

N, as in Eq. (43). (Note that here we
have set PðHmÞ=PðHNÞ ¼ 1=7, as explained Sec. IV.) The
computation of OnGR

GR is analogous.
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The relationship between the Bayes factors for different
signal hypotheses vs noise is illustrated in Fig. 6, which
shows violin plots representing the noise-ensemble distri-
butions of lnBm

N for all models discussed in III A 1. The
values for m ∈ fs; v; sv;GR;GRþ s;GRþ t;GRþ svg
are combined to produce lnOS

N in Fig. 5. As explained
above, the “GR” label indicates that the tensor modes have
been parametrized using the triaxial model of Eq. (29), with
orientation parameters fixed at the known values for the
Crab pulsar; on the other hand, the “t” label corresponds
to the free-tensor template of Eq. (28). We include both
parametrizations to demonstrate the effect of assuming a
triaxial emission mechanism and restricting the orientation
of the source (see also Appendix A).
Interestingly, Fig. 6 reveals the relationship between

lnBm
N and the number of degrees of freedom (a proxy for

the prior volume) of modelm: models with more degrees of
freedom have a greater prior volume and are correspond-
ingly downweighted, resulting in more negative values of
lnBm

N; this is a manifestation of the Occam’s penalty
automatically applied by the Bayesian analysis (see e.g.
Chap. 28 in [37]). We underscore that this feature arises
naturally from the computation of the evidence integral,
and not from manually downweighting either model
a priori.
If the data contain a sufficiently loud signal of any

polarization, the evidence for HS will surpass that for HN,
and this can be used to establish a detection. Figure 7 shows
the response of lnOS

N and lnBGR
N to the presence of GR and

non-GR signals. In particular, the second panel in Fig. 7
shows results for injected signals of the vector-only model
of [21], but the behavior would be the same for scalar-only
signals. The general features of these plots confirm our
expectations that for weak, subthreshold signals, the
analysis should not be able to distinguish between the
signal and noise models, yielding a Bayes factor close to
unity (more precisely, a value of lnOS

N consistent with the

background distributions of Fig. 5). Note that, in agreement
with Fig. 5, the noise baseline for lnOS

N lies below that of
lnBGR

N , due to its greater prior volume.
For stronger (detectable) signals, the basic form of our

likelihood functions, Eq. (25), leads us to expect lnOS
N to

scale linearly with the square of the signal-to-noise ratio
(SNR):

lnBm
N ∼ ðB · ΛMP − jΛMPj2=2Þ=σ2 ∝ ðhinj=σÞ2; ð70Þ

where the variance σ2 proxies the PSD and we let ΛMP be
the time-series vector corresponding to the maximum
probability template; for a stationary PSD, this implies
lnBm

N ∝ h2inj, as observed in Fig. 7. The spread around the
trendline is due to the individual features of each noise
instantiation and (much less so) to numerical errors in the
computation of the evidence, Eq. (40). For details on
numerical uncertainty, see Appendix C.
From the left panel of Fig. 7, we conclude that lnOS

N can
be as good an indicator of the presence of GR signals as
lnBGR

N itself; this implies that we may include non-GR
polarizations in our search without significantly sacrificing
sensitivity to GR signals. However, the power of lnOS

N lies
in responding also to non-GR signals. As an example of
this, the right panel in Fig. 7 shows lnOS

N and lnBGR
N as a

function of the amplitude of a fully non-GR injection. Here,
we have chosen to inject a particular model of vector signal
developed in [21], but the results are generic.
Note that, for sufficiently loud signals, HGR becomes

preferable over HN (hence lnBGR
N > 0), even when the

injection model does not match the search; this is because
the noise evidence drops faster than GR’s and becomes
very small (i.e. the data do not look at all like Gaussian
noise, although they do not match the expected GR signal
well either). The particular SNR at which this occurs will
depend on the overlap between the antenna patterns of the

FIG. 6. Signal vs noise log-Bayes background distributions for all subhypotheses. Violin plots representing histograms of the log-
Bayes of several models vs noise, computed over an ensemble of 1000 simulated noise instantiations each corresponding to H1, L1 and
V1 design data prepared for the Crab pulsar; the data are analyzed coherently across detectors. The labels on the x axis indicate which
hypothesis is being compared against noise; the “GR” label indicates tensor modes parametrized by Eq. (29) with fixed ψ and ι. Black
lines mark the range and median of each distribution. (The gray histogram in Fig. 5 corresponds to the leftmost distribution here.)
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injection and those of GR, and will consequently vary
among sources.
For the interesting case of scalar-tensor theories (here,

templates composed of GR plus an extra breathing com-
ponent, and denoted “GRþ s’), the behavior is slightly
different. This is both because GRþ s has an extra
amplitude degree of freedom (as) and, as discussed in
Sec. III A 1, because HGR can be recovered as a special
case ofHGRþs (namely, when as → 0). In Fig. 8, we present
the log-odds of signal vs noise hypotheses as a function
of injected GR (x axis) and scalar (y axis) strengths. These
plots divide the hs–ht plane in roughly two regions where
the associated signal model (HS, HGR or HGRþs) is
preferred (black) and where it is not (red). The latter

corresponds to the area of parameter space associated with
subthreshold signals that cannot be detected.
As expected, the best coverage is obtained when ana-

lyzing the data using the model matching the injection,
GRþ s, (rightmost plot) or the all-signal model (leftmost
plot). In both these cases, the results improve with either
scalar or tensor SNR. In contrast, the GR analysis (center
plot) is sensitive to tensor strain, but, as evidenced by the
extended red region in the central plot, it misidentifies
strong scalar signals as noise. Nevertheless, if the scalar
component is larger than ∼5 × 10−26, the GR analysis will
disfavor the noise hypothesis, even for a small tensor
component, as in the right panel of Fig. 7; this is the same
behavior observed in Fig. 7. In contrast, the any-signal

FIG. 8. Expected sensitivity to scalar-tensor injections. Log-odds of any-signal (HS, left), GR (HGR, center) and GRþ s (HGRþs,
right) hypotheses vs noise. The any-signal odds is defined in Eq. (43). Each plot was produced by analyzing 2500 instantiations of data
(one time series for each detector: H1, L1 and V1) made up of Gaussian noise plus a simulated Crab-pulsar GRþ s signal of the
indicated tensor (x axis) and scalar (y axis) amplitudes. The color of each hexagon represents the average value of the log-odds in that
region of parameter space; color is normalized logarithmically, except for a linear stretch in the ð−1; 1Þ range.

FIG. 7. Expected sensitivity to GR and vector injections. Log-odds of any-signal (HS, black circles) and GR (HGR, gray triangles) vs
noise (HN) hypotheses, as a function of injection amplitude, for signals corresponding to both GR (left) and the vector-only model from
[21] (right). The any-signal odds is defined in Eq. (43). Each of the 500 points corresponds to a data instantiation (one time series for
each detector: H1, L1 and V1) made up of Gaussian noise plus a simulated Crab-pulsar signal of the indicated strength. The injections
were performed with random values of the nuisance phase parameters, and the data were analyzed coherently across detectors. A
logarithmic scale is used for the y axis, except for a linear stretch corresponding to the first decade.
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Source reconstruction



❖ The BayesWave pipeline uses a Bayesian non-parametric approach to 
reconstruct noise and signal components from the data.

❖ The smooth noise PSD component is modelled using a cubic spline.

❖ Lines in the instrumental noise are modelled using Lorentzian functions.

❖ The remaining components of the data are modelled using wavelets, 
which resolve time series at particular times and frequencies. BayesWave 
uses the Morley-Gabor basis. 

❖ There is a coherent wavelet component for sources and incoherent 
components to represent glitches.

BayesWave

p(x; b,m) =
1

⇡

b

(x�m)2 + b2
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❖ The BayesWave pipeline

❖ Decomposition of power - Lorentzian’s for lines, cubic spline for smooth 
component. Wavelets (Morlet-Gabor basis) for glitches and signals.
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Bayestar
❖ Bayesian techniques are also used to obtain 

rapid sky localisation of GW transients to 
send triggers to astronomers for EM 
follow-up.

❖ Bayestar employs the autocorrelation 
likelihood (likelihood evaluated at MLE 
parameter values)

❖ Rapid marginalisation over parameters 
other than sky location achieved via 
integral approximation and look-up tables.

❖ Result is a sky map probability density.
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1. Evaluate localization on
base tesselation of N pixels 2. Sort by probability and select top N/4 pixels

3. Subdivide & replace with
N new daughter pixels

5. Subdivide & replace with
N new daughter pixels

4. Sort by probability and
select top N/4 pixels

6. Sort by probability and
select top N/4 pixels

Repeat

FIG. 8. Illustration of the BAYESTAR adaptive HEALPix sampling scheme.

FIG. 9. An example multiresolution HEALPix mesh arising
from the BAYESTAR sampling scheme (plotted in a cylindri-
cal projection). This is event 18951 from Ref. [27].

VIII. CASE STUDY

We have completed our description of the BAYESTAR
algorithm. In Ref. [27], the authors presented a compre-
hensive and astrophysically realistic sample of simulated
BNS mergers. We focused on the first two planned Ad-
vanced LIGO and Virgo observing runs as desribed in
Ref. [3]. That work presented a catalog of 500 sky lo-
calizations from BAYESTAR and LALINFERENCE and
dealt with the quantitative position reconstruction accu-
racy as well as the qualitative sky morphologies. In the

present work, we will use the same data set but instead
focus on demonstrating the correctness and performance
of the BAYESTAR algorithm.

A. Observing scenarios

To review the assumptions made in Ref. [27], the two
scenarios are:
2015.—The first Advanced LIGO observing run, or

“O1,” scheduled to start in September 2015 and continue
for three months. There are only two detectors partic-
ipating in this run: LIGO Hanford (H) and LIGO Liv-
ingston (L). Both detectors are expected to operate with
a direction-averaged BNS merger range of 40–80Mpc
(though ongoing Advanced LIGO commissioning sug-
gests that the higher end of this range will be achieved).
As a result of having only two detectors, most localiza-
tions are long, thin arcs a few degrees wide and tens to
hundreds of degrees long. The median 90% credible area
is about 600 deg2.
2016.—The second observing run, “O2,” with the two

between Advanced LIGO detectors, upgraded to a BNS
range of 80–120 Mpc, operated jointly with the newly
commissioned Advanced Virgo detector (V), operating
at a range of 20–60 Mpc. The run is envisioned as lasting
for six months in 2016–2017. The detectors are assumed
to have random and independent 80% duty cycles. Con-
sequently, all three detectors (HLV) are in science mode
about half of the time, with the remaining time divided
roughly equally between each of the possible pairs (HL,
HV, or LV) and one or fewer detectors (at least two GW
facilities are required for a detection). Virgo’s range is as-
sumed to be somewhat less than LIGO’s because its com-
missioning time table is about a year behind. Although
the simulated signals are generally too weak in Virgo to
trigger the matched-filter pipeline and contribute to de-
tection, even these subthreshold signals aid in position

Singer & Price (2015)
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to what we call the autocorrelation likelihood,
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with �̃i = �̂i � �i, ⌧̃i = ⌧̂i � ⌧i, and the template’s auto-
correlation function ai(t;✓in) defined as
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Some example autocorrelation functions and correspond-
ing likelihoods are shown in Fig. 1. To assemble the joint
likelihood for the whole network, we form the product
of the autocorrelation likelihoods from the individual de-
tectors:
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In the following section, we discuss some key properties
of the autocorrelation likelihood.

A. Properties

First, the autocorrelation likelihood has the elegant
feature that if we were to replace the autocorrelation
function with the S/N time series for the best-matching
template, z(⌧ ; ✓̂in), we would recover the likelihood for
the full GW time series, evaluated at the ML estimate of
the intrinsic parameters, viz.:

exp
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[We have omitted the term
R

|Yi(!)|2/S(!)d!, which
takes the place of the earlier ⇢̂

2
i term and is only im-

portant for normalization.] The numerical scheme that
we will develop is thus equally applicable for rapid,
coincidence-based localization, or as a fast extrinsic
marginalization step for the full parameter estimation.

Second, observe that at the true parameter values,
✓̂i = ✓i, the logarithms of Eqs. (30) and (17) have the
same Jacobian. This is because the derivatives of the
autocorrelation function are

a
(n)(t) = i

n
!n,

with !n defined in Eq. (21). For example, the first few
derivatives are

a(0) = 1, ȧ(0) = i!, ä(0) = �!2.

Using Eq. (19), we can compute the Fisher ma-
trix elements for the autocorrelation likelihood given by
Eq. (30), with the detector subscript suppressed,

I⇢⇢ = 1,
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The notation Ik denotes a modified Bessel function of
the first kind. Matrix elements that are not listed have
values that are implied by the symmetry of the Fisher
matrix. Note that the minus signs are correct but a little
confusing; despite them, I�� , I⌧⌧ � 0 and I�⌧  0. The
time integration limits [�T, T ] correspond to a flat prior
on arrival time or a time coincidence window between
detectors.

We can show that the weighting function w(t; ⇢) ap-
proaches a Dirac delta function as ⇢ ! 1, so that
the Fisher matrix for the autocorrelation likelihood
approaches the Fisher matrix for the full GW data,
Eq. (23), as ⇢ ! 1. The Bessel functions asymptoti-
cally approach

I0(x), I1(x) !
e
x

p
2⇡x

as x ! 1.

For large ⇢, the exponents of e
⇢2

dominate Eq. (37), and
we can write
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FIG. 10. Cumulative histograms of sky area, broken down by observing run and detector network. The plots in the left column
show the 90% credible area and the plots in the right column show the searched area. From top bottom, the rows refer to
the following observing scenarios/network configurations: 2015/HL, 2016/HL, 2016/HV, 2016/LV, and 2016/HLV. The shaded
regions represent the 95% confidence bounds. The magenta lines represent BAYESTAR and the blue lines LALINFERENCE.
Where relevant, dotted lines show all events in the given network configuration and solid lines show only events for which the
matched-filter pipeline triggered on all operating detectors. Note that statistically significant di↵erences in areas between the
BAYESTAR and LALINFERENCE localizations occur only for events that were below the detection threshold in one or more
detectors.

Singer & Price (2015)



LALInference Burst
❖ LALInference Burst is another tool for rapid 

source localisation. The signal is modelled 
as a sine-Gaussian, coherent between 
detectors.

❖ Figure of merit (left) is sky area searched 
before true sky location identified.

❖ Bayestar and LIB are not true Bayesian 
algorithms since model of data generation 
process is approximated.
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Figure 1. Expected amplitude strain noise for advanced detectors in 2015, 2016,
and at design sensitivity. The resonances correspond to suspension “violin”
modes near 500 Hz and “bounce” modes near 15 Hz. The bounce mode is
within the seismic wall for the LIGO curves.

signals (with the exception of compact binary systems), histor-
ically several exemplar waveforms have been used to approx-
imate generic burst events (Aasi et al. 2013b; Klimenko et al.
2011; Markowitz et al. 2008). We focus on generic waveform
morphologies because they allow us to test our ability to localize
very different signals without specializing to a specific source. In
this study we use four signal morphologies: Sine-Gaussian (SG),
Gaussian (G), White-Noise Bursts (WNB), and Binary Black
Hole approximants (BBH) with spins (anti-)aligned with the
orbital angular momentum. The parameter ranges were chosen
as was reasonable given the typical frequencies probed by burst
searches (32–2048 Hz) as well as the expected noise curves.
The parameters were drawn independently, and Table 4 lists the
exact values used.

In particular, we distribute our injections as if they were
astrophysical, i.e., uniform in comoving volume. In addition,
the quietest signals were chosen to be just below the detector’s
maximum sensitivity. This ensures that the signals recovered
were limited by the detector’s sensitivity rather than an artificial
threshold. All populations were distributed uniformly over the
sky and regularly spaced in time.

As mentioned above, we distribute our injections uniformly
in comoving volume. This is done using standard ΛCDM

cosmology (Ωm = 0.3, ΩΛ = 0.7). If we take supernovae
as typical energy scales for un-modeled bursts, an optimistic
upper limit for the energy emitted as gravitational waves is
EGW ∼ 10−4 M#c2 (Ott et al. 2006). If we assume an energy
scale ten times larger is associated with an isotropically radiated
SG with fo = 200 Hz, this yields a horizon distance of ∼3.8
Mpc with advanced LIGO design sensitivity. At this distance, the
difference between volume and comoving-volume is negligible
(∼0.1%). Therefore, we distribute SG, G, and WNB signals
uniformly in volume.

Furthermore, because we do not have an exact energy scale for
generic (un-modeled) transient events, it is difficult to compute
a distance. We expect the signal amplitude to scale inversely
with the luminosity distance, and this can be used to define a
distribution over h2

rss =
∫

dt (h2
+ + h2

×) given a distribution over
distance. A derivation is provided in Appendix C, but we can
model a uniform-in-volume distribution as

p(DL) ∝ D2
L ⇒ p(hrss) ∝ h−4

rss . (1)

BBH systems should be detectable at several Gpc, and the
difference between volume and comoving volume is non-trivial
here (!70%). For the BBH signals, we have a well defined
distance and distribute the signals uniformly in comoving
volume.

2.2.1. Sine-Gaussian Waveforms

SG waveforms have historically been used by the LIGO and
Virgo Collaborations to simulate generic bursts (Abadie et al.
2012b). We define our SG waveforms according to Equations (2)
and (3). fo is the central frequency of the SG; τ is the width in
the time domain. α controls the relative weights between the
two polarizations. This is equivalent to choosing the coordinate
system in the wave-frame relative to the Earth-fixed detector
frame.

h×(t) = sin (α)
hrss√

Q(1 − cos (2φo) e−Q2 )/4fo

√
π

× sin (2πfo(t − to) + φo) e−(t−to)2/τ 2
(2)

h+(t) = cos (α)
hrss√

Q(1 + cos (2φo) e−Q2 )/4fo

√
π

× cos (2πfo(t − to) + φo) e−(t−to)2/τ 2
. (3)

2.2.2. Gaussian Waveforms

We also inject Gaussian envelopes in the time domain (G),
defined by Equations (4) and (5). These can be considered as
limiting cases of SG waveforms in which fo → 0. However,
removing the oscillatory component means the frequency do-
main waveform is a Gaussian centered about f = 0, and the
signal is detected essentially by the Gaussian’s wings. Because
the seismic wall in the noise spectra at low frequencies is very
steep, small changes in Gaussian width can significantly affect
detectability. This and the lower bound on signal duration from
the pipeline’s sampling rate determined the injection popula-
tion’s parameter ranges.

h×(t) = sin (α)
hrss√

τ

(
2
π

)1/4

e−(t−to)2/τ 2
(4)

h+(t) = cos (α)
hrss√

τ

(
2
π

)1/4

e−(t−to)2/τ 2
. (5)
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(b) cWB HLV 2016
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Figure 4. Cumulative histograms of searched areas for (a, c) 2015 HL and (b, d) 2016 HLV; (a, b) cWB and (c, d) LIB. Shaded regions correspond to 68% confidence
intervals.

and attempt to measure it by counting the number of disjointed
regions within a specified area. For example, if the posterior is
split between a blob and its antipode, there are two. This is the
case for the searched area in Figure 2(c).

Figure 6 shows histograms of the number of simply connected
regions within the searched area. There is a lot of morphology
dependence, but a few trends are clear. G and BBH signals
typically have fewer simply connected regions than SG and
WNB signals. For SG signals, this is because of their strong
central frequency and relatively narrow bandwidth.

The oscillatory waveforms imprinted in the data from each
detector still match relatively well if they are offset by a small
number of cycles, which corresponds to a time-of-flight error
between detectors. This causes periodic features in the posterior
with typical angular scales of ∆θ ∝ 1/fo.7 We therefore expect
to see parallel rings in two-detector posteriors, and a nearly
regular lattice in the three-detector posteriors.

7 The features are not exactly periodic because the signal may vary
significantly over time scales comparable to 1/fo and the antenna patterns may
favor only part of the sky.

9
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oLIB

❖ There is also an online version of LIB, that 
mixes frequentist and Bayesian techniques.

❖ LIB is used to compute Bayes factors for the 
signal versus noise hypothesis (BSN) and for 
coherent versus incoherent triggers across 
detectors (BCI).

❖ oLIB, along with CWB, were the first 
algorithms to detect GW150914, as they were 
the online online algorithms running at the 
start of O1.

2

This approach is similar in scheme to the end-to-end
oLIB algorithm. It is of great interest to have overlap be-
tween multiple search algorithms so that cross-validation
can be carried out for detection candidates. Although
most detection schemes are motivated by similar noise
models for the detectors, which typically assume station-
arity and Gaussianity, there is uncertainty regarding how
optimal their exact search statistics are for unmodeled
bursts in real non-Gaussian detector noise. This paper
presents a method for algorithmically generating optimal
search statistics for proposed signal and noise hypotheses
through an application of information-theoretic concepts.
This method then compresses these search statistics into
a single, scalar search statistic. This compression is done
in such a manner that it minimizes the information lost
concerning the signal-versus-noise hypothesis.

oLIB is an attempt to implement this optimal scheme.
The implementation is carried out by first flagging, in
each detector, subsets of data that have excess power,
which we refer to as “events”. This step is carried out
with a time-frequency decomposition based on the Q-
transform [34–36] that we will refer to as Omicron [37].
This first step is followed by a time coincidence of such
excess power among the network of detectors. The re-
sulting set of coincidences are handed to a follow-up, per-
formed with LALInference Burst (LIB) [24, 38, 39], that
analyzes all data streams simultaneously and compresses
them into a set of Bayes factors. Applying a likelihood-
ratio test (LRT) to these Bayes factors produces a single
search statistic, which is then mapped into an estimate of
the GW detection significance. At each step in the algo-
rithm, we take care to analyze possible losses of informa-
tion, which include modeling uncertainty and waveform
mismatch, among other sources.

Although the signals that oLIB targets are inherently
unknown, the algorithm must make some limited as-
sumptions regarding their morphology. oLIB is more
sensitive to signals that better match these assumptions,
but it can still detect generic signals at astrophysically
relevant signal amplitudes that di↵er significantly from
its internal models. Furthermore, these robust detection
statements can be reached in real time, allowing oLIB to
initiate and inform the rapid electromagnetic follow-up of
GW candidates. GW150914 proved this, with oLIB be-
ing one of two independent search algorithms to detect
the event in low-latency [23].

We describe oLIB’s algorithmic structure in more de-
tail in §II. Using archival (public) LIGO data, we present
a proof-of-concept analysis in §III, which is meant to val-
idate the design choices of the algorithm. Finally, we
conclude with a summary in §IV and provide some tech-
nical details in the Appendix.

II. ALGORITHM DESCRIPTION

In this section, we describe the workflow within oLIB.
The algorithm is graphically depicted in Fig. 1. The

information-theoretic motivation of the algorithm is pro-
vided in §IIA, and its implementation is described after-
ward. We discuss the individual-detector event genera-
tion in §II B and coincidence tests in §II C. §IID describes
the LIB analysis and §II E discusses how the LRT is used
within oLIB. Finally, §II F discusses di↵erent factors that
can cause oLIB’s implementation to be sub-optimal.

Time Segments

Omicron

Strain Data

Single-IFO Trigs

Coincidence

0-lag Trigs

LIB

Timeslide Trigs

BSN

BCI

Likelihood Ratio

Significance

Signal Model Noise Model

FIG. 1. A flow chart illustrating the hierarchical structure of
the oLIB algorithm. Calibrated strain data and analyzable
time segments are fed into Omicron, which produces single-
interferometer (IFO) events. The events are down-selected via
incoherent clustering, data-quality vetoes, and coincidence.
Sets of the most significant analysis (0-lag) and background
(timeslide) events are passed onto LIB. The Bayes factors
produced by LIB (BSN, BCI) are combined using an LRT.
The LRT also requires likelihood models for both the detec-
tion (signal) and non-detection (noise) hypotheses. Finally,
the LRT provides a measure of each 0-lag event’s detection
significance.

A. Information-theoretic justification of oLIB’s
design

While we have motivated oLIB’s design with the idea
of preserving information, we have yet to rigorously de-
fine this concept. Here we provide the framework for an
optimal search in an information-theoretic sense. While
other GW-burst search algorithms utilize components of
this optimal framework, oLIB is the first to implement

Lynch et al. (2017)
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Parameter estimation for LISA
❖ Parameter estimation (and some searches) in the Mock LISA Data 

Challenges used Bayesian methods, such as MCMC.

The Mock LISA Data Challenges: from Challenge 3 to Challenge 4 5

Table 1. Selected parameter errors, SNRs, and FFs for each group’s highest-
SNR entries to MLDC 3.2. The time of coalescence tc, spin magnitudes a1,2 and
luminosity distance D are defined in Table 7 of [7]; in addition, the (redshifted)
chirp mass Mc ≡ (m1m2)3/5/(m1 + m2)1/5, and the symmetric mass ratio
η = m1m2/(m1 + m2)2. ∆sky is the angular geodesic distance between the
estimated and true positions; values ∼ 180 deg correspond to the antipodal sky
location, a known quasi-degeneracy in the LISA response.

source group ∆Mc/Mc ∆η/η ∆tc ∆sky ∆a1 ∆a2 ∆D/D SNR FFA FFE

(SNRtrue) ×10−5 ×10−4 (sec) (deg) ×10−3 ×10−3 ×10−2

MBH-1 AEI 2.4 6.1 62.9 11.6 7.6 47.4 8.0 1657.71 0.9936 0.9914
(1670.58) CambAEI 3.4 40.7 24.8 2.0 8.5 79.6 0.7 1657.19 0.9925 0.9917

MTAPC 24.8 41.2 619.2 171.0 13.3 28.7 4.0 1669.97 0.9996 0.9997
JPL 40.5 186.6 23.0 26.9 39.4 66.1 6.9 1664.87 0.9972 0.9981

GSFC 1904.0 593.2 183.9 82.5 5.7 124.3 94.9 267.04 0.1827 0.1426

MBH-3 AEI 9.0 5.2 100.8 175.9 6.2 18.6 2.7 846.96 0.9995 0.9989
(847.61) CambAEI 13.5 57.4 138.9 179.0 21.3 7.2 1.5 847.04 0.9993 0.9993

MTAPC 333.0 234.1 615.7 80.2 71.6 177.2 16.1 842.96 0.9943 0.9945
JPL 153.0 51.4 356.8 11.2 187.7 414.9 2.7 835.73 0.9826 0.9898

GSFC 8168.4 2489.9 3276.9 77.9 316.3 69.9 95.6 218.05 0.2815 0.2314

MBH-4 AEI 4.5 75.2 31.4 0.1 47.1 173.6 9.1 160.05 0.9989 0.9994
(160.05) CambAEI 3.2 171.9 30.7 0.2 52.9 346.1 21.6 160.02 0.9991 0.9992

MTAPC 48.6 2861.0 5.8 7.3 33.1 321.1 33.0 149.98 0.8766 0.9352
JPL 302.6 262.0 289.3 4.0 47.6 184.5 28.3 158.34 0.8895 0.9925

GSFC 831.3 1589.2 1597.6 94.4 59.8 566.7 95.4 −45.53 −0.1725 −0.2937

MBH-2 AEI 1114.1 952.2 38160.8 171.1 331.7 409.0 15.3 20.54 0.9399 0.9469
(18.95) CambAEI 88.7 386.6 6139.7 172.4 210.8 130.7 24.4 20.36 0.9592 0.9697

MTAPC 128.6 45.8 16612.0 8.9 321.4 242.4 13.1 20.27 0.9228 0.9260
JPL 287.0 597.7 11015.7 11.8 375.3 146.3 9.9 18.69 0.9661 0.9709

MBH-6 AEI 1042.3 1235.6 82343.2 2.1 258.2 191.6 26.0 13.69 0.9288 0.9293
(12.82) CambAEI 5253.2 1598.8 953108.0 158.3 350.8 215.4 29.4 10.17 0.4018 0.4399

MTAPC 56608.7 296.7 180458.8 119.7 369.2 297.6 25.1 11.34 -0.0004 0.0016

coalescence are comparable to the Fisher-matrix predictions. The errors in sky position
are ∼ 10 deg, with strong local likelihood maxima at the antipodal sky position. Spin
amplitudes are determined very poorly; this reflects the fact that the spins are nearly
degenerate with other parameters in the low-frequency part of the waveforms.

Lang and Hughes [19] report that spin-induced modulations remove correlations
between parameters in Fisher-matrix computations, improving overall parameter
determination. However, here we observe that spin interactions also cause
nonlocal degeneracies in parameters space, especially so for spin and orbital–
angular-momentum angles. Further investigations are needed to determine which
phenomenon is stronger. Nevertheless, the entries to MLDC 3.2 demonstrate a solid
detection capability for spinning-binary inspirals, and a good recovery of most source
parameters.

4. Extreme–mass-ratio inspirals (MLDC 3.3)

Challenge dataset 3.3 contained five Barack–Cutler [20] EMRI signals immersed in
instrument noise (see [7] for details about the waveforms and the random choice of
parameters). In comparison to previous EMRI challenges, here participants had to
contend with multiple simultaneous sources, as well as weaker signals—the injected
SNRs varied between 20 and 37. Three groups submitted entries:



Parameter estimation for LISA
❖ Multi stage approach used for EMRIs.

❖ Final PE phase employed MCMC to 
obtain parameter posteriors.

Babak, JG & Porter (2009)



Nested Sampling for GWs: MultiNest
❖ MultiNest has been widely used in 

astrophysics and other fields.

❖ There have been a number of 
applications to gravitational wave 
detection. For example, cosmic string 
detection in the Mock LISA Data 
Challenges.

❖ Identified correct number of signals 
(3), and recovered waveforms with 
better than 99% overlap in all cases.
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Nested Sampling for GWs: MultiNest
❖ MultiNest has been widely used in 

astrophysics and other fields.

❖ There have been a number of 
applications to gravitational wave 
detection. For example, cosmic string 
detection in the Mock LISA Data 
Challenges.

❖ Identified correct number of signals 
(3), and recovered waveforms with 
better than 99% overlap in all cases.

❖ Evidence ratio identifies burst origin 
as cosmic string versus generic sine-
Gaussian alternative.

4 6 8 10 12 14 16
−5

0

5

10

15

20

25

30

SNR

lo
g
(B

E
R

) 
−

 C
S

/S
G

Bayesian Evidence Ratio as a Function of SNR for a Cosmic String Signal

 

 

Training Source 1

Training Source 2

Training Source 3

Training Source 4

Training Source 5

Blind Source 1

Blind Source 2

Blind Source 3

4 6 8 10 12 14 16
−5

0

5

10

15

20

25

30

35

40

45

SNR

lo
g
(B

E
R

) 
−

 S
G

/C
S

Bayesian Evidence Ratio as a Function of SNR for a Sine Gaussian Signal
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