Making sense of data: introduction to
statistics for gravitational wave astronomy

Lecture 8: Examples of frequentist
statistics in GW data analysis
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Likelihood

» As discussed in the last lecture our model for the output of a GW detector is

s(t) = n(t) + h(t; A)

» and for stationary noise we have

(*(f)n(f') = Su(f)O(f = f')

» If we additionally assume the noise is Gaussian then we can write down a

probability distribution for s(t)
s 4 ] 4 e
p(s|A) = p(n(t) = s(t) — h(t; A)) ocexp | = (s — h(A)]s — h(}))

*  where




Fisher Matrix Esumates of Precision

Recall the Cramer-Rao bound on the variance of unbiased estimators
4 =1l
COV()\Z', )\J) > [I‘Q ]ij

where A is some estimator of the parameter values and

Fij:E{al (‘%]

ON; OX;

is the Fisher Information Matrix.

For the gravitational wave likelihood
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Linear Signal Approximation

* The Fisher matrix provides a lower bound on the variance, or uncertainty,
of an estimator.

* In general, the Fisher matrix provides a good guide to how well
parameters can be measured, particularly in the limit of high signal-to-
noise ratio. This can be seen in the linear signal approximation. If we write

s(t) = n(t) + h(t; Xo)

and expand

—

X = Ao+ A Mt X) = h(t; Xo) + 0;h(t; Xg) AN

» we find

p(s|A) o< exp —% (A)\i — (Y5 (n|0kh(t; )\0)) 157 (A)\j — (F_l)jl(n\ﬁoh(t; )\0))

» where I';; is the Fisher Matrix.



Fisher Matrix Esumates of Precision
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Fisher Matrix Esumates of Precision
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Matched filtering/template bank

searches



Matched Filtering

» Recall from the previous lecture that the optimal filter for a known signal

is one that matches the signal in the Fourier domain, weighted by the
noise PSD ~

» This was derived by maximising the SNR, but it can be derived in other

ways. First consider the log-likelihood

I(\) = —%(s _ AR())|s — AR(\) = —% (sls) — 2A(s[h) + 47
= 2 [(5l9) + (A~ (sIR))” — (s

»  We deduce that the maximum of the optimal filter over the parameter

space is the maximum likelihood estimator.



Matched Filtering

The optimal filter can also be interpreted in terms of hypothesis testing. Assuming
all parameters except the amplitude are known then the question “Is there a
gravitational wave in the data” is equivalent to the hypothesis test

H()IA:O, VS. H12A>O

From the Neyman-Pearson Lemma, the most powerful statistic for testing A=0
versus A=A > 0 is the likelihood ratio

A e
exp | Ai(s|h(})) — 5 A]

We deduce that the optimal filter is also the most powerful test statistic for this
hypothesis. As the statistic does not depend on A it is also uniformly most powerful
for the composite hypothesis A > 0.



Matched Filtering

Many searches are based on matched
filtering.

Since the signal is not known, we employ
a template bank of possible waveforms.

If a template in the bank matches a signal

in the data, we can pull it out of the noise.

The detection statistic is the maximum
overlap in the template bank, which is
(approximately) maximum likelihood
estimator, but it is no longer the most
powerful hypothesis test statistic.
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Matched Filtering

»  Many searches are based on matched

filtering.

» Since the signal is not known, we employ

a template bank of possible waveforms.

» If a template in the bank matches a signal
in the data, we can pull it out of the noise.

» The detection statistic is the maximum

overlap in the template bank, which is
(approximately) maximum likelihood
estimator, but it is no longer the most

powerful hypothesis test statistic.
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Matched Filtering

While it is not the most powerful test statistic, it is a reasonable approximation.
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Template Bank Construction

7/

bank satistying a minimal match criterion

min max (htrue‘htemp) ZJ 1 — MM

htrue htemp

* Fisher Matrix metric not easy
to use in higher dimensional
parameter spaces. Now
common to use stochastic banks.

+ Can also do stochastic searches

(MCMCQ) that generate
templates on the fly.
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# The Fisher matrix can also be used as a metric to construct a template
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Search refinements: waveform consistency

If we subtract the correct
template the residual at
each frequency should be
Normally distributed.

Hence the quantity

2 3 — hu/?
X ==
follows a chi-squared

distribution.

Construct an effective SNR
that penalises lack of fit
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[.IGO searches

Whether using the optimal filter directly, or refined versions of it, LIGO searches are
essentially frequentist. There is a defined detection statistic and if the detection
statistic is exceeded, the data is flagged as interesting.

The distribution of the detection statistic is computed in the absence of signals, and
the threshold determined based on the probability of a false detection.

The sensitivity of the search is assessed by injection and recovery of sources into the
detector data.

The background distribution is typically evaluated using time slides. This
approach relies on the fact that LIGO searches normally use data from more than
one detector.



Background Estimation

Noise is not stationary or Gaussian and contains glitches, lines etc.

Use frequentist techniques to characterise noise background properties
process data in a way that eliminates signal but not noise

for LIGO - time slide data from different detectors
I T T T
UL
I
noise + signal coincidences are not background

significance of events in tail, i.e., sources, is hard to estimate



False Alarm Rate (FAR

# In the hypothesis testing part of this course we placed a lot of emphasis on the

significance or p-value of a test. These make sense when we are referring to finite

data sets. However, in a gravitational wave context, data is continuously being
collected. It therefore makes sensate quote a false alarm rate (FAR).

R/
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The FAR is the frequency with which triggers of the observed threshold value or

higher occur in continuous observation with the detector in the absence of signals.

LIGO/Virgo O3 Public Alerts

Detection candidates: 46
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http://graced.ligo.org

Search refinements: phase and Time Parameters

» Certain parameters can be maximised over cheaply, e.g., unknown phase

h(t7 A7 f07 tca ¢O) - ACOS(Qﬂ-fO(t A8 tC) . ¢0)

r%ax(s\h)Q = A% ((s|h(t; A, fo,te,0))° + (s|h(t; 4, fo,te, —7/2))?)
» and unknown coalescence time

h(f; A, fo,te, d0) = h(f; A, fo,0, ¢o) exp(—2mi ft.)

(S|h(t7A7 fO)tmgbO)) — ZRG/ §>k(f)h(f;’ 1?}:)]80707¢0)

» This is the inverse Fourier transform of §” (f)iz(f, A, f0,0,00)/Sn(f).

Obtain overlap for all time offsets cheaply using a Fast Fourier
Transform. Maximisation is a frequentist approach. The Bayesian
equivalent would be marginalisation.

exp (—2mift.) df



The F-statistic

The F-statistic extends the idea of phase maximisation to more of the extrinsic
parameters. We write the waveform as a sum over four basis functions

4
h(t) — Z Ay ([’7 w? DL7 SOC) AZ (t7 MC7 :uv tm (97 ¢)

where =
a1 = A [(1 + cos? L) cos 21 coS (. — 2 cos ¢ sin 21 sin goc]
az = — A [(1+4 cos” 1) sin 29 cos . + 2 cos L cos 24 sin .|
a3 = A [(1 + cos? 1,) cos 29 sin . + 2 cos ¢ sin 21 cos goc]
ag = — A [(1 + cos? L) sin 21 sin . — 2 cos ¢ cos 21 cos goc]
and



The F-statistic

Treating the amplitudes of the components of the waveform as independent, we can
find the best-fit values via

a; = M;; N’ N' = (s|A") Mij = (M"7)™! = (A"|A7)
Substituting this into the likelihood

i /2 (G5 = | ) = % (h(Z) | (T))

glves

1 o

This is the F-statistic. It depends only on intrinsic parameters, but can be used
directly in a template bank instead of including templates in the extrinsic
parameters as well.

An estimate for the extrinsic parameters can be obtained from the maximized values
of the a; coefficients.



LIGO Pipelines

Two main matched filtering pipelines used in LIGO for compact binary
coalescence searches.

pycbc: constructs template bank of waveforms; computes chi-squared
test for fit; uses effective SNR as a ranking statistic; background
computed using time slides.

gstLAL: constructs template bank of waveforms, then does SVD
decomposition to form a signal basis; detection statistic is likelihood
ratio for signal versus noise; waveform consistency assessed by

comparing SNR time series to theory; time slides again used to assess
background.



LIGO Pipelines
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PSD Estimation

Matched filter is noise-weighted. OK if you know the noise PSD, but in
general we will not. For LIGO, estimate this using off-source data.

S_3=MN_3|5—2="N_2 81:n1ifo—h+no §1 = N1 | S2 = N2 | S3=N3
N
2 1 i
o2 Rt S S

=

In practice, use median of noise estimates, rather than the average. This
is less sensitive to non-stationarities.

No off-source data for LISA. Make progress by fitting noise and signal
properties simultaneously - need reasonable noise model.




Unmodelled/ Excess power
searches
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Unmodelled Searches

Detection of gravitational wave bursts relies on two
techniques

— Coincidence analysis. As for stochastic background, combine
data from multiple detectors. Likelihood of an instrumental
artefact in two detectors simultaneously is small.

—  Time-frequency analysis. Look for changes in spectral
properties over time, e.g., excess power in a set of
connected pixels.

Basic idea: construct time-frequency spectrograms of
the data, i.e., estimate power at each frequency and
time. Use spectrograms at multiple resolutions to
give sensitivity to different burst morphologies.

Look for clusters of pixels coincident between
instruments.
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Unmodelled Searches: Coherent Wave Burst

+ Combines spectrograms at multiple
resolutions. Identifies pixel clusters.
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Unmodelled Searches: Coherent Wave Burst
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Unmodelled Searches: X-pipeline

X-pipeline uses similar methods to CWB,
but different implementation.

1000 e
900
800
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Unmodelled Searches: X-pipeline

Analysis is in two stages.
Irigger generation, as
described above, then post
processing.

Post processing involves
rejecting background events
based on event properties, and
assessment of search efficiency.

Rejection uses different
combinations of energy
measures, based on randomly
selected training set of
injections and time slides.
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Unmodelled Searches: LISA

Time-frequency methods were also applied for EMRI detection for LISA.

Search for tracks in time-frequency spectrogram of data.

Three algorithms tried - Excess Power, HACR, CATS. Estimate detection
threshold at ~2Gpc. Good parameter recovery in MLDC, but likely to fail when
presented with weak or confused sources.



Unmodelled Searches: LISA
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Semi-coherent search methods



Semi-coherent searches: EMRIs



Semi-coherent searches: EMRIs

» First stage is coherent matched filtering of shorter (~2 week) waveform
segments. Segment length set by computational limits.

+ Second stage involves incoherent summation of maximized power along

trajectories through the segments. N
J 8 8 P_S p
i1 5
9 Z 9
P = <h'i()‘1):3a>
a=1 i1=1 |

) Time

where {a,b) =4 R /0 a*(f) bgf

Coherent templates



Semi-coherent searches: EMRIs

First stage is coherent matched filtering of shorter (~2 week) waveform
segments. Segment length set by computational limits.

Second stage involves incoherent summation of maximized power along
trajectories through the segments.

Performance analysed theoretically to derive estimated EMRI event
rates. Computational cost has prevented practical implementation.



Semi-coherent searches: pulsars

» LIGO unknown pulsar search also uses semi-coherent techniques.

Stack-Slide algorithm is very similar to EMRI algorithm described above.

*  Hough Transform applies the Hough Transform, a well-established

technique for detecting simple shapes (edges) in an image, to the output
of the coherent stage of the search.

» Requires a huge amount of computer power - Einstein@home.
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In the spirit of Seti@home, Einstein@Home is an attempt to use idle cpu
hours to analyse LIGO data and assist with the unknown pulsar search.
You can sign up at http:/ / einstein.phys.uwm.edu/ !

The program is built on BOINC (Berkeley Open Infrastructure for
Network Computing) and was released in 2005 to coincide with the
World Year of Physics.

Each computer analyses a different segment of data for a particular sky
position. Each data segment is farmed out to at least two nodes to
ensure accuracy.

Einstein@Home currently has approximately 500,000 active users and a
total of 5GFLOPs computing power.

No gravitational waves discovered from pulsars, but has identified
unknown pulsars in other data sets.
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Searching for Backgrounds



Stochastic Gravitational Wave Fore/Backgrounds

» Stochastic backgrounds are potentially present in all frequency bands,
and could therefore be seen by any of our gravitational wave detectors.

» The Polarisation of the Cosmic Microwave Background is a direct probe
of cosmological gravitational waves.

» In interferometers, search for an isotropic background using cross-
correlation between multiple detectors to identity common noise.

i T
YQ a /O dt1/0 dtQ hl (tl)Q(tl = tg)hg(tg)
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Stochastic Gravitational Wave Fore/Backgrounds

> In the preceding equation, 0T (f)denotes a finite time approximation to
the Dirac delta function

1) |
or(f) = / e 2™t = sin(w fT) /7 f
_T/2
» and (%) denotes the cross-correlation filter. If the noise in the detectors

is uncorrelated, the expectation value of depends only on the cross-
correlated stochastic signal
T ®.@)

Vo) =n=75 [ DSelIfDAN S

— OO
¢ The functionY(| f|) is the overlap reduction function, which measures the
loss of sensitivity due to the separation and relative orientation of the
two detectors. The SNR is maximized by using the optimal filter

a0y o XUDSsu(Uf) | (1 F)0mw(l)
U517 ™ PSS




Stochastic Gravitational Wave Fore/Backgrounds

Overlap Reduction Function
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Stochastic Gravitational Wave Fore/Backgrounds

» For pulsar timing, the overlap reduction function for an isotropic
background is the Hellings and Downs curve.
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Stochastic Gravitational Wave Fore/Backgrounds

Uncorrelated anisotropic and correlated backgrounds have different
correlation functions.
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Stochastic Gravitational Wave Fore/Backgrounds

# Uncorrelated anisotropic and correlated backgrounds have different
correlation functions.
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Stochastic Gravitational Wave Fore/Backgrounds

Uncorrelated anisotropic and correlated backgrounds have different
correlation functions.
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