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Nonparametric regression
❖ The idea of nonparametric regression is to infer the mean value of an observable, Y, 

as a function of some dependent variable, X, given pairs of observations (xi, yi) for 
i=1,…,n. 

❖ In parametric regression we assume a form for the mean that depends on a (small) 
finite number of parameters and analysis is based on inference of those parameters.

❖ In nonparametric regression we instead aim to constrain a function f(x) such that

❖ We typically assume data of the form

❖ with                                                   and the support of the function assumed to be [0,1].

❖ The set of points {xi} is called a design and may be random or fixed.
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10 Nonparametric Regression

The notes in this section are taken from a lecture course on this topic that I gave previously.
We will not cover all of this material in one lecture, but the detailed notes are provided so
that you can learn about more about the topics that interest you.

10.1 Introduction

10.1.1 Di↵erence between parametric and nonparametric regression

The basis for regression is a set of observations of pairs of variables (Xi, Yi), i = 1, . . . , n.
We are interested in finding a connection between X and Y . We assume that Y is random,
but X can be either random or fixed; we focus mostly on the case that the Xi’s are fixed.
In parametric regression we assume a particular type of dependence of Y on X (e.g. linear
regression: EY = AX, log-linear regression log(EY ) = AX, etc). In other words, we
assume a priori that the unknown regression function f belongs to a parametric family
{g(x, ✓) : ✓ 2 ⇥}, where g(·, ·) is a given function, and ⇥ ⇢ R

k. Estimation of f is the
equivalent to estimation of the parameter vector ✓.

In nonparametric regression, by contrast, we do not want to make any assumption about
how EY depends on X, but want to fit an arbitrary functional dependence. We assume that
we observe a function with error:

Yi = f(Xi) + "i, i = 1, . . . , n.

Often the errors are assumed to be normally distributed, "i ⇠ N(0, �2), independently. The
aim is to estimate the unknown function f .

In nonparametric estimation it is usually assumed that f belongs to some large class F
of functions. For example, F can be the set of all the continuous functions or the set of
all smooth (di↵erentiable) functions. For proving certain properties of estimators, we will
consider sets of functions with k derivatives, which are called Hölder spaces of functions.

We will described several di↵erent approaches to nonparametric regression — kernel
smoothing, spline smoothing, general additive models and wavelet estimation.

10.1.2 Nonparametric regression model

Throughout this chapter we will assume the following model of nonparametric regression:

Yi = f(Xi) + "i, i = 1, . . . , n.

with independent errors E("i) = 0, Var("i) = �2 and a function f : [0, 1] ! R.
Now suppose that we observe data (xi, yi), i = 1, . . . , n, which is a realisation of iid

random variables (Xi, Yi). The aim is to estimate the unknown function f(x) = E(Yi|Xi = x),
namely to construct an estimator bfn(x) for all x 2 [0, 1] which is consistent and e�cient,
and to be able to test hypotheses about f(x0) for a fixed x0 and about f(x) for all x
simultaneously.

The maximum likelihood estimator (MLE) of f(x) gives estimates of f only at points xi

where we observe the data: bf(xi) = yi. Since E["i] = 0, this estimator is unbiased at xi, as
E bf(xi) = EYi = f(xi). However, the MLE (and the model) does not give any information
about f(x) for x 6= xi. The model is not fully identifiable hence some additional assumptions
about f are needed. A key assumption we will make about f that it is smooth.
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❖ There are three main approaches to nonparametric regression

• kernel estimators

• smoothing splines

• wavelet estimators.

❖ We will give an overview of all three approaches. Further details, and proofs of 
some of the results that will be quoted, may be found in the lecture notes on the 
course webpage.

Nonparametric regression



Kernel Estimators
❖ Definition: a kernel is a function K(x) satisfying

❖ Definition: a symmetric kernel is one for which K(x)=K(-x).

❖ Definition: the order of a kernel is m if                                        for all l = 1, …, m-1  
and                                     .

❖ If K(x) is a kernel, then so is Kh(x) = K(x/h)/h. h is called the bandwidth.

❖ Examples

❖ Uniform (box, rectangular) kernel K(x) = I(|x| < 1 )/2.

❖ Triangular kernel K(x) = (1 - |x|) I(|x| < 1).

❖ Gaussian kernel 
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Therefore, M(I)SE( bfn) ! 0 as n ! 1 implies consistency in the corresponding distance.
We will also study the rate of convergence of the estimators, that is, how fast MISE and
MSE decrease to 0 as a function of sample size n.

10.1.5 Notation

The indicator function of a set A is

1A(x) =

⇢
1, if x 2 A,
0, if x /2 A.

Informally, we will also write 1(|x|  1) for 1|x|1(x).
Denote the support of a function g, the set of arguments where g is nonzero, by

supp(g) = {x : g(x) 6= 0}.

10.2 Kernel estimators

10.2.1 Designs

Definition 10.2. A set (X1, . . . , Xn) is called a design

Definition 10.3. A design (X1, . . . , Xn) is called fixed if the values x1, . . . , xn are non ran-
dom

Example 10.1. An equispaced (regular) design x1 < x2 < . . . < xn is a fixed design such
that xi � xi�1 = 1/n, e.g. xi = i/n ;xi =

i�1

n ; xi =
1

2n + i�1

n .

Definition 10.4. A design (X1, . . . , Xn) is called random i↵ X1, . . . , Xn are iid random
variables, Xi ⇠ p(x).

Example 10.2. xi ⇠ U [0, 1] with p(x) = 1 for x 2 [0, 1].

10.2.2 Nadaraya-Watson estimator

Definition 10.5. A function K(x) is called a kernel i↵
R1
�1 K(x)d(x) = 1.

If K(x) � 0, K(x) is a probability density.

Definition 10.6. If K(x) = K(�x), then K(x) is a symmetric kernel.

Definition 10.7. A kernel K has order m i↵
R1
�1 x`K(x)dx = 0 for all ` = 1, 2, . . . ,m � 1

and
R1
�1 xmK(x)dx 6= 0.

If K is symmetric, then K has order � 2.

Example 10.3. All these kernels are symmetric of order 2, except the last one.

a) Uniform (box, rectangular) kernel K(x) = 1

2
1(|x|  1).

b) Triangular kernel K(x) = (1 � |x|)1(|x|  1).

c) Gaussian kernel K(x) = 1p
2⇡
e�x2/2.
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Nadaraya-Watson Estimator
❖ Given a kernel K(x) and bandwidth h, the Nadaraya-Watson estimator is

❖ and the estimator is zero otherwise.

❖ This estimator can be tuned by choosing the kernel and bandwidth to give the 
smallest asymptotic mean integrated squared error (MISE)

❖ Asymptotically, the variance and bias of the Nadaraya-Watson estimator can be 
approximated by
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d) Cosine kernel K(x) = ⇡
4
cos(⇡x/2)1(|x|  1).

e) Sinc kernel K(x) = sin(⇡x)

⇡x . This kernel has infinite order, since
R

+1
�1 sin(⇡x)xm�1dx =

0 for all integer m � 1.

Remark 10.1. If K(x) is a kernel, then Kh(x) =
1

hK
�

x
h

�
is also a kernel. h is called the

bandwidth.

Example 10.4. If K(x) = 1

2
1(|x|  1) is a kernel then K(x) = 1

4
1(|x|  2) is a kernel.

Definition 10.8. The Nadaraya-Watson Estimator

bfNW
n (x) =

Pn
i=1

YiKh(Xi � x)Pn
j=1

Kh(Xj � x)
, when

nX

i=1

Kh(Xi � x) 6= 0,

otherwise bfNW
n (x) = 0.

Motivation for the Nadaraya-Watson estimator.

Recall that f(x) can be written as

f(x) = E(Yi | Xi = x) =

Z
yp(y | x)dy =

Z
yp(x, y)

p(x)
dy.

Consider the following kernel density estimators:

bpn(x) =
1

n

nX

i=1

Kh(xi � x), bpn(x, y) =
1

n

nX

i=1

Kh(xi � x)Kh(yi � y). (124)

Plugging bpn(x) and bpn(x, y) into E(Yi|Xi = x), we have

bfh(x) =

Z 1

�1

ybpn(x, y)

bpn(x)
dy.

Now we simplify the numerator, assuming that the kernel is symmetric
Z 1

�1
ybpn(x, y)dy =

1

n

Z 1

�1
y

nX

i=1

Kh(xi � x)Kh(yi � y) =
1

n

nX

i=1

Kh(xi � x)

Z 1

�1
yKh(y � yi)dy,

and the last integral is

1

h

Z 1

�1
yK

✓
y � yi

h

◆
dy = [z = (y � yi)/h] =

Z 1

�1
(hz + yi)K(z)dz

= yi

Z 1

�1
K(z)dz + h

Z 1

�1
zK(z)dz = yi

assuming that the order of the kernel K is at least 2.
Therefore, an estimator of f can be written as

bfNW
h (x) =

n�1
Pn

i=1
Kh(xi � x)yi

n�1
Pn

i=1
Kh(xi � x)

1

 
nX

i=1

Kh(xi � x) 6= 0

!

which coincides with the Nadaraya-Watson estimator. Thus, we proved the following
proposition.
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10.1.3 Estimators

There are two major approaches to nonparametric estimation.
1. Smoothing: fitting a flexible smooth curve to data. We will consider two methods:

kernel smoothing and spline smoothing. The main question in this context is how smooth
should this curve be, and do we have to decide that in advance, or can we let the data to
decide?

2. Orthogonal projection estimation: represent the regression function f as a series
in an orthogonal basis, and estimate the coe�cients from the data. We will consider wavelet
bases. Wavelets can be spiky, so they are well suited for modelling not very smooth functions,
e.g., with jumps or sharp spikes. The main question is how to estimate the coe�cients, so
that the function estimate is neither too smooth nor too spiky.

10.1.4 Consistency

The key requirement for any estimator is consistency, that is, the more data we have, the
closer the estimator is to the function of interest. We encountered consistency in the context
of estimators of parameters, and there is a corresponding definition for functions.

Definition 10.1. bfn is a (weakly) consistent estimator of f in distance d based on n obser-
vations i↵

8✏ > 0, P(d( bfn, f) > ✏) ! 0 as n ! 1.

In the rest of this chapter, when we refer to consistency we will mean weak consistency.
We consider two distances on function spaces d( bfn, f).

1) Pointwise at x0 (local): d( bfn, f) = | bfn(x0) � f(x0)|, for some x0 2 [0, 1].

2) Integrated (global) : d( bfn, f) = || bfn � f ||2 =
qR

1

0
( bfn(x) � f(x))2dx.

Here || · ||2 is defined by

||g||2
2

def
=

Z
1

0

[g(x)]2dx.

It is a norm in Hilbert space L2[0, 1] = {g : [0, 1] ! R such that ||g||2 < 1}.

Markov’s inequality is a tool to verify consistency:

P(d( bfn, f) > ✏)  ✏�2
E[d( bfn, f)

2].

For these distances, E[d( bfn, f)]2 has particular names.

1) Mean squared error (MSE):

MSE( bfn(x0)) = E[| bfn(x0) � f(x0)|2] = v(x0) + [b(x0)]
2

2) Mean integrated squared error (MISE):

MISE( bfn) = E[|| bfn � f ||2] = E

Z
1

0

| bfn(x) � f(x)|2dx
�
=

Z
1

0

v(x)dx+

Z
1

0

[b(x)]2dx,
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h
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i
� f(x) and v(x) = Var( bf(x)) are the bias and the

variance of bf(x).

v(x) ⇡ �2

nh
||K||22
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❖ Giving these asymptotic results, we can choose the bandwidth, for a given kernel, 

that minimises the ASIME. The optimal choice of bandwidth is

❖ We can now minimise the resulting AMISE over the choice of the kernel. The 
optimal kernel is the Epanechnikov kernel
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Lemma 10.1. For a scale family {K�, � > 0}, the canonical bandwidth �0 satisfies
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2.

Proof. We show that if ||Kh||22 = [µ2(Kh)]
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10.2.5 Optimal kernel and optimal bandwidth

We are looking for the kernel and the bandwidth that minimise the asymptotic MISE. The
AMISE is given by

AMISE ⇡ ||f 00(x)||2
2
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For a canonical kernel, the AMISE factorises into a term that depends on bandwidth and a
term that depends on the kernel:

AMISE ⇡ ||K||2
2


h4
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�
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For any kernel, we can also define the optimal bandwidth, hopt, by minimising the
AMISE over h. First, we take a derivative of the AMISE with respect to h:
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2
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which corresponds to the minimum of AMISE. For a canonical kernel we note that ||K||2
2
=

µ2(K)2 and so the optimal bandwidth does not depend on the kernel but it does depend on
the unknown function.

Using the optimal bandwidth, the AMISE becomes
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8
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2
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Optimal kernel: choose the kernel K to minimize the AMISE. From the preceding
expression, this corresponds to minimising the quantity

p
µ2(K)||K||2

2
. We note that this

is independent of bandwidth, in the sense that
p
µ2(K)||K||2

2
=

p
µ2(K�)||K�||2

2
for all �.

However, rescaling by � in this way will change the corresponding optimal bandwidth, so
that the rescaled kernel with its optimal bandwidth is unchanged. We can use this freedom
to set µ2(K) = 1 (which requires rescaling by � = 1/

p
µ2(K)). For this choice, minimising

the bandwidth-optimised AMISE is equivalent to minimising ||K||2
2
under the constraints:

Z
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Z
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Z
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This kernel is called the Epanechnikov kernel. For the Epanechnikov kernel, ||K||2
2
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p
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and µ2(K) = 1 by construction, so the optimal bandwidth is
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.

Therefore, the optimal kernel with the optimal bandwidth, Khopt , is given by
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and the Nadaraya-Watson estimator constructed with this kernel has the smallest AMISE.
The e�ciency of a kernel family {K�, � > 0} for a given kernel K is defined as

p
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=
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=
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=
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5
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where �0 is the canonical bandwidth for this kernel family, Kopt is the Epanechnikov kernel
and �opt

0
is its canonical bandwidth. The e�ciency to the fourth fifths power gives the ratio

of the AMISE for this family of kernels relative to the optimal kernel family. For many kernel
families, the e�ciencies are close to 1, for instance, it is 0.951 for the Gaussian kernel family,
0.930 for the box kernel family and 0.986 for the triangular kernel family.

Note that since the optimal bandwidth depends on the unknown function, this expression
gives a theoretical bound but it is not applicable in practice. One way to avoid dependency
on the unknown function is to take hopt = Cn�1/5 which gives the same order of MISE in n
but not the optimal constant. Another way to find the best h that is used in practice is to
use another approximation of MISE which results in the approach called cross-validation.

10.2.6 Non-asymptotic properties of the Nadaraya-Watson estimator

Nonasymptotic properties of the Nadaraya-Watson estimator can be found in the form of
upper bounds on the absolute value of the bias and the variance, and hence on the MSE



❖ The previous results were valid asymptotically. It is also possible to obtain non-
asymptotic results by making some assumption about the smoothness of the 
function being constrained. One common assumption is that it belongs to the 
Hölder class

Nadaraya-Watson EstimatorIntroduction to Statistics for GWs 169

and MISE. We shall see that the upper bounds are the same functions of the sample size n.
The constants in the upper bounds inform us how the errors depend on other features of the
model, such as the kernel, the smoothness of the function, design, etc.

Before we state the upper bounds, we will define a class of smooth functions, the Hölder
Class H�(M). When the parameter � is an integer, the class H�(M) contains functions
with � derivatives whose absolute values are bounded by M . However, the class is defined
for arbitrary values � > 0.

Definition 10.11. The Hölder Class H
�(M) of functions on [0, 1] with � > 0, M > 0 is

defined as the set of functions f that satisfy the following conditions with k = b�c:

1. |f (k)(x)|  M for all x 2 [0, 1],

2. |f (k)(x) � f (k)(y)| 6 M |x � y|��k, 8x, y 2 [0, 1],

where f (k) is the kth derivative of f .

If � 2 (0, 1), k = 0 and f (0)(x) = f(x).

Example: if � = 1, the Hölder class H1(M) contains functions such that |f 0(x)|  M
for all x 2 [0, 1].

Example: the function f(x) =
p

|x � 0.5|, x 2 [0, 1], does not have a derivative for all
x 2 [0, 1] but it belongs to the Hölder class H

�(M) with � = 1/2 and M = 1 due to the
inequality

|
p

|z| �
p

|y|| 6
p

|z � y| 8z, y 2 [0, 1].

Now we derive upper bounds on the absolute value of the bias and the variance of the
Nadaraya-Watson estimator of a function f that belongs to a Hölder class H

�(M) with
� 2 (0, 1).

Proposition 10.2. Suppose that f 2 H
�(M) on [0, 1], with � 2 (0, 1] and M > 0. Let bfNW

n

be the Nadaraya – Watson estimator of f .
Assume also that:

a) the design (X1, . . . , Xn) is regular deterministic;

b) var("i) = �2;

c) 9�0 > 0 such that 8 x 2 [0, 1],

1

n

nX

i=1

Kh (Xi � x) � �0;

d) supp(K) ✓ [�1, 1] (i.e. K(x) = 0 for x /2 [�1, 1]),

and 9Kmax 2 (0,1) such that 0  K(u)  Kmax, 8u 2 R.

Then, for all x0 2 [0, 1] and h � 1/(2n),

|b(x0)|  Mh�, v(x0)  �2Kmax

nh�0

.



❖ Under certain assumptions and defining

❖ The bias and variance of the NW estimator can be bounded by

❖ These can be used to bound the MISE, providing a bound on the convergence rate of 
the NW estimator

❖ In fact, it can be shown that this is the best possible convergence rate that any 
estimator can achieve for the Hölder class.

Nadaraya-Watson Estimator

|b(x)|  Mh�
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Similarly, for a class of functions F , �?
n is the global minimax convergence rate, if

0 < c 6 inf
bfn

sup
f2F

E

"
|| bfn � f ||2

�?
n

#2

= inf
bfn

sup
f2F

MISE( bfn)

(�?
n)

2
6 C < 1,

where constants c and C do not depend on n, and the rate �?
n is only related to n and the

function class F .

Definition 10.14. An estimator bfn is said to achieve a minimax rate of convergence (local
or global), if the rate of convergence of this estimator is the corresponding (local or global)
minimax rate of convergence.

Now we investigate whether the local rate of convergence for the Nadaraya-Watson esti-
mator is minimax.

Theorem 10.1. Let assumptions of Proposition 10.2 hold for all x 2 [0, 1]. Then, the NW
estimator bfNW (x) with h = ↵n�1/(2�+1) for same ↵ > 0 satisfies

lim
n!1

sup
x02[0,1]

sup
f2H�(M)

E

⇣
( bfn

NW
(x0) � f(x0))n

�/(2�+1)

⌘2
�

 C < 1,

where constant C depends only on �,M, �2,�0, Kmax,↵.

Proof. By Proposition 10.2, 8f 2 H�(M), 8x 2 [0, 1],

E

⇣
bfn

NW
(x) � f(x)

⌘2
�

 Cn
�2�
2�+1

with C < 1 dependent on Kmax,�0, �,M,↵, �2 which can be written as

E

⇣
( bfn

NW
(x) � f(x))n�/2�+1

⌘2
�

C.

Taking supremum over f 2 H�(M), x 2 [0, 1] and n, as n ! 1, we have the statement.

Therefore, the pointwise rate of convergence of the Nadaraya-Watson estimator is n��/(2�+1).
In fact, it can be shown (Tsybakov, 2009, chapter 2) that this is the local minimax rate of
convergence, so the Nadaraya-Watson estimator achieves this minimax rate and so it is in
this sense the “best” estimator, but there do exist other estimators that achieve this rate of
convergence. It is straightforward to show that the NW estimator also achieves the global
minimax rate of convergence.

The upper bounds being used here apply for the Hölder space with � 2 (0, 1]. For the
Nadaraya-Watson estimator to achieve the minimax convergence rate for � > 1, one needs
to use kernels of higher order. Local polynomial estimators, which will be discussed in
Section 10.2.12 are locally and globally minimax for � > 1.

10.2.8 Inference using a linear estimator

In this subsection we consider the nonparametric regression model

Yi = f(Xi) + "i, i = 1, . . . , n

with independent errors "i ⇠ N(0, �2) and a deterministic design (x1, . . . , xn). These as-
sumptions imply that E(Yi) = f(Xi) and Var(Yi) = �2.



Local polynomial estimators
❖ The Nadaraya-Watson estimator can be thought of as a locally constant estimator. 

This can be generalised to the notion of a local polynomial estimator.

❖ where

176 Introduction to Statistics for GWs

Therefore, if
Pn

j=1
Kh(Xj � x) 6= 0, the value of ✓x that minimises this weighed sum of

squares coincides with the Nadaraya-Watson estimator:

fNW
n (x) =

Pn
i=1

YiKh(Xi � x)Pn
j=1

Kh(Xj � x)
.

This estimator can be generalised further by considering a local polynomial rather than
a local constant approximation. For a function f(x), if 9f (k)(x), then for xi su�ciently close
to x,

f(xi) ⇡f(x) + f 0(x)(xi � x) + · · · + f (k)(x)

k!
(xi � x)k =

kX

j=0

f (j)(x)

j!
(xi � x)j

=
kX

j=0

⇥
f (j)(x)hj

⇤
"
1

j!

✓
xi � x

h

◆j
#
= UT

x,i✓x

where

✓x =
�
f(x), f 0(x)h, f 00(x)h2, . . . , f (k)(x)hk

�T

Ux,i =

 
1,

xi � x

h
,
1

2!

✓
xi � x

h

◆2

, . . . ,
1

k!

✓
xi � x

h

◆k
!T

Definition 10.15. A local polynomial estimator of f(x) of order k , denoted LP (k) estima-
tor, is defined by

bfLP
n (x) = b✓0(x)

where for each x b✓(x) =
⇣
b✓0(x), b✓1(x), . . . , b✓k(x)

⌘T

is the solution of

b✓(x) = arg min
✓x2Rk+1

(
nX

i=1

(Yi � UT
x,i✓x)

2K

✓
Xi � x

h

◆)
.

For each m = 1, . . . , k, b✓m(x)/hm is an estimator of f (m)(x).

Therefore, the local polynomial estimator provides simultaneous estimators not only for
f(x) but also for all existing derivatives of f .

This estimator can be written explicitly. Noticing that the expression to be minimised is
quadratic in the vector ✓x, we can open the brackets to obtain

b✓x = argmin
✓x

(
nX

i=1

(Yi � UT
x,i✓x)

2K

✓
Xi � x

h

◆)

= argmin
✓x

(
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(✓T
x Ux,iU
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i )K
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◆)
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✓x

(
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x ·
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Ux,iU
T
x,iK
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h

◆
· ✓x � ✓T

x · 2
nX

i=1

YiUx,iK

✓
Xi � x

h

◆
+ CXi,Yi(x)

)

which is equivalent to

b✓x = argmin
✓x

�
✓T

x · B(x) · ✓x � 2✓T
x · a(x)
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For each m = 1, . . . , k, b✓m(x)/hm is an estimator of f (m)(x).

Therefore, the local polynomial estimator provides simultaneous estimators not only for
f(x) but also for all existing derivatives of f .
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where the matrix B(x) and vector a(x) are defined by
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Hence, if B(x) is invertible,
b✓x = B�1(x)a(x).

Therefore, the Local Polynomial estimator can be written as

bfLP
n (x) = b✓0(x) = eT

1
B�1(x)a(x)

where the matrix B(x) and vector a(x) are defined above and eT
1
= (1, 0, 0, · · · , 0).

Note that the local polynomial estimator bfLP
n (x) is linear:

fLP
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that are independent of Y1, . . . , Yn.

Bias, variance, consistency and the rate of convergence for local polynomial
estimator

Proposition 10.3. Suppose that f 2 H�(M) on [0, 1], with � > 0 and M > 0, and

a) the design (X1, . . . , Xn) is regular deterministic;

b) E("i) = 0, V ar("i) = �2;

c) 9�0 > 0 such that 8 x 2 [0, 1], the smallest eigenvalue �min(B(x)) of B(x) satisfies

�min(B(x)) > �0 , where B(x) =
1

n

nX

i=1

Ux,iU
T
x,iKh(Xi � x);

d) supp(K) ✓ [�1, 1] and 9Kmax 2 (0,1) such that 8u, |K(u)| 6 Kmax.
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Smoothing splines
❖ A second method of nonparametric curve fitting is to use smoothing splines. These 

are defined as penalised least squares estimators

❖ Typically the penalty function is quadratic

❖ The parameter                is called the regularisation parameter. Large values of 
lambda give more weight to smoothness, while small values give more weight to the 
observed data.

❖ Theorem 10.3: the solution to this minimisation problem with a quadratic penalty 
function is a natural cubic spline with knots at the data points.
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10.3 Smoothing Splines

10.3.1 Definition

Definition 10.16. A smoothing spline is the penalised least squares estimator of f :

bfpen

n (x) = argmin
f2C2

"
nX

i=1

(Yi � f(xi))
2 + � pen(f)

#
(125)

with penalty function pen(f) =
R
[f 00(x)]2dx = ||f 00||2

2
; � > 0 is called the regularisation

parameter.

The solution to this minimisation problem has a simple form that is called a natural
cubic spline.

Definition 10.17. Let a  t1 < .. < tN  b be a set of ordered points - called knots. A
cubic spline is a continuous function g such that

• g(x) is cubic on [tj, tj+1], for each j = 1, .., N � 1:

g(x) = bj0 + bj1x+ bj2x
2 + bj3x

3, x 2 [tj, tj+1],

• both g0 and g00 are continuous at ti, i = 1, .., N .

A spline that is linear beyond the boundary knots is called a natural spline.

• g(x) is linear on [a, t1] and [tN , b]

g(x) = b00 + b01x , x 2 [a , t1]

g(x) = bN0 + bN1x, x 2 [tN , b]

Theorem 10.3. (without proof) Solution bfpen

n of the above problem is a natural cubic
spline with knots at the data points.

Theorem 10.4. Let knots a 6 t1 < · · · < tN 6 b. For j = 3, . . . , N , define

h1(x) = 1, h2(x) = x,

hj(x) = (x � tj�2)
3

+
� (tN � tj�2)

(tN � tN�1)
(x � tN�1)

3

+

+
(tN�1 � tj�2)

(tN � tN�1)
(x � tN)

3

+
, 8 3 6 j 6 N,

where (x � y)3
+
= max

�
(x � y)3, 0

 

The set of functions (hj)
N
j=1

forms a basis for the set of natural cubic splines at these
knots.

Thus, any natural cubic spline g(x) can be written as

g(x) =
NX

j=1

�jhj(x).
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Cubic splines
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Fitting cubic splines

❖ Smoothing splines fits to data can be found by writing the target function as a linear 
combination of these basis functions.
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❖ Substituting this expansion into the penalised least squares expression we find the 
solution

❖ where

❖ and YT = (Y1, Y2, …, Yn) is the observed data.

❖ This expression makes it clear that the smoothing spline is also a linear estimator.

❖ In the limit             , the smoothing spline becomes a natural cubic spline that passes 
through all the data points.

❖ In the limit                , the smoothing spline is a straight line, which is the best fit (in a 
least squares sense) straight line through the observed data.

Fitting cubic splines
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By Theorem 10.3, the solution of the minimisation problem that defines the smooth-
ing spline is a natural cubic spline, and by Theorem 10.4, it can be written as the linear
combination of the basis functions hj(x), j = 1, 2, . . . , N . Hence, minimising over functions
f

bfSS
n,� = arg min

f2C2

(
NX

i=1

(Yi � f(xi))
2 + �

Z
[f 00(x)]2 dx

)

= arg min
f2C2

(
NX

i=1

�
f(xi)

2 � 2f(xi)Yi + Y 2

i

�
+ �

Z
[f 00(x)]2 dx

)
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❖ The “best” choice of the regularisation parameter can be guided by the observed 
data using the process of leave-one-out cross-validation, i.e., using fits of the data to 
all but one point to estimate the MISE of the fit.

❖ Smoothing splines are related to kernel estimators. In the limit of large N, the 
smoothing spline estimator coincides with the Nadaraya-Watson estimator with 
bandwidth                 and using the Silverman kernel.

Fitting cubic splines
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Figure 42: Smoothing spline for example 10.7.

Example 10.7. Construct a smoothing spline on [�2, 2] given data (�1, 2), (0, 4), (1, 1).
Take � = 0.01, and construct the smoothing spline using

bfSS
n (x) =

NX

i=1

NX

j=1

[(HTH + �⌦)�1HT ]jihj(x)Yi.

The matrices necessary for the calculation are H = (Hij), Hij = hj(xi):

H =

0

@
1 �1 0
1 0 1
1 1 6

1

A , HTH =

0

@
3 0 7
0 2 6
7 6 37

1

A

and ⌦ = (⌦j`), ⌦j` =
R
h00

j (x)h
00
` (x)dx:

⌦ =

0

@
0 0 0
0 0 0
0 0 24

1

A

We find the coe�cients of the natural spline are �̂T = (5.00917, 2.94037,�1.14679). The
data and smoothing spline are shown in Figure 42.

10.3.2 Choice of Regularisation Parameter �

In papplications, � is usually chosen using cross-validation

b� = argmin
�>0

(
nX

i=1

⇣
Yi � bf�,�i(xi)

⌘2

)
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Figure 43: Left: smoothing spline estimator Right: Silverman kernel

where bf�,�i is a smoothing spline based on all data points except the i’th. The expression
to be minimised is an unbiased estimator of MISE.

Smoothing spline estimators with di↵erent regularisation parameters � are plotted in
Figure 43 (Left). The black line corresponds to � is chosen by cross-validation, the red
line - to � = 0.05, and the blue line - to � = 2. For small � = 0.05, where the leading
contribution comes from the likelihood, the fitted curve is close to the data points but is not
particularly smooth. For larger � = 2, the penalisation term dominates the likelihood term,
and the linear curve is such that the penalty term is zero (since the second derivative of a
linear function is 0). � chosen by cross-validation provides the estimator with the trade-o↵
between fit to the observed data and smoothness.

10.3.3 Smoothing Spline as a Kernel Estimator

For large N , the smoothing spline is asymptotically equivalent to a kernel estimator:

bfSS(x) ⇡ bfNW (x),

where bfNW (x) is the Nadaraya-Watson estimator with the Silverman kernel:

K(z) =
1

2
e�|z|/

p
2 sin(|z|/

p
2 + ⇡/4),

plotted in Figure 43 (right), and the bandwidth h can be expressed in terms of � as h = �1/4.
Note that this kernel can take negative values. In particular, the smoothing spline has the
same optimality properties as a kernel estimator, such as consistency and the optimal rates
of convergence.

h = �
1
4
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Additive models
❖ In the preceding discussion we have focussed on fitting models to univariate data, 

but more commonly the observed data will depend on multiple covariates. There are 
extensions of kernel estimators and smoothing splines to higher dimensions, but 
they do not scale well. An alternative is to use an additive model of the form

❖ where, to make the model identifiable, we impose the constraints

❖ A generalised additive model takes a similar form but now
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10.4.3 Additive models

While the preceding methods provide ways to fit general multivariate nonparametric models,
they are often hard to visualize and interpret. This motivates assuming a somewhat simpler
form for the unknown function, called an additive model.

Definition 10.19. An additive model is a model of the form

Yi = ↵ +
mX

j=1

fj(xj) + ✏i, i = 1, . . . , n

where f1, . . . , fm are smooth functions.

The model above is not identifiable since a constant can be subtracted from any one of
the functions and added to ↵ or any of the other functions to leave the model unchanged.
The usual approach to making the model identifiable is to set ↵̂ = Ȳ =

Pn
i=1

Yi/n and

forcing
Pn

i=1
f̂j(xji) = 0. The resulting functions can be regarded as representing deviations

from the mean Ȳ .
An additive model can be fitted using any of the techniques for one-dimensional

problems that have been described in this course using a procedure known as backfitting.

Definition 10.20. The backfitting algorithm obtains estimates of f̂j(xj) in the additive model
as follows. Fix the estimator ↵̂ = Ȳ and choose initial guesses for f̂1, . . . , f̂m. Then

1. For j = 1, . . . ,m:

(a) Compute Ỹi = Yi � ↵̂ �
P

k 6=j f̂k(xki), i = 1, . . . , n.

(b) Apply a one-dimensional nonparametric fitting procedure (smoother) to Ỹi as a
function of xj. Set f̂j equal to the output of this procedure.

(c) Renormalise by setting f̂j(x) equal to f̂j(x) �
Pn

i=1
f̂j(xji)/n.

2. Repeat step 1 until the estimators converge.

10.4.4 Projection pursuit

Projection pursuit regression attempts to approximate the unknown function f(x1, . . . , xm)
by one of the form

µ+
MX

j=1

rj(zj) where zi = ↵T
i x

and each ↵i is a unit vector. Projection pursuit attempts to find a transformation of the
coordinates that makes an additive model fit as well as possible. In practice, projection
pursuit is fitted iteratively, using some one-dimensional nonparametric method. We use
S(w;Y,x) to denote the value of the output of this nonparametric method at a point w,
where x is the vector of (one-dimensional) covariates at the observed points and Y is the
vector of measured values. First set µ̂ = Ȳ as before and then initialise the residuals
✏̂i = Yi � Ȳ . We use ✏̂ to denote the vector of current residuals, i.e., (✏̂)i = ✏̂i. We also scale
the covariates so that their variances are equal and then define an m⇥n matrix X such that
Xij is the value of the i’th covariate for the j’th data point. Then proceed as follows:
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1. Set j = 0.

2. Find the unit vector ↵ that minimizes

I(↵) = 1�
Pn

i=1
(✏̂i � S(↵Txi; ✏̂, XT↵))2Pn

i=1
✏̂2i

and then set zji = ↵Txi and f̂j(zji) = S(↵Txi; ✏̂, XT↵).

3. Set j = j + 1 and update the residuals

✏̂i  ✏̂i � f̂j(zji).

4. If j = M stop, else return to step 2.

10.4.5 Generalized additive models

Definition 10.21. An generalized additive model is a model in which observed random vari-
ables Yi are assumed to be drawn from a specified distribution in the exponential family, with
a specified link function, g(·), and a model for the expectation value of the form

⌘(x) = g(E(Y )) = ↵ +
mX

j=1

fj(xj)

where f1, . . . , fm are smooth functions.

Fitting a generalized additive model can be done iteratively, using a method for fitting
a general additive model, in the same way that generalized linear models can be found
by fitting general linear models using iterative weighted least squares (Fisher’s method of
scoring).

The general procedure is as follows:

1. Start with observed data {(xi, yi) : i = 1, . . . n} and initial guesses for ↵̂ and f̂1, . . . , f̂m.

2. Then repeat the folliwng steps until the estimates for f̂1, . . . , f̂m converge:

(a) Compute fitted values

⌘̂(xi) = ↵̂ +
mX

j=1

f̂j(xmi)

and r̂(xi) = g�1(⌘̂(xi)).

(b) Computed transformed responses

zi = ⌘̂(xi) + (yi � r̂(xi))g
0(r̂(xi)),

where g0(·) denotes the derivative of the link function.

(c) Compute weights

wi =
⇥
(g0(r̂(xi))

2�2
⇤�1

.



Fitting additive models
❖ Additive models can be fitted using the backfitting algorithm:
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✏̂i = Yi � Ȳ . We use ✏̂ to denote the vector of current residuals, i.e., (✏̂)i = ✏̂i. We also scale
the covariates so that their variances are equal and then define an m⇥n matrix X such that
Xij is the value of the i’th covariate for the j’th data point. Then proceed as follows:



Wavelet estimators
❖ Kernel estimators and smoothing splines are nonparametric techniques that rely on 

smoothing. An alternative approach is to use orthogonal projection estimators. The 
idea is to represent an arbitrary curve as a linear combination of basis functions.

❖ A wavelet basis is defined by two functions

•          the father wavelet or scaling function satisfying

•          the mother wavelet or wavelet function satisfying

❖ Defining translations and dilations of the wavelets through

❖ If the father and mother wavelet are defined appropriately then the set

❖ is an orthonormal basis for the space of square integrable functions.
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for some real coe�cients ✓0, ✓1, . . .. A projection estimation of f is based on a simple idea:
approximate f by its projection

PN
k=0

✓k'k(x) on the linear span of the first N +1 functions
of the basis, and replace ✓k by their estimators. Thus, a projection estimator is constructed
in three steps.

(1) for large N, approximate f(x) ⇡
NX

k=0

✓k'k(x)

(2) construct an estimator b✓k of ✓k from data (y1, . . . , yn), k = 0, 1, . . . , N

(3) plug in the estimator b✓k in the approximation: cfN(x) =
NX

k=0

b✓k'k(x)

From the expression for ✓k in terms of f and 'k, if we know only values of f(x) at points
xi = i/n, i = 1, . . . , n, then for large n the integral can be approximated by a sum:

✓k ⇡ 1

n

nX

i=1

f(xi)'k(xi).

Since we observe values of f(xi) with error, we plug in these observation in the above
expression to obtain the following estimator for ✓k:

b✓k =
1

n

nX

i=1

Yi'k(xi).

Inserting this expression into the estimator of the function, we obtain a projection esti-
mator:

bfN(x) =
NX

k=0

"
1

n

nX

i=1

f(xi)'k(xi)

#
'k(x) =

nX

i=1

Yi

"
NX

k=0

1

n
'k(xi)'k(x)

#

which is a linear estimator with weights wi(x) =
PN

k=0

1

n'k(xi)'k(x) which do not depend

on Yi. The choice of N corresponds to choosing the smoothness of the function bfN .

10.5.2 Wavelet basis

A wavelet basis is constructed using two functions, a scaling function �(x) and a wavelet
function  (x) that are also called the father and mother wavelet respectively. They satisfy
the following properties: Z

�(x)dx = 1,

Z
 (x)dx = 0.

Definition 10.23. Given a wavelet function  and a scaling function �, a wavelet basis on
[0, 1] is

{�,  jk, j = 0, 1, . . . , k = 0, . . . , 2j � 1},

where �jk(x) = 2j/2�(2jx � k),  jk(x) = 2j/2 (2jx � k).
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Figure 46: Daubechies wavelet transform, s = 8

10.5.3 Wavelet estimators

A wavelet estimator can be constructed following the same structure as a projection
estimator:

1) derive an estimate b✓jk from noisy discrete wavelet coe�cients
2) substitute into the series expansion to obtain the estimate of f , to obtain a wavelet

estimator bf :

bf(x) = b✓0�(x) +
1X

j=0

2
j�1X

k=0

b✓jk jk(x).

For example, a wavelet projection estimator can be constructed as

bfJ0(x) = b✓0�(x) +
J0�1X

j=0

2
j�1X

k=0

b✓jk jk(x),

with

b✓0 =
1

n

nX

i=1

Yi�(xi), b✓jk =
1

n

nX

i=1

Yi jk(xi), j < J0.

From this definition it follows that b✓jk = 0 for j � J0. It is a linear estimator.

The number of nonzero coe�cients of bfJ0(x) is

1 +
J0�1X

j=0

2
j�1X

k=0

1 = 1 +
J0�1X

j=0

2j = 1 +
2J0 � 1

2 � 1
= 2J0 .

Example 10.10. For the Haar wavelet projection estimator, the variance is

Var(cfJ0(x)) =
�2

n

2

4(�(x))2 +
J0�1X

j=0

2
j�1X

k=0

( jk(x))
2

3

5 =
�2

n

"
1 +

J0�1X

j=0

2j

#
=

2J0

n
�2,



❖ To define a valid wavelet basis the scaling function must obey the scaling equation

❖ for some coefficients {hk} and the wavelet function must obey the wavelet equation

❖ for some coefficients {gk}. The coefficients must obey the constraints

❖ The latter two equations are automatically satisfied by the choice gk = (-1)k h1-k

Wavelet estimators
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since (�(x))2 = 1 for all x 2 [0, 1], and ( jk(x))2 = 2j for (j, k) such that x 2 supp( jk), i.e.
if k

2j  x < k+1

2j (just one k = bx2jc for each j satisfies this condition).

We will also consider wavelet thresholding estimators which are examples of nonlinear
estimators (see Section 10.5.10).

10.5.4 Multiresolution analysis (MRA)

In this section there is a brief explanation of why wavelet functions, together with the scaling
function, form a basis.

Definition 10.24. A multiresolution analysis (MRA) is a sequence of closed subspaces Vn,
n 2 {0, 1, 2, ..} in L2(R) such that

1. V0 ⇢ V1 ⇢ V2 ⇢ . . . , Clos(
S

j Vj) = L2(R), where Clos(A) stands for the closure of a
set A.

2. Subspaces Vj are self-similar:

g(2jx) 2 Vj , g(x) 2 V0,

3. There exists a scaling function � 2 V0 such that
R

R
�(x)dx 6= 0 whose integer-translates

span the space V0:

V0 =

(
g 2 L2(R) : g(x) =

X

k2Z

ck�(x � k) for some (ck)k2Z

)
,

and for which the set of functions {�(· � k), k 2 Z} is an orthonormal basis.

Property 2 of MRA implies that for any h(x) 2 Vj 9 g 2 V0 such that

h(x) = g(2jx) =
X

k2Z

ck�(2
jx � k),

and hence {�(2jx � k)}k2Z or, equivalently, {�jk}k2Z, form an orthonormal basis of Vj. In
particular, since �(x) 2 V0 we have

�(x) =
p
2
X

k2Z

hk�(2x � k). (126)

The coe�cients in this expansion satisfy
X

k

hk =
p
2,

X

k

hkhk�2l = �0l.

We then define another function (the mother wavelet)

 (x) =
p
2
X

gk�(2x � k)

and require that  (x � m) is orthogonal to �(x) for all integers m, and that { (x � m) :
m 2 Z} is an orthonormal set. These conditions impose constraints on the coe�cients {gk}

X

k

gkhk+2m = 0 8m 2 Z,
X

k

gkgk�2l = �0l
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❖ We can use the wavelet basis to write any function as an expansion

❖ To estimate the coefficients in this expansion from observed data we can define a 
wavelet projection estimator given                  observations by computing

❖ and then constructing

Wavelet estimators
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Figure 45: Haar and Daubechies wavelet functions

Under certain additional conditions on the scaling function �(x) and the wavelet function
 (x), this basis is orthonormal. Then, any f 2 L2[0, 1] can be decomposed in a wavelet
basis:

f(x) = ✓0�(x) +
1X

j=0

2
j�1X

k=0

✓jk jk(x),

and ✓ = {✓0, ✓jk} is a set of wavelet coe�cients:

✓0 =

Z
1

0

�(x)f(x)dx, ✓jk =

Z
1

0

 jk(x)f(x)dx.

Wavelets (�, ) are said to have regularity s if they have s derivatives and  has s
vanishing moments (

R
xk (x)dx = 0 for integer k  s).

Examples of wavelet functions are plotted in Figure 45, and the structure of the wavelet
basis is illustrated in Figure 46.

Example 10.9. The Haar wavelet basis is determined by the scaling function �(x) = 1(0,1](x)
and the wavelet function  (x) = 1(0,1/2](x) � 1(1/2,1](x) which satisfy

Z
�(x)dx = 1,

Z
 (x)dx = 0,

Z
 jk(x)dx = 0.

Check that the basis {�,  jk, j = 0, 1, . . . , k = 0, . . . , 2j � 1} defined by these functions is
orthonormal, that is, that the functions are normalised

||�||2
2
=

Z
�2(x)dx = 1, || ||2

2
=

Z
 2(x)dx = 1, || jk||22 =

Z
 2

jk(x)dx = 1,

and are orthogonal:
Z
�(x) jk(x)dx = 0,

Z
 jk(x) `m(x) = 0 for (j, k) 6= (`,m).

Local polynomial and kernel estimators provide localisation in time only. A Fourier basis
provides localisation in frequency only. The advantage of a wavelet basis is that it provides
localisation in both time and frequency, at the expense of having two indices. The wavelet
transform provides a sparse representation of most functions (it is the basis of JPEG2000).
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Figure 46: Daubechies wavelet transform, s = 8

10.5.3 Wavelet estimators

A wavelet estimator can be constructed following the same structure as a projection
estimator:

1) derive an estimate b✓jk from noisy discrete wavelet coe�cients
2) substitute into the series expansion to obtain the estimate of f , to obtain a wavelet

estimator bf :

bf(x) = b✓0�(x) +
1X

j=0

2
j�1X

k=0

b✓jk jk(x).

For example, a wavelet projection estimator can be constructed as

bfJ0(x) = b✓0�(x) +
J0�1X

j=0

2
j�1X

k=0

b✓jk jk(x),

with

b✓0 =
1

n

nX

i=1

Yi�(xi), b✓jk =
1

n

nX

i=1

Yi jk(xi), j < J0.

From this definition it follows that b✓jk = 0 for j � J0. It is a linear estimator.

The number of nonzero coe�cients of bfJ0(x) is

1 +
J0�1X

j=0

2
j�1X

k=0

1 = 1 +
J0�1X

j=0

2j = 1 +
2J0 � 1

2 � 1
= 2J0 .

Example 10.10. For the Haar wavelet projection estimator, the variance is

Var(cfJ0(x)) =
�2

n

2

4(�(x))2 +
J0�1X

j=0

2
j�1X

k=0

( jk(x))
2

3

5 =
�2

n

"
1 +

J0�1X

j=0

2j

#
=

2J0

n
�2,
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Figure 46: Daubechies wavelet transform, s = 8

10.5.3 Wavelet estimators

A wavelet estimator can be constructed following the same structure as a projection
estimator:

1) derive an estimate b✓jk from noisy discrete wavelet coe�cients
2) substitute into the series expansion to obtain the estimate of f , to obtain a wavelet

estimator bf :

bf(x) = b✓0�(x) +
1X

j=0

2
j�1X

k=0

b✓jk jk(x).

For example, a wavelet projection estimator can be constructed as

bfJ0(x) = b✓0�(x) +
J0�1X

j=0

2
j�1X

k=0

b✓jk jk(x),

with

b✓0 =
1

n

nX

i=1

Yi�(xi), b✓jk =
1

n

nX

i=1

Yi jk(xi), j < J0.

From this definition it follows that b✓jk = 0 for j � J0. It is a linear estimator.

The number of nonzero coe�cients of bfJ0(x) is

1 +
J0�1X

j=0

2
j�1X

k=0

1 = 1 +
J0�1X

j=0

2j = 1 +
2J0 � 1

2 � 1
= 2J0 .

Example 10.10. For the Haar wavelet projection estimator, the variance is

Var(cfJ0(x)) =
�2

n

2

4(�(x))2 +
J0�1X

j=0

2
j�1X

k=0

( jk(x))
2

3

5 =
�2

n

"
1 +

J0�1X

j=0

2j

#
=

2J0

n
�2,

n = 2J0
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Thresholding estimators
❖ In general, we do not need all the possible coefficients to represent the function, and 

so we use thresholding estimators by dropping coefficients that are close to zero.

❖ A soft thresholding estimator uses

❖ A hard thresholding estimator uses

❖ A common choice for the threshold is the universal threshold 

❖ This relies on having an estimate of the variance in the noise, which can be found 
from the median absolute deviation. 
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For example, a linear projection estimator cfJ0(x) for f(x) can be constructed using the
output of the cascade algorithm:

bwjk = djk, j  J0 � 1; bwjk = 0, j � J0; bu00 = c00.

For Haar wavelets, the linear projection estimator cfJ0 coincides with the wavelet estimator
based on discrete wavelet coe�cients with bwjk = djk for j  J0 � 1 and bwjk = 0 for j > J0.

10.5.10 Thresholding Estimators for threshold �

Hard thresholding estimator

bwjk = djkI (|djk| > �) =

⇢
djk, if |djk| > �
0, if |djk| < �

Soft thresholding estimator

bwjk =

8
<

:

djk � �, djk > �
0, ��  djk  �
djk + �, djk < ��

There is a default choice of threshold � that is called the universal threshold:

� = �
p
2 log n.

In practice, the standard deviation � is estimated as the median absolution deviation
(MAD):

b� = 1.4826 MAD(dJ�1,0, . . . , dJ�1,2J�1)

where MAD(x1, . . . , xn) = median(|xi � median(xi)|).

10.5.11 Inference on f using wavelet estimators

10.5.12 Asymptotic confidence intervals for f(x)

Yi = f(xi) + "i, xi =
i

n
"i ⇠ N(0, �2)

To construct an asymptotic confidence interval for f(x), we use the linear estimator

\fJ0(x) = b✓0�(x) +
J0�1X

j=0

2
j0�1X

k=0

b✓jk jk(x),

where

b✓0 =
1p
n
bu00, bu00 = c00 =

1p
n

nX

i=1

Yi�(xi)

b✓jk =
1p
n
bwjk, bwjk = djk =

1

n

nX

i=1

Yi jk(xi)
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✓̂jk = yjkI(|yjk| > �)
<latexit sha1_base64="rDdSV1GSjtcv9JpP45nPkuERvcQ="></latexit>

✓̂jk = sign(yjk)(|yjk|� �)+
<latexit sha1_base64="KnCiKRipl8fFAuQXLHFr0SSWQ+U="></latexit>



Cascade algorithm
❖ Wavelet coefficients can be estimated quickly using the Cascade algorithm

❖ It is particularly efficient when using Haar wavelets

❖ for which the only non-zero {hk, gk} are                              and 
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Therefore, we can set uJ,k = f(xk+1), k = 0, 1, . . . , 2J � 1 = n � 1. For noisy observations
(Yi), we can start with noisy discrete scaling coe�cients cJ,k = Yk+1.

Assumptions for the cascade algorithm.

1. Yi are (noisy) observations of a function f at points xi, i = 1, .., n

2. points (xi) form a regular fixed design (xi � xi�1 =
1

n).

3. n = 2J for some integer J .

Cascade algorithm

1. Set cJk = Yk+1 for k = 0, 1, .., 2J � 1, set j = J � 1;

2. Set

cjk =
X

m2Z

hmcj+1,2k+m, djk =
X

m2Z

gmcj+1,2k+m;

3. if j = 0 stop; else set j := j � 1 and repeat step 2.

Output: discrete wavelet coe�cients c00, djk for 0  j  J � 1, k = 0, . . . , 2j � 1.
Using the expressions for the Haar wavelet filters hk and gk, the recurrent step of the

cascade algorithm for the Haar wavelet transform is

ujk =
1p
2
(uj+1,2k + uj+1,2k+1) , wjk =

1p
2
(uj+1,2k � uj+1,2k+1) .

To reconstruct the function from the wavelet coe�cients, this algorithm can be inverted.

10.5.9 Summary

• The number of data points n = 2J .

• Cascade algorithm: set cJ0 = Y1, . . . , cJ,2J�1 = Yn, and compute recursively

cjk =
X

m

hmcj+1,2k+m, djk =
X

m

gmcj+1,2k+m.

• The output of the the cascade algorithm are discrete wavelet coe�cients: c00 & djk,
j < J that satisfy

djk ⇠ N(wjk, �2), c00 ⇠ N(u00, �2), independently.

• To construct an estimator of f , choose estimators bwjk, bu00(= c00), and hence construct
the corresponding estimators

b✓0 =
bu00p
n
, b✓jk =

bwjkp
n
.

These estimators are then used to obtain an estimator of the function f :

bf(x) = b✓0�(x) +
J�1X

j=0

2
j�1X

k=0

b✓jk jk(x).
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Figure 45: Haar and Daubechies wavelet functions

Under certain additional conditions on the scaling function �(x) and the wavelet function
 (x), this basis is orthonormal. Then, any f 2 L2[0, 1] can be decomposed in a wavelet
basis:

f(x) = ✓0�(x) +
1X

j=0

2
j�1X

k=0

✓jk jk(x),

and ✓ = {✓0, ✓jk} is a set of wavelet coe�cients:

✓0 =

Z
1

0

�(x)f(x)dx, ✓jk =

Z
1

0

 jk(x)f(x)dx.

Wavelets (�, ) are said to have regularity s if they have s derivatives and  has s
vanishing moments (

R
xk (x)dx = 0 for integer k  s).

Examples of wavelet functions are plotted in Figure 45, and the structure of the wavelet
basis is illustrated in Figure 46.

Example 10.9. The Haar wavelet basis is determined by the scaling function �(x) = 1(0,1](x)
and the wavelet function  (x) = 1(0,1/2](x) � 1(1/2,1](x) which satisfy

Z
�(x)dx = 1,

Z
 (x)dx = 0,

Z
 jk(x)dx = 0.

Check that the basis {�,  jk, j = 0, 1, . . . , k = 0, . . . , 2j � 1} defined by these functions is
orthonormal, that is, that the functions are normalised

||�||2
2
=

Z
�2(x)dx = 1, || ||2

2
=

Z
 2(x)dx = 1, || jk||22 =

Z
 2

jk(x)dx = 1,

and are orthogonal:
Z
�(x) jk(x)dx = 0,

Z
 jk(x) `m(x) = 0 for (j, k) 6= (`,m).

Local polynomial and kernel estimators provide localisation in time only. A Fourier basis
provides localisation in frequency only. The advantage of a wavelet basis is that it provides
localisation in both time and frequency, at the expense of having two indices. The wavelet
transform provides a sparse representation of most functions (it is the basis of JPEG2000).

Introduction to Statistics for GWs 191

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-0
.5

0.
5

1.
0

1.
5

Haar mother wavelet

(a) Haar mother wavelet

−1.0 −0.5 0.0 0.5 1.0 1.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Daub cmpct on ext. phase N=2
x

ψ
(x
)

(b) Daubechies mother wavelet, s = 2

-2 0 2 4

-1
.5

-0
.5

0.
5

1.
0

1.
5

Daubechies mother wavelet

(c) Daubechies wavelet, s = 4

Figure 45: Haar and Daubechies wavelet functions

Under certain additional conditions on the scaling function �(x) and the wavelet function
 (x), this basis is orthonormal. Then, any f 2 L2[0, 1] can be decomposed in a wavelet
basis:

f(x) = ✓0�(x) +
1X

j=0

2
j�1X

k=0

✓jk jk(x),

and ✓ = {✓0, ✓jk} is a set of wavelet coe�cients:

✓0 =

Z
1

0

�(x)f(x)dx, ✓jk =

Z
1

0

 jk(x)f(x)dx.

Wavelets (�, ) are said to have regularity s if they have s derivatives and  has s
vanishing moments (

R
xk (x)dx = 0 for integer k  s).

Examples of wavelet functions are plotted in Figure 45, and the structure of the wavelet
basis is illustrated in Figure 46.

Example 10.9. The Haar wavelet basis is determined by the scaling function �(x) = 1(0,1](x)
and the wavelet function  (x) = 1(0,1/2](x) � 1(1/2,1](x) which satisfy

Z
�(x)dx = 1,

Z
 (x)dx = 0,

Z
 jk(x)dx = 0.

Check that the basis {�,  jk, j = 0, 1, . . . , k = 0, . . . , 2j � 1} defined by these functions is
orthonormal, that is, that the functions are normalised

||�||2
2
=

Z
�2(x)dx = 1, || ||2

2
=

Z
 2(x)dx = 1, || jk||22 =

Z
 2

jk(x)dx = 1,

and are orthogonal:
Z
�(x) jk(x)dx = 0,

Z
 jk(x) `m(x) = 0 for (j, k) 6= (`,m).

Local polynomial and kernel estimators provide localisation in time only. A Fourier basis
provides localisation in frequency only. The advantage of a wavelet basis is that it provides
localisation in both time and frequency, at the expense of having two indices. The wavelet
transform provides a sparse representation of most functions (it is the basis of JPEG2000).
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The two filter decompositions (for �(x), with coe�cients {hk} and  (x) with coe�cients
{gk} satisfying gk = (�1)kh1�k) have other properties which we will use later to show that a
finite dimensional version of wavelet decomposition, a discrete wavelet transform performed
via the cascade algorithm, transforms iid Gaussian random variables to iid Gaussian random
variables.

Example 10.11. Determine filters gk, hk for the Haar wavelet transform.
For the Haar wavelets, the scaling equation is

1(0,1](x) = 1(0,1/2](x) + 1(1/2,1](x) = 1(0,1](2x) + 1(0,1](2x � 1)

That is,
�(x) = �(2x) + �(2x � 1) =

p
2
X

k2Z

hk�(2x � k)

which implies that the only nonzero values of hk are h0 = h1 = 1/
p
2.

The Haar wavelet function satisfies the following:

 (x) = 1(0,1/2](x) � 1(1/2,1](x) = 1(0,1](2x) � 1(0,1](2x � 1) =
1p
2
(�(2x) � �(2x � 1))

which implies that g0 = 1/
p
2, g1 = �1/

p
2 and the remaining gk are 0.

10.5.6 Discrete wavelet transform (DWT)

In typical realistic settings, we observe only a finite number of noisy values of the function.
How can we obtain (noisy) wavelet coe�cients based on this partial information?

10.5.7 Motivation

We want to discretise the wavelet transform:

✓jk =

Z
1

0

f(x) jk(x)dx ⇡ 1

n

nX

i=1

 jk(i/n)f(i/n) =
1p
n
(Wfn)(jk) =

wjkp
n
=: ✓̃jk,

where W , an n ⇥ n matrix defined by W1i = �(xi), Wli =  jk(xi) with l = 2j + k + 1,
is (approximately) orthonormal and fn is a vector fn = (f(1/n), . . . , f(1)). We assume
n = 2J for some integer J . The subscript (jk) in the above denotes the row, l = 2j + k + 1,
corresponding to a particular pair (j, k).

If the function f is bounded, the approximate wavelet coe�cients ✓̃jk are close to the
exact coe�cients ✓jk: |✓̃jk �✓jk|  C/n. For Haar wavelets, ✓jk = ✓̃jk since the Haar wavelets
are constants on each interval (i/n, (i+ 1)/n) for n = 2J for some integer J .

Use the linear transform defined by a matrix W as a discrete wavelet transform. There
are other ways to derive the approximation, so that |✓̃jk � ✓jk|  C/n and matrix W is
orthonormal (WW T = I). In practice, it is done via the cascade algorithm which is
derived from filter properties of wavelet transform. In this case, |✓̃jk � ✓jk|  C/n and the
matrix W satisfies WW T = I due to the filter properties (Proposition 10.4).

Applying the discretised wavelet transform W to data yields

djk = wjk + "jk, 0  j  J � 1, k = 0, . . . , 2j � 1,

c00 = u00 + "0,
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The two filter decompositions (for �(x), with coe�cients {hk} and  (x) with coe�cients
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�(x) = �(2x) + �(2x � 1) =

p
2
X

k2Z

hk�(2x � k)
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p
2.
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1p
2
(�(2x) � �(2x � 1))
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p
2, g1 = �1/

p
2 and the remaining gk are 0.
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Z
1

0
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n

nX

i=1
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1p
n
(Wfn)(jk) =

wjkp
n
=: ✓̃jk,
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Inference: point estimates
❖ The nonparametric estimators can be used to construct confidence intervals for the 

unknown function at a specific point. These can be asymptotic or conservative.

❖ If we know                                                   then a                           conservative 
confidence interval based on a linear estimator takes the form

❖ If the asymptotic bias is small relative to the variance b2(x) << v(x) then a                       
asymptotic confidence interval takes the form
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10.2.9 Confidence intervals for f(x0) based on a linear estimator

Denote b(x) = bias( bf(x)) = E

h
bf(x) � f(x)

i
and v(x) = Var( bf(x)). Then, for a linear

estimator bf(x) =
Pn

i=1
Yiwi(x),

E

⇣
bf(x)

⌘
=

nX

i=1

f(xi)wi(x) = b(x) + f(x)

Var
⇣
bf(x)

⌘
= �2

nX

i=1

[wi(x)]
2 = v(x),

therefore bf(x) ⇠ N (b(x) + f(x), v(x)).
The variance depends on the weights wi(x) and � which are known, so it can be calculated

exactly. If we knew the bias, which depends on the unknown function, we could construct
(1 � ↵)100% confidence interval using the fact that the following inequality

�z↵
2

6
bf(x) � [b(x) + f(x)]p

v(x)
6 z↵

2

holds with probability 1 � ↵, that is,

f(x) 2 [ bf(x) � b(x) � z↵
2

p
v(x), bf(x) � b(x) + z↵

2

p
v(x)].

Here z↵ = ��1(1 � ↵) where �(x) is the cumulative distribution function of N(0, 1).
However, the bias is unknown, so it is not possible to construct the exact confidence

interval. There are two approaches to addressing this issue. The first one is to construct
an asymptotic confidence interval where the estimator is constructed in such a way that
asymptotically the bias is much smaller than the variance, and therefore may be treated as
0. For the NW estimator, this means choosing a smaller bandwidth. The second one is to
use an upper bound on the bias to construct a conservative confidence interval.

• (1 � ↵)100% Conservative Confidence Interval for f(x).

If |b(x)| 6 b0(x) & v(x) 6 v0(x), then

f(x) 2 bf(x) ±
⇣
b0(x) + z↵

2

p
v0(x)

⌘
.

• (1 � ↵)100% Asymptotic Confidence Interval for f(x).

Choose the estimator bf(x) so that b(x)2 ⌧ v(x), thus we can assume b(x) ⇡ 0:

f(x) 2 bf(x) ± z↵
2

p
v(x).

The asymptotic expression for the variance is often used in this case.
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❖ A confidence band is a statement about the global properties of a function rather 
than its value at a specified point. Assuming that the bias is much smaller than the 
standard deviation we have the following confidence band for linear estimators

❖ where

❖ This is a special case of a more general result for linear estimators 

❖ where Ti(x) = li(x)/|l(x)|. The more general result can be used to obtain confidence 
bands on derivatives of a function when using local polynomial estimators.

Inference: confidence bands
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10.2.10 Confidence intervals using the Nadaraya-Watson estimator

For a Nadaraya-Watson estimator f 2 H�(M) on x 2 [0, 1], under the conditions of Propo-
sition 10.2,

v(x) 6 �2Kmax

nh�0

, |b(x)| 6 Mh�.

Therefore, a (1 � ↵)100% Conservative Confidence Interval for f(x) is

bfNW (x) ±
⇣
Mh� + z↵/2�

p
Kmax/(nh�0)

⌘

=
h
bfNW (x) � Mh� � z↵/2�

p
Kmax/(nh�0), bfNW (x) +Mh� + z↵/2�

p
Kmax/(nh�0)

i
.

Alternatively, taking the limit n ! 1 and h ! 0,

v(x) ⇡ �2

nh
||K||2

2
, b(x) ⇡ µ2(K)h2

2
f 00(x) ⇡ 0.

Therefore, a (1 � ↵)100% Asymptotic Confidence Interval for f(x) is

bfNW (x) ± z↵/2�
q

||K||2
2
/(nh))

=


bfNW (x) � z↵/2�

q
||K||2

2
/(nh), bfNW (x) + z↵/2�

q
||K||2

2
/(nh)

�
.

10.2.11 Asymptotic Confidence Band for f

Assume that the bias of bf(x) is much smaller than its standard deviation and is close to 0,
i.e. |b(x)| ⌧

p
v(x) and b(x) ⇡ 0. Then, an asymptotic (1�↵)100% confidence band based

on the NW estimator is given by
n
f : |f(x) � bf(x)| 6 c↵

p
v(x), 8 x 2 [a, b]

o

with

c↵ ⇡
r
2 log

⇣ a0

↵h

⌘
, where a0 =

|b � a|
⇡

||K 0||2
||K||2

,

(see Wasserman, section 5.7). For the NW estimator, we can use v(x) ⇡ �2

nh ||K||2
2
.

Confidence bands can be used to test hypotheses about f , e.g.

H0 : f(x) = constant 8x 2 [0, 1].

10.2.12 Local polynomial estimators.

Motivation and definition The Nadaraya-Watson estimator can be viewed as a local
constant least squares approximation of the unknown function. If the kernel K takes only
nonnegative values, then for each x 2 [0, 1], bfNW

n (x) satisfies

bfNW
n (x) = arg min

✓x2R

(
nX

i=1

(Yi � ✓x)
2K

✓
Xi � x

h

◆)

= arg min
✓x2R

(
nX

i=1

(✓2

x � 2✓xYi + Y 2

i )K

✓
Xi � x

h

◆)

= arg min
✓x2R

(
✓2

x ·
nX

i=1

K

✓
Xi � x

h

◆
� ✓x · 2

nX

i=1

YiK

✓
Xi � x

h

◆
+ CXi,Yi(x)

)
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(d) Assuming that the bias is negligible, an asymptotic (1�↵)100% confidence band

for a linear estimator of a function of the above form, on the interval [a, b] may

be found as

|ĝ(x)� g(x)|  c↵

p
var(ĝ) 8 x 2 [a, b]

where c↵ =

r
2 ln

⇣
0

↵⇡

⌘
, 0 =

Z b

a

||T0
(x)||dx,

with Ti(x) = li(x)/||l(x)|| and T
0
i(x) = dTi/dx.

(i) For the LP(1) estimator of g = f
0
show that, in the asymptotic limit n ! 1,

h ! 0, nh ! 1,

0 =

✓
b� a

h

◆
||K + xK

0||2
||xK||2

,

where ||G||22 =
R1
�1 G

2
(x)dx. [5 marks]

(ii) An LP(1) estimator of g = f
0
is constructed for n = 200, h = 0.1 and

K(x) = (1 � |x|)I(|x|  1) and the observed data has variance � = 0.1.

Construct an asymptotic 95% confidence band for g(x) on the interval [0, 1].

Given that minx2[0,1] ĝ
LP (1)
h (x) = 0.937 and maxx2[0,1] ĝ

LP (1)
h (x) = 3.265 test

the hypothesis that f is linear in the range [0, 1]. [6 marks]

[Please turn over]

MATH11186 Nonparametric Regression Models 3

(2) This question is concerned with the LP(1) estimator for the model (?). This is given

by the value of ✓(x) = (✓0(x), ✓1(x))
T
that minimises the following expression

nX

i=1

✓
Yi � ✓0(x)� ✓1(x)

(xi � x)

h

◆2

Kh(xi � x)

where Kh(x) = K(x/h)/h and K(x) is a Kernel. The estimate ✓̂0(x) provides an

estimate of f(x) and ✓̂1(x)/h provides an estimate of f
0
(x).

(a) Show that the LP(1) estimator is given by

✓̂0(x) =
SxxSy � SxSxy

SSxx � S2
x

, ✓̂1(x) =
SxyS � SxSy

SSxx � S2
x

where

S =

nX

i=1

Kh(xi � x),

Sx =

nX

i=1

✓
xi � x

h

◆
Kh(xi � x), Sy =

nX

i=1

YiKh(xi � x)

Sxx =

nX

i=1

✓
xi � x

h

◆2

Kh(xi � x), Sxy =

nX

i=1

Yi

✓
xi � x

h

◆
Kh(xi � x)

[5 marks]

(b) Taking the asymptotic limit n ! 1, h ! 0, nh ! 1, and assuming the Kernel

is symmetric and of order 2, show that the estimator can be approximated by

f̂
0
(x) ⇡ 1

nhµ2(K)

nX

i=1

Yi

✓
xi � x

h

◆
Kh(xi � x)

in which µk(K) =
R1
�1 x

k
K(x)dx. [Hint: you may assume that, in this limit,

1
n

Pn
i=1 g(xi) ⇡

R 1

0 g(x)dx+O(1/n).] [5 marks]

(c) Show that for a linear estimator of the form ĝ(x) =
P

li(x)Yi the variance

var(ĝ) = �
2||l(x)||2

where l(x) = (l1(x), l2(x), . . . , ln(x)) and ||x|| denotes the usual Euclidean norm

of a vector.

Hence derive an asymptotic expression for the variance of the LP (1) estimator

of f
0
(x), valid in the limit n ! 1. [4 marks]

[Please turn over]



Inference: hypothesis testing
❖ The above results apply for all linear estimators, and hence all three types of 

estimator that we discussed in this lecture (except the hard thresholding wavelet 
estimator which is not linear).

❖ A wavelet estimator based on Haar wavelets can also be used to test if a function is 
constant on sub-intervals. Specifically, the hypothesis

❖ is equivalent to

❖ and can be tested using

❖ where djk are the estimators of the parameters obtained from, for example, the 
cascade algorithm. T follows a chi-squared distribution under H0.
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Recall that this estimator is linear:

) \fJ0(x) =
nX

i=1

wi(x)Yi, wi(x) =
1

n
�(xi)�(x) +

1

n

J0�1X

j=0

2
j�1X

k=0

 jk(xi) jk(x),

therefore, given independent observations of Yi ⇠ N(f(xi), �2) for i = 1, . . . , n,

\fJ0(x) ⇠ N

 
f(x), �2

nX

i=1

w2

i (x)

!
for large n.

For Haar wavelets, we derived that
Pn

i=1
w2

i (x) = 2J0/n.
Therefore, an asymptotic (1 � ↵)100% confidence interval for f(x) based on the Haar

wavelets projection estimator cfJ0(x), assuming that J0 is large enough so that the bias is
much smaller than the variance, is

cfJ0(x) ± z↵/2

2J0/2�p
n

.

Note that if J0 is too large, then the confidence interval is large. Therefore, there is a
tradeo↵ between bias and variance that results in “optimal” choice of J0. This is discussed
by considering the MISE of cfJ0(x).

10.5.13 Hypothesis testing

Local support of the wavelet basis is useful when it is of interest to test whether a function
is a constant on a certain subinterval of [0, 1]. We want to test the hypothesis

H0 : f(x) = constant on (a, b)

using Haar wavelets.
Due to the support of  jk being [k/2j, (k+1)/2j], for (a, b) = (m2�`, (m+1)2�`) for some

positive integers m and ` this hypothesis is equivalent to the following hypothesis about the
Haar wavelet coe�cients of function f :

H0 : ✓jk = 0 for (j, k) such that a <
k + 1/2

2j
< b

that is, the change point of  jk is inside (a, b). The equivalent null hypothesis can also be
written as

H0 : wjk = 0 for (j, k) such that a <
k + 1/2

2j
< b

since (✓jk = wjk/
p
n) for Haar wavelets.

Test this hypothesis using observed discrete wavelet coe�cients djk ⇠ N(wjk, �2), j =
0, . . . , J � 1, k = 0, . . . , 2j � 1, independently.

Given only n = 2J observations, we can test this hypothesis only using the wavelet
coe�cients with j < J :

H0 : wjk = 0 for (j, k) such that a <
k + 1/2

2j
< b& j < J.
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Test statistic:
T = ��2

X

j,k: a< k+1/2

2j <b, j<J

d2

jk

which has a �2

m distribution under the null hypothesis where m is the number of coe�cients
tested to be zero, that is, m = Card{(j, k) : a < k+1/2

2j < b, 0  j < J, 0  k  2j � 1}.
Example 10.12. Data: y = (�1.0,�0.2, 0.8, 0.6, 0.0,�0.4,�0.3,�0.5), xi = i/8, i = 1, .., 8,
n = 8. The data follows the nonparametric regression model with � = 0.2.

1. Test H0 : f(x) = const on (1/4, 1/2).
Corresponding hypothesis for the wavelet coe�cients is H0 : wjk = 0 for (j, k) that satisfy

1/4 < k+1/2

2j < 1/2 , j < J � 1 = 2 then (2j/4 � 1/2) < k < 2j/2 � 1/2

Since n = 8 = 23, we have J = 3 and hence we consider 0  j  2:
j = 2: 1/2 < k < 3/2 , i.e. k = 1 and hence (j, k) = (2, 1) satisfies the condition
j = 1: 0 < k < 1/2 no integer in the interval, so none
j = 0: �1/4 < k < 0 none.

Therefore, the equivalent hypothesis is H0 : w21 = 0. Since the corresponding noisy
discrete Haar wavelet coe�cient d21 ⇠ N(w21, �2), under the null hypothesis T = d2

21
/�2 ⇠

�2

1
, therefore we reject H0 at a 5% significance level if T = d2

21
/�2 > �2

1
(5%) = 3.841. Since

for this data d21 = 0.1414 and hence T = d2

21
/�2 = 0.5 < 3.841, there is not su�cient data

to reject the null hypothesis at a 5% significance level.

2. Now test H0 : f(x) = const on (1/2, 1).
The corresponding hypothesis for the wavelet coe�cients is H0 : wjk = 0 for (j, k) s.t.

1/2 < k+1/2

2j < 1, that is, for (j, k) such that
, 2j/2 � 1/2 < k < 2j � 1/2.

j  J � 1 = 2. Check this condition for each 0  j  2:
j = 2: 3/2 < k < 7/2, that is, k = 2, 3
j = 1: 1/2 < k < 3/2, that is, k = 1
j = 0: 0 < k < 1/2 none

Therefore, the equivalent hypothesis is

H0 : w11 = w22 = w23 = 0.

The test statistic is T = (d2

11
+ d2

22
+ d2

23
)/�2 ⇠ �2

3
under H0. That is, we reject the

null hypothesis at a 5% significance level if T > �2

3
(5%) = 7.815. For this data, T =

(0.22 +0.28284272 +0.14142142)/0.04 = 3.5 < 7.815, therefore there is not su�cient data to
reject the null hypothesis at a 5% significance level.

Remark 10.2. For an arbitrary interval (a, b) (that is, not of the form (m2�`, (m+1)2�`)),
the equivalent null hypothesis in terms of Haar wavelet coe�cients is

H0 : wjk = 0 for (j, k) such that {a <
k

2j
< b or a <

k + 1/2

2j
< b or a <

k + 1

2j
< b},

for j = 0, 1, . . . , J � 1 and k = 0, 1, . . . , 2j � 1. That is, in the more general case we need to
check if any of the three points where the Haar wavelet  jk jumps between di↵erent constant
values is inside the interval (a, b).

For an interval of the type (m2�`, (m+ 1)2�`) it is not necessary to check the end point
since they are either at the same place with regard to (a, b) (that is, inside or outside) as the
mid point (k + 1/2)2�j or on the boundary of the interval.


