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Nonparametric regression

The idea of nonparametric regression is to infer the mean value of an observable, Y,
as a function of some dependent variable, X, given pairs of observations (x;, ;) for
1=1,...n.

In parametric regression we assume a form for the mean that depends on a (small)
finite number of parameters and analysis is based on inference of those parameters.

In nonparametric regression we instead aim to constrain a function f{x) such that

flz) = E(Yi|X; = o)

We typically assume data of the form

ey U, 65 A S S e
with E(g;) = 0, Var(g;) = 02 and the support of the function assumed to be [0,1].

The set of points {x;/ is called a design and may be random or fixed.



Nonparametric regression

There are three main approaches to nonparametric regression
* kernel estimators
* smoothing splines
* wavelet estimators.

We will give an overview of all three approaches. Further details, and proofs of
some of the results that will be quoted, may be found in the lecture notes on the
course webpage.



Kernel Estimators

Definition: a kernel is a function K(x) satistying
o0
|- K(z)d(z) =1
Definition: a symmetric kernel is one for which K(x)=K(-x).

Definition: the order of a kernel is m if f fooo K (x)dx =0 foralll=1,..., m-1
and [°°_a™K(z)dz #0 .

If K(x) is a kernel, then so is Ki(x) = K(x/h)/h. h is called the bandwidth.
Examples
Uniform (box, rectangular) kernel K(x) =I(lx| <1 )/2.
Triangular kernel K(x) = (1 - [x|) I(lx| <1).

Gaussian kernel K(z) = \/%_ﬁe—fﬁ/?



Nadaraya-Watson Estimator

Given a kernel K(x) and bandwidth /, the Nadaraya-Watson estimator is

R e ,whenzm ) 0,

and the estimator is zero otherwise.

This estimator can be tuned by choosing the kernel and bandwidth to give the
smallest asymptotic mean integrated squared error (MISE)

MISE(f,) = E[||F, — I [/ Fula |2dx]= /Olv<x>dx+ /Ol[b@)]?dx

Asymptotically, the variance and bias of the Nadaraya-Watson estimator can be
approximated by

O'2 /LQ(K)hQ

o(z) ~ ||| bla) o EE2 1 ()




Nadaraya-Watson Estmator

Giving these asymptotic results, we can choose the bandwidth, for a given kernel,
that minimises the ASIME. The optimal choice of bandwidth is

. (G AIK|E \?
R ()| 3 (K)?
nCl n|| f7 ()24 (K)

We can now minimise the resulting AMISE over the choice of the kernel. The
optimal kernel is the Epanechnikov kernel

o=
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Nadaraya-Watson Estimator

The previous results were valid asymptotically. It is also possible to obtain non-
asymptotic results by making some assumption about the smoothness of the
function being constrained. One common assumption is that it belongs to the
Holder class

Definition 10.11. The Holder Class HP (M) of functions on [0,1] with 8 > 0, M > 0 is
defined as the set of functions f that satisfy the following conditions with k = | 3] :

1. |f®(x)| < M for all z € [0, 1],

2 i A A s il Sl i E 01
where f¥) is the kth derivative of f.

Ifp€(0,1), k=0 and fO(z) = f(z).



Nadaraya-Watson Estmator

Under certain assumptions and defining

1
0 < K(u) < Kpax =) Kn(Xi—2) 2 X
i=1
The bias and variance of the NW estimator can be bounded by
2
oK
b(z)] < (@) < =

These can be used to bound the MISE, providing a bound on the convergence rate of
the NW estimator

D (ANW —25

RY@) - f@) | < on

In fact, it can be shown that this is the best possible convergence rate that any
estimator can achieve for the Holder class.



Local polynomial estimators

The Nadaraya-Watson estimator can be thought of as a locally constant estimator.
This can be generalised to the notion of a local polynomial estimator.

Definition 10.15. A local polynomial estimator of f(x) of order k , denoted LP(k) estima-
tor, is defined by ’
27 (x) = Bo(x)

- ad N pl T
where for each x 0(x) = (90(56), 01(x), ... ,Qk(x)) is the solution of

n

=S . Xz e
0(x) = i {Z(Y; —U;0.)°K ( - > } :

1=1

AN

For each m =1,...,k, O,,(x)/h™ is an estimator of f™(z).

where




Local polynomial estimators

The local polynomial estimator can be evaluated explicitly by noting

AN

0, = argmin {0, - B(z) -0, — 20, -a(z)}

0
where
L= X, —x = X, —x
Bl = — 0 i = = — N VUK [ —
= g 2O (B ) ) = Y v (5
1nUUTK(X ) 1§anUK(X )
S 2,0V i — &4 == iV, i — &
nz‘:1 S ni:1 e

The solution is
0, = B~ (z)a(x)

which makes it obvious that the local polynomial estimator is also linear.

)



Smoothing splines

A second method of nonparametric curve fitting is to use smoothing splines. These
are defined as penalised least squares estimators

n

fren(a) = argmin | Y (Y; — f(x:))* + Apen(f)

2
el =

Typically the penalty function is quadratic

pen(f) = [JIf"(z)]*dz = |[f"][3

The parameter A > ( is called the regularisation parameter. Large values of

lambda give more weight to smoothness, while small values give more weight to the
observed data.

Theorem 10.3: the solution to this minimisation problem with a quadratic penalty
function is a natural cubic spline with knots at the data points.



Cubic splines

Definition 10.17. Let a < t; < .. < ty < b be a set of ordered points - called knots. A
cubic spline i1s a continuous function g such that

o glw) 1s cubic om |t 6,41, for each g =1,.., N — 1:

g(CIZ) — bjO S bjlﬂf T bj2332 - bj33337 T € [tjv tj-|-1]7

e both ¢ and ¢" are continuous att;, 1 =1,..,N.
A spline that is linear beyond the boundary knots is called a natural spline.
o g(x) is linear on |a,t] and [ty, b]

g(x) =bgg + bprx, =€ la,ty]
g(a:) = bN() B leiC, Tr & [tN,b]



Fittng cubic splines

Theorem 10.4. Let knots a <t; <--- <ty <b. Forj=3,...,N, define

e =1L lplas) =4z,

tn —Ti
hj(x) = (.CC = tj_2)+ o ( 2] / 2) (CE =3 tN—l)i_
(ty —tn_1)
tnv_1— 1.
fUra b s vagien,
(tv —tn_1)
where = y)i = max {(x — ). O}

The set of functions (hj);.\[:1 forms a basis for the set of natural cubic splines at these
knots.

Smoothing splines fits to data can be found by writing the target function as a linear
combination of these basis functions.

g(r) = Z Bih;(x)



Fittng cubic splines

Substituting this expansion into the penalised least squares expression we find the
solution

B=|(HTH +x0)" HTY

where
b
Hi; = hi(z:), Q= / K@) (@)des €1, smy gyl € Licaisll
a
and YT = (Y1, Y, ..., Yu)is the observed data.
This expression makes it clear that the smoothing spline is also a linear estimator.

In the limit A — 0, the smoothing spline becomes a natural cubic spline that passes
through all the data points.

In the limit A — o0, the smoothing spline is a straight line, which is the best fit (in a
least squares sense) straight line through the observed data.



Fittng cubic splines

Smoothing splines

0.0 0.2 0.4 0.6 0.8 1.0



Fittng cubic splines

The “best” choice of the regularisation parameter can be guided by the observed
data using the process of leave-one-out cross-validation, i.e., using fits of the data to
all but one point to estimate the MISE of the fit.

n

5 - ;
A = arg B Z (Yz = f/\,—v;(l'i))

1=1

Smoothing splines are related to kernel estimators. In the limit of large N, the

smoothing spline estimator coincides with the Nadaraya-Watson estimator with
1

bandwidth A = A% and using the Silverman kernel.

Ko = L s 510



Smoothing spline: example
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Additive models

In the preceding discussion we have focussed on fitting models to univariate data,
but more commonly the observed data will depend on multiple covariates. There are
extensions of kernel estimators and smoothing splines to higher dimensions, but
they do not scale well. An alternative is to use an additive model of the form

K:Oé—i—ij(ﬁlfj)—FEi, 7;:1,...,71
j=1

where, to make the model identifiable, we impose the constraints

& =Y =35, Yi/n >y filzs) =0

A generalised additive model takes a similar form but now

n(x) = g(E(Y)) = a+ Y filw;)



Fitting additive models

Additive models can be fitted using the backfitting algorithm:

Definition 10.20. The backfitting algorithm obtains estimates of fj (x;) in the additive model
as follows. Fiz the estimator & =Y and choose initial quesses for fi,..., fm. Then

S ) Tl
(a) Compute Y, =Yi—a— 1 felor),i=1,...,n

(b) Apply a one-dimensional nonparametric fitting procedure (smoother) to Y; as a
function of x;. Set f; equal to the output of this procedure.

(¢) Renormalise by setting f;(z) equal to f;(z) — SR fi(@)/n.

2. Repeat step 1 until the estimators converge.



Wavelet estimators

Kernel estimators and smoothing splines are nonparametric techniques that rely on
smoothing. An alternative approach is to use orthogonal projection estimators. The
idea is to represent an arbitrary curve as a linear combination of basis functions.

A wavelet basis is defined by two functions

1
o ®()the father wavelet or scaling function satisfying / o =
0

1
o 1)(x)the mother wavelet or wavelet function satisfying / Y(zx)de =0
0

Defining translations and dilations of the wavelets through

Yiu(z) = 2729(2z — k)

If the father and mother wavelet are defined appropriately then the set

F0 05, T =00, ool = e 2y

is an orthonormal basis for the space of square integrable functions.



Wavelet basis example: Daubechies, s =
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Wavelet estimators

To define a valid wavelet basis the scaling function must obey the scaling equation

o(x) = V2  hpo(2r — k)
keZ
for some coefficients {hi} and the wavelet function must obey the wavelet equation

Y(x) =V2) gud(2x — k)

for some coefficients {gi}. The coefficients must obey the constraints

Z hi = V2, Z hihk—21 = O
k k

Z gkhirom = 0 Vm € Z, Z Gk Jk—21 = O
k k

The latter two equations are automatically satisfied by the choice g = (-1)k h1«



Wavelet estimators

We can use the wavelet basis to write any function as an expansion

oo 27—1

f(z) = boo(x +> >1 O

17=0 k=0

To estimate the coefficients in this expansion from observed data we can define a
wavelet projection estimator given n = 270 observations by computing

et - e
n; ¢($) 7k n; %k(l‘) J 0

and then constructing

Jo—127—1

ffo (2?) o 90¢ _|_ Z Z ng%k

1=0 k=0



Thresholding estimators

In general, we do not need all the possible coefficients to represent the function, and
so we use thresholding estimators by dropping coefficients that are close to zero.

A soft thresholding estimator uses

A

0k = sign(y;r)(|[yjr] — M)+

A hard thresholding estimator uses

A

05k = YieX(|yju| > A)

A common choice for the threshold is the universal threshold

A =o+/2logn

This relies on having an estimate of the variance in the noise, which can be found

from the median absolute deviation.

o = 1.4826 MAD(dj_10,...,dj_127-1) MAD(21,...,2,) = median(|z; — median(z;)|)



(ascade algorithm

Wavelet coefficients can be estimated quickly using the Cascade algorithm
Cascade algorithm
Iy S @yt = St Toue (A O B e e =

2. Set

Cik — E hmcj—|—1,2k-|—m7 djk: E ImCj+1,2k+m

mEeZ meZ
3. if 7 = 0 stop; else set 7 := 7 — 1 and repeat step 2.
It is particularly efficient when using Haar wavelets

d(x) = 1o.(2) (@) = Lo,1/2(x) — L2, ()
for which the only non-zero {h, g} are hg = h; = 1/v/2 and go = 1/v2, g1 = —1/v/2



Inference: point estimates

The nonparametric estimators can be used to construct confidence intervals for the
unknown function at a specific point. These can be asymptotic or conservative.

If we know |b(z)| < bo(z) & v(z) < vo(z) thena (1 — a)100% conservative
confidence interval based on a linear estimator takes the form

f(z) € flz) + (bo(x) + 2a \/vo(aj)>

If the asymptotic bias is small relative to the variance b2(x) << v(x) then a (1 — «)100%
asymptotic confidence interval takes the form

f(z) € Fla) £ 23 Vo(@)



Inference: confidence bands

A confidence band is a statement about the global properties of a function rather
than its value at a specified point. Assuming that the bias is much smaller than the
standard deviation we have the following confidence band for linear estimators

{F:1f(@) = )| < car/o(), Vo € [a,0]]

S (o _ [b—al [[K]]
CQN\/QlOg(%),WhGTGCLQ— 1Kl

This is a special case of a more general result for linear estimators g(x) = > [;(x)Y;

9(z) —g(a) < cavvar(g) Vo[l
where ca:\/an (%), /foz/a T (z)||dx

where Ti(x) = li(x)/ | I(x) | . The more general result can be used to obtain confidence
bands on derivatives of a function when using local polynomial estimators.

where




Inference: hypothesis testing

The above results apply for all linear estimators, and hence all three types of
estimator that we discussed in this lecture (except the hard thresholding wavelet
estimator which is not linear).

A wavelet estimator based on Haar wavelets can also be used to test if a function is
constant on sub-intervals. Specifically, the hypothesis

Hy : f(x) = constant on (a,b)

is equivalent to

. k+1/2
Hy: 0, =0 for (j, k) such that a < 2]./ <b
and can be tested using
T=o" pal A
Gka<E 2 op, g

2J
where dji are the estimators of the parameters obtained from, for example, the
cascade algorithm. T follows a chi-squared distribution under Hy.



