Making sense of data: introduction to
statistics for gravitational wave astronomy

Lecture 10: Time series analysis
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Time Series

We encountered time series in lecture 7 when we discussed the properties of noise in
gravitational wave detectors.

More generally, a time series is an ordered sequence of random variables, such that
each subsequent value is correlated with the values that came before.

There are two main types time series

o Available data are part of a random sequence, {X;/, which is only defined at
integer values of the time ¢.

o Available data are values of a random function, X(t), that is defined for arbitrary
real t, but is only observed at a finite number of times.

Random functions can be represented as random sequences, for example by
integrating over time intervals, but that always throws away information, so
inference should use the continuous time representation of the random function
wherever possible.



Properties of 'Time Series

The mean (or expectation) of a time series is

He =

L(X0)

If this is non-constant it is sometimes called the trend.

The (auto)covariance function of a time series is

V(s,t) = cov(Xy, Xi) = E{(Xs — ps) (X — pe) }

and this is a semi-positive definite function.

The (auto)correlation function of a time series is
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which takes values in the range [-1,1].
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Properties of Time Series: Stationarity

If S is a set, then we use u+S to denote the set {u+s: s in S}, and Xs to denote the set of
random variables {X;: s in S}. A stochastic process is said to be

strictly stationary if for any finite subset S < T and any u such that u+S < T, the
joint distributions of Xs and Xs., are the same;

second-order stationary (or weakly stationary) if the mean is constant and the
covariance function depends only on |s-¢|.

When T = {0, £1, 42, ... } and the process is stationary
’Y(t, ¢+ h) = 7(07 h) — 7(07 _h) = Y|h| = Vh; heZ

where h is called the lag. The same is true for the correlation function. So, in the
stationary case the covariance and correlation functions are symmetric around h=0.



Properties of Time Series: Ditlerencing

We define the backshift operator B such that BX; = X;.; and then define the first
difference of the time series via

VXt 7T ([ s B)Xt — Xt T Xt—l
Similarly, the second difference of the time series is defined as
2
V Xt _— V(VXt) S V(Xt — Xt—l) = Xt == 2Xt—1 h Xt—2
and so on for higher differences.

Differencing is useful since if X; has a trend which is a polynomial of degree k then
the differenced series {V X t}wﬂl be stationary.



Propertes of Time Series: Causality

Suppose a time series can be written
X = E (0 jWt—j

where {w;} is a white noise process, 3" |¢;| < oo, and ¢y = 1 .The process is causal if
the coefficients in this expansion for negative indices vanish, ¥_1 = 95 = --- = 0,
so the value at time t does not depend on any future values of w.

The above expression can be written in terms of the backshift operator B as

Xy = Y  ;Blw, = p(B)uwy

j=—00

which defines a polynomial 1 (B). The properties of this polynomial, in particular
the location of its roots, is important for determining the properties of the time
series.



Moving Average Processes

A time series is a moving average process of order q (denoted MA(q)) if

Xy =wg+ 01w 1 + -+

where 61, . . ., (9q are real-valued constants.

qWt—q

The mean of an MA(q) process is zero, while the autocovariance is

(k) = cov( Xy, Xeyr) = B[ X Xiyn] — 07

= E[(fow; + - - - + Oqwi—g) (Qowisn + - - - + Oqwitn—g)]

q q
i Z Z HTHSE[wt—rwt—l—k—s] .

r=0 s=0
which can be simplified by noting

G e e e s
E[wt—swt—l—k—r] TE { 0

otherwise (since w; are uncorrelated).



Moving average processes

Hence we obtain

0 it |k| > ¢
v(k)z{

= o
o* g:l) | 9r97«+|k| if k| < gq.

From which the autocorrelation can be found

(k) = 0 if (k| > q
P = a—|k| 9r9T+|k|/ > (97% it k] <gq

~+7r=0 ~+7=0

We note that both the autocovariance and autocorrelation vanish for |kl > g. This is
important for identifying MA(q) processes in observed data.



Invertuble Moving Average Processes

The autocorrelation function does not uniquely specify a moving average process.

1
Xt = ik = th_l and Xt — Ik = gwt_l

Consider, for example, the two time series

These both have autocorrelation function

(1) = p(-1) = .

However, rearranging the first process we obtain

wy =Xy —0Xy 1 +0°X; 0 — -

while for the second process we obtain

1 1

wy = Xt — gXt—l | 6,2Xt—2 Bl

These series cannot both converge. This motivates the notion of invertibility.

p(k) =0 for |k| > 1




Invertuble Moving Average Processes
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Invertuble Moving Average Processes
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Invertuble Moving Average Processes

An MA(q) process is said to be invertible if it can be written as a convergent sum of
present and future values of X; of the form

with ) || < 00. There is a unique invertible MA(q) process corresponding to any
given autocorrelation function.

Invertibility of an MA(q) process can be evaluated by writing
Xt = Wy + let—l 3= 0 90— qut—q
— (1 —+ (913 -+ (92B2 —+ -+ Hqu)wt

The process is invertible if all the roots of ( B) lie outside the unit circle.



Autoregressive Processes

The time series { X4} is said to be an autoregressive process of order p, denoted
AR(p), if it can be written

2o = G T B G S o R el G S S

where {w} is a white noise process and (1, (g, . . . , Oty are constants.

Example: AR(1)

Xt = 1 X1 + wy
Repeated substitution gives

Xe=ag(onXp—o +wpq) +wp = wy + aywi—q + a%wt_z 4.

So an AR(1) process can also be written as an infinite order MA process.



Example: AR(1) process

The mean is clearly zero and the covariance is

A (8) = cov(Xe, Xuu) = E (z w) (z w>
L\ 5= =0

= ¢° Z oz’io/f” for £ > 0 since E|w;_;w;y—;] = 0 unless j =k +1¢
i=0

.
= if o] < 1.
i-op

So the AR(1) process is stationary provided || < 1,



Autoregressive Processes

For a general AR(p) process we can write

Xt = OélXt_l o OégXt_Q s e OépXt_p — Wy
=" i85 =t = = o, B?) X; = wy
¢(B)Xt — Wt.

Recall that a causal time series was one for which X; can be written as a sum of past
values of w;. In other words

X = @D(B)wt

with Zf?ig |¢z| < OO, This is possible if the function ¢(B)has an inverse. This is
guaranteed if all roots of the polynomial ¢(u) lie outside the unit circle.



Autoregressive Processes
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Estimating properties of time series

Having observed a sequence of values of a time series, {x1, x2, ..., X1/, we are
interested in trying to identify what kind of process it might represent.

The mean can be estimated from the sample mean

n
B 1
ZE:—E X;
n
t=1

The autocovariance function can be estimated from the sample autocovariance
coefficient at lag k

i n—k
e PICELCEL)
The autocorrelation function can be estimated from the sample autocorrelation
coefficient at lag k
Ck
T — —
Co

A plot of ¢ against k is called a correlogram.



Tests for white noise

For a white noise process with n >> 0, we have
r~N(0,1/n)

Individual coefficients can be compared to a suitable threshold, or the total number,
b, out of m coefficients exceeding the threshold can be calculated and compared to

b~Bin(m, 0.05)

Another possibility is to use the portmanteau or Ljung-Box test, which uses

(TL ar h)_lﬁi&X"m

NE

Qmn = n(n + 2)

T
=



T'ests for stationarity

One common test for stationarity is to fit a model of form

Xy = &L+ + &, Ny = Ni—1 T Wy, Wy ~ (O o )

[f:0,0 =10 this process is called either level stationary (if § — () or trend
stationary (if & = 0).

The KPSS test for stationarity uses the statistic
t

Cly=6(1)"2) S?, whereS;=)» ¢, t=1,...,n
=

j=1
where {e;} are the residuals from fitting a straight-line regression to the data.

The distribution of C(I) is tractable under certain generic simplifying assumptions,
but the distribution is non-trivial.



Idenufying an MA(qg) process

Identification of an MA(q) process is based on inspection of the sample
autocorrelation coefficients, since for an MA(q) process

p(k) = 0 for |k| > q
For an MA(q) process we expect
o 711,72 ..., 1g to be significantly different from zero
° 7441, ... to be randomly distributed about zero.

+ This can be assessed by inspection of the correlogram.



Idenufying an MA(qg) process

MA(1) MA(1) autocorrelation function

-0.5
I
1
\




Identifying an AR(p) process

The correlogram is not so useful for identifying AR(p) processes, as all coefficients

are non-zero, although typically get smaller with k.
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Identifying an AR(p) process

To identify a general AR(p) process

P
— E o; Xy + wy
e

we find the (least squares) coefficients that minimise

2
- § Lt — E ALt
t=p+1
The minimising coefficients, C¢1, Qtg, . . . , Ozp, are called the sample partial

autocorrelation coefficient at lag p. A plot of these coefficients versus lag is called
the partial autocorrelation function (pacf).

In the same way that the correlogram can be used to estimate g for an MA(q)
process, the pacf can be used to estimate p for an AR(p) process.
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Time Series Residuals

A time series residual is defined as the difference between the observed and fitted
values. For example, if X;is an AR(1) process, the residual is

Wy = Ty — QTy_q
Where the estimate of the coefficient can come from the pacf or somewhere else.
The residuals can be assessed in a number of different ways

o Plotting the residuals versus time. The residuals should be uncorrelated and
randomly distributed about zero. Any patterns in the data, or significant outliers
suggest that the model is not well fitted.

o Use the Ljung-Box statistic.

o Look at the correlogram of the residuals. Any autocorrelation coefficients lying
outside the range +2 /n05 can be said to be significantly different from zero at the
5% significance level.



ARMA processes

The time series { X}/ is said to be an ARMA(p,q) process if

Xt — Clet—l + CYQXt_Q 4+ ...+ CVpXt_p + Wi —+ let_l 4+ ...+ qut—q

where {w;} is a white noise process. Using the backshift operator we can write

The ARMA(p,q) process is invertible if the roots of #(B)lie outside the unit circle
and it is causal if the roots of ¢(B) lie outside the unit circle.

An ARMA (p,q) process is regular if it is both invertible and causal and 6(B)and ¢(B5)
have no common roots.



ARMA processes

A regular ARMA(p,q) process can be written

Xt_¢(B) t w(B) t
where
H(B)

w<B>=@:¢o+w13+¢232+...=;¢i3i

In other words, X; can be expressed as an infinite order moving average process
Xt = wy + Prwe—1 + Yowpo + . ..
This is known as the Wold decomposition.

Similarly, we can write the inverse

R () N
Wy = @Xt = 1(B)X, = ;th_i

These expansions can be used to derive properties of the time series, e.g., the
autocorrelation function.



ARMA processes
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ARMA processes with constant mean

A generalisation of the ARMA(p,q) process takes the form
Xt — CF CVlXt_l == OZQXt_Q s CVpXt_p -+ Wi + (91?1]75_1 (A (ngt_q
Defining C
= = E[X{]

| FEN R A S

We see that the transformed series

Yi=Xy —p

is an ARMA(p,q) process. If this process is regular then




ARMA processes with constant mean

I
I

00000




ARMA processes with constant mean
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ARIMA processes

ARIMA processes are an example of a non-stationary time series. If {X;} has a trend
that is a polynomial of degree less than or equal to d then this can be eliminated via

e =G = (= B0

If {Wy} is an ARMA(p,q) process then {X;} is called an autoregressive integrated
moving average process and denoted ARIMA(p,d,q).

If {Wi} is regular, we can write
o(B)W, = 0(B)wy
Defining ®(B) = ¢(B)(I — B)* we have

(B)X, = ¢(B)(I — BY'X, = 9(B)W, = 0(B)w,



ARIMA processes

The series {X;/ is invertible since the roots of #(B)lie outside the unit circle.

We may write

W — —Xt = H(B)Xt = Xt E ’7T1Xt_1 -+ 7T2Xt—2 e

and note

1—|—7T1—|—7T2—|—...:O.

ARIMA(p,d,q) processes are in general not causal, since ®(B)has d roots on the unit
circle.
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ARIMA processes
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ARIMA processes
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ARIMA processes with constant mean

» The generalisation of the ARIMA model to non-zero mean is

o(B)(I — B)*X; = ¢+ 0(B)w;

»  Asin the ARMA(p,q) case, we can reduce this to a standard ARIMA(p,d,q) model by
subtracting the mean.

C

Y, = X, — At* here A =
; : FeRN e dl(l—a; —as—...—ayp)

»  which is an ARIMA(p,d,q) model with zero mean

#(B)(I — B)"Y, = 0(B)uw,



ARIMA processes with constant mean
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ARIMA processes with constant mean
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ARIMA processes with constant mean
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