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4 Bayesian Theory

As we have seen, in frequentist statistics statements are made with reference to repetitions of
the same experiment with parameters fixed. In Bayesian statistics, parameters are no longer
regarded as fixed, but are themselves random variables. The probability distribution of the
parameter values before taking data, the prior distribution, is updated to a probability
distribution after taking data, the posterior distribution, through the likelihood of the
observed data. This update is achieved through Bayes’ Theorem. Bayesian inference
attempts to say as much as possible about the unknown parameter distribution based on the
observed data only, without reference to future repetitions of the same experiment. Bayesian
posteriors are probability distributions on the unknown parameter and can be interpreted
and manipulated in that way, as statements about the relative probability that the parameter
takes different values.

The derivation of Bayes’ theorem is a mathematical result that follows from the definition
of conditional probability, as we will see below, but it is how this result is applied to interpret
data, and the philosophical distinction in the interpretation of the parameter values that
distinguishes the frequentist and Bayesian approach. Typically, in any given observation,
the actual parameter values that led to the generation of the observed data are fixed, not
random, but the Bayesian interpretation is that you can never by sure of what the unknown
parameter is, and so it is appropriate to consider it to be a random variable. In many cases
you will not be able to repeat a particular experiment. Gravitational wave observations are
a good example of this — we cannot choose what events occur in the Universe, so every
observed event is a unique, non-repeatable, experiment. In such contexts, the frequentist
approach of referencing theoretical repetitions cannot really be seen as representative of
reality. In cases where it is possible to repeat an experiment with the unknown parameters
fixed, the Bayesian posterior converges to the true parameter value asymptotically and so
can still be used to represent the current level of uncertainty in the parameter.

Frequentist concepts such as significance and hypothesis testing have been incorporated
into the Bayesian framework, but the interpretation in the latter context is not always clean.
It is therefore useful to have familiarity with both sets of tools to be fully quipped to handle
any kind of data analysis problem.

4.1 Conditional probability

It is often the case that a process generates more than one potentially measurable random
output, but only a subset of these are measurable. If the variables are independent then
measuring one would not provide any information about the others, but when there are
inter-dependencies the observation of a random variable can provide information about other
variables with which it is correlated. For example, suppose we have a bag containing 100
balsa, of which 10 are red and stripy, 20 are blue and stripy, 30 are red and spotted and
40 are blue and spotted. In total there are 30 stripy balls out of the 100 and therefore
the probability that a randomly chosen ball is stripy is 3/10. However, out of the 40 red
balls there are only 10 that are stripy, and so if we have observed that the ball is red the
probability that it is also stripy is now 1/4.
The conditional probability of an event A, given some other event B is defined as

p(ANB)
p(A|B) = 5
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In other words, this is the fraction that both A and B occur, our of all the times that B
occurs. This can be rewritten in two different ways by interchanging A and B

p(AN B) = p(A[B)p(B) = p(B|A)p(A).
Rearranging this identity we obtain Bayes’ Theorem

p(BIAp(A)

p(A|B) = (B

4.2 Bayesian inference

Bayes’ Theorem is a mathematical identity, but it becomes philosophically distinct from
frequentist approaches when it is applied to inference. In Bayesian inference, the event A
is taken to be an observation of data, x, and the event B is taken to be the value of some
unknown parameters, 5, characterising the system being observed. Bayes’ Theorem becomes

i) Pl
p(x)

In this context p(x|f) is the likelihood (the same function of data and parameters as in the
frequentist case), p(g) is the prior distribution of source parameter values, p(67|x) is the
posterior distribution on the source parameter values and p(x) is the evidence for the
model under consideration. In a parameter estimation context, the evidence, which does not
depend on parameter values, is a normalisation constant that can be ignored. However, it
plays an important role in Bayesian hypothesis testing, which will be discussed in section 4.6.

Example: Medical testing We suppose that a medical test for a disease is 95% effective
but has a 1% false alarm rate and the prevalence of the disease in the population is 0.5%.
You test positive for the disease. What is the probability you do in fact have it?

The term “95% effective” means that if you have the disease the test gives a positive
result 95% of the time. The term 1% false alarm rate means that if you do not have the
disease you test positive 1% of the time. We can now apply Bayes theorem with data x =
‘positive test’ and parameter § =‘disease status’ taking values ‘infected’ or ‘not infected’.
The likelihood is

p(positive|infected) = 0.95, p(positive|not infected) = 0.01.
The prior is based on the known prevalence in the population
p(infected) = 1 — p(not infected) = 0.005.

The posterior is then

p(positive ’ infected) p(infected)

infected |positive) =
plinfectedpositive) p(positive|infected)p(infected) 4 p(positive|not infected)p(not infected)

0.95 % 0.005
= = 0.323. 29
0.95 % 0.005 + 0.01 * 0.995 (59)
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So you are more likely not to be infected than to be infected if you get a positive test result.
The solution is to get a second opinion. If you take a second (independent) test and it is
also positive your posterior probably of being infected is now

0.95 % 0.323 0.95 % 0.005
infected|2nd positive) = = 0.978 = .
plinfected|2nd positive) = G e 0 01 0.677 0.952  0.005 + 0.012  0.995

The first of these two results follows from using the posterior from the first test as a prior for
the second. The second result follows from regarding the observed data as “two independent
positive tests”.

Example: Blood evidence Based on other evidence, a detective is 50% sure that a
particular suspect has committed a murder. Then new evidence comes to light. A small
amount of blood, of type B, is found at the scene. This is not the victim’s blood type, but it
is the blood type of the suspect. Such a blood type has a prevalence of 2% in the population.
What is the detective’s confidence in the guilt of the suspect in light of this new evidence?

The likelihood is
p(type B blood|guilty) = 1, p(type B blood|not guilty) = 0.02.
The prior is p(guilty) = 0.5 and so the posterior is

p(type B blood‘guilty)p(guilty)
p(type B blood|guilty)p(guilty) + p(type B blood|not guilty)p(not guilty)

0.5
= —— =(0.98. 60
0.5+0.01 (60)

p(guilty|type B blood) =

4.3 Choice of prior

The prior plays a key role in Bayesian parameter inference. It expresses the current state
of our understanding about parameter values, and it is updated to the posterior using data
via the likelihood. Mathematically, the prior represents the distribution of the unknown
parameter value in nature, but usually this is not known. In that case, the prior reflects
the current state of knowledge about the parameter values, which may come from previous
experiments or expert opinion or not be known.

4.3.1 Informative/expert priors

If information is available, it is appropriate to use informative priors. For example, if previous
measurements have been made of a quantity it is reasonable to use the posterior from those
measurements as a prior for the next measurement, as we saw in the medical test example
above. Alternatively, even if a measurement has not been made directly, “experts” may be
able to give a reasonable range or distribution for the parameter based on experience in
other situations. One criticism that is often levelled at Bayesian inference is that the result
can depend on the assumed prior. However, the Bayesian response is that this is desired
behaviour — if we have additional information from prior knowledge, then it is the correct
thing to do to include that in our conclusions based on subsequent observed data.

The process of constructing a prior based on the opinion of experts is known as elici-
tation. Sometimes, elicitation may result in different priors from different experts. In that
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case a mixture prior can be constructed

J
) Z w;p;(0)
7j=1

where j labels which of the J experts we are referring to, pj(g) is the prior elicited from that
expert, and w; is the weight given to that expert (or set of experts).

If the prior is based on the posterior from previous observations it is normally clear
how to fold this in. If the prior comes from expert opinion, it may be possible to use this in
several different ways. In that case, care must be taken to be as conservative as is reasonably
possible in the use of that prior information, to avoid making conclusions form the data that
are too strong.

4.3.2 Conjugate priors

It is convenient to choose a form for the prior that ensures the posterior takes the same form.
In such situations, the posterior from an experiment can be directly be used as a prior for
the next experiment and so on. Such a prior is called conjugate.

Definition: A family of distributions, F, is conjugate to a family of sampling distribu-
tions, P, if, whenever the prior belongs to the family F, the posterior belongs to the same
family, for any number and value of observations from P.

The form of the conjugate prior depends on the nature of the probability distribution, P,
from which the observed data is drawn. This gives rise to a number of conjugate families.
In particular, any distribution in the exponential family

p(z|6) —exp{ZA B;(0) + C(ﬁ)ﬁ—D(l’)} Va0
has a conjugate prior in the exponential family of the form

p(OIX.v) = p(X.v) exp |07 — vA(D)| (61)

where v and Y are the hyperparameters of the prior distribution.

A full list of conjugate priors can be found in the conjugate prior entry on wikipedia,
but the three most widely used are the Beta-Binomial, Poisson-Gamma and Normal-Normal
families, and we will discuss these further here.

Beta-Binomial model Suppose our observed data X ~Bin(n, p) with likelihood

p(x|p) = < Z )px(l —p)"

The conjugate prior is the Beta(a, b) distribution with density

p(p) = 1 —p)tt = DT ety et
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Observing binomial distributed data and using the Beta prior gives a posterior

p(p | x) < p(z | p)p(p)
= (Z)px(l _ p)nf:r 553);(21pa1(1 - p)b—l

a+ac—1(1 o b—&-n—ac—l.

x p p)
So the posterior is also a Beta distribution
p(p | ) = Beta(a + z,b+n — x).

The mean and variance of a Beta(a, b) distribution are

a ab
E(X) = X) = )
(X) a+b’ var(X) (a+b)*(a+b+1)
The posterior mean is therefore
E(plr) = ——
piv) = a+b+n

which we compare to the mean in the observed data of x/n. One interpretation of the prior
data is that it represents having observed a — 1 events in a + b — 2 previous trials. If a and b
are kept fixed and n,z — oo the posterior mean tends to the maximum likelihood estimator
x/n and the posterior variance tends to zero.

Poisson-Gamma model Suppose now that we are observing data, Xi,...,X,, from a
Poisson distribution, X ~Pois(\), with likelihood

s 0 =TT {5}

i=1 '

The conjugate prior is the Gamma(m, ) distribution
1
Y 7 — m)\m—l —,u)\’
P 1) = Fros A"

which has mean m/p and variance m/p?. With this prior the posterior is

P(A | x) o< p(x[A)p(A)

Y[ AmeA } 1 L

— Ium>\mf ek

E { ;! ['(m)
—n)\—,LL)\)\Z?:l zi+m—1

xX e

o« Gamma(m + nZ, it + n). (62)

The posterior mean can be seen to equal

B x) = 2 o () (1 ),

m-+n n+m u n+m

i.e., it is a compromise between the prior mean, m/u, and the maximum likelihood estimator
Z. As the number of samples increases, more weight is placed on the data and less on the
prior, as expected.
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Normal-Normal /Normal-Gamma model Now we consider Xy,..., X, ~ N(u,oc?),
and likelihood

p(x|p,0%) = exp

1
(27m02)2

We assume first that o2 is known. The conjugate prior in this case is the Normal distribution,
N(:uOv O-(%)v
(1t | o, 05) . [ L )2}
,00) = ——exp |——=(u — .
Py | fo, 0g \/%0'0 p 20(2) 2 Ko

The posterior is

p(p | x,0%) o< p(x | 1, 0)p(pl o, o5

x exp {—% Z(m — u)Q} exp {—rig(u — uo)Q}

1 i
o exp {_F%g (112 (nog + %) — 2u(ngog + poo®)] } ,

which can be recognized as a N (u,,02) distribution, where

mI:
[N}
[\]

= 2 2
nrog + poo
nog + o?

o, = == 1 (63)
) n n °
% 77,0(2)+02 %—i——g

Hn =

+ 2 070y
_l’_

SME
oml’_A

Writing these results in terms of 7 = 1/02, which is called the precision of the Normal

distribution we can see
T0 nTt

n — +
a TO+HTM0 7'0+n7'y

so once again the posterior mean is a balance between the prior mean and the sample mean,
with the relative weighting determined by both the number of observations and the relative
precision of the observations and the prior.

If we suppose that p is known (which is an unrealistic assumption in practice), but the
variance is uncertain, then we can obtain a conjugate prior by using a Gamma(a, b) prior on
the precision

p(T|a,b) role=tr

and obtain the posterior
p(7 | %, 1) o< p(x | 1, 7)p(7a, b)

o 7% exp {_% Z(l‘z — M)Q} il

Tt/ exp {—7‘ (b + % Z(xz - u)2> }

1 )
NGamma<a+2 b+22(xi—u)>.

=1
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It is common practice to take the limit in which a and b are both very small and then the
posterior becomes

p(7 | x, ) = Gamma (Z %Z(xz - M)2> = Elr|xpul= (%Z(% — ,u)2> ’

=1 i=1

so the posterior expectation of the precision is approximately the same as the (frequentist)
sample precision (up to a factor of n/(n — 1)).

Finally we assume that both g and ¢? are unknown. It would be reasonable to just
multiply together the two previous priors, but this does not result in a conjugate prior,
essentially because the posterior on p in the first case depends on the known variance o2
However, we can find a correlated conjugate prior (writing 7 = 1/0? as before) by writing

p~ N(po,1/(no7)), 7~ Gamma(a,b),

or, explicitly,

ung % NoT a—1 —br
p(M7T|M0,no,a»b) X (ﬁ) exXp [—T(M fho) } e,

The posterior on pu, conditioned on 7, p(u|7,x), is given by the same expression as before

Nnollo + NT 1
7,X) ~ N , .
p(uirx) < no+n (ng+ n)7'>

The posterior on 7 can be found by considering the combined posterior, being careful not to
drop any terms that depend on p or 7

n

p(p; 7|x) o< /T exp [—g D (@i —p)’

noT

T3 exp [——

5 (N_:U/O)2i| 7_a—le—br

=1

= 792 lexp [— (b — (mj o) + nouo + = Z ) }

" 2(n+ng)
( CESTEN _@(M_M_ZWD (64

If we now marginalise over u, the round bracketed term on the final line integrates to a
constant, independent of 7, and the term inside the exponent on the penultimate line can
be simplified to obtain

n 1 — nn,
p(7]x) oc 79 2 " Lexp [— (b + 3 lzl(xz — )%+ Z(n——l—ono)wo — f)2> T]

n 1 _\2 nng _\2
= p(7]x) ~ Gamma (cH— 2,b—|— 5 ;(xl z)° + 30n + o) (o — ) ) . (65)

And so this is also a conjugate prior model, called the Normal-Gamma model.
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4.3.3 Using expert information with conjugate priors

If expert prior information is in the form of a posterior from a previous experiment the form
of the distribution is fixed. However, in other circumstances it can be possible to express
the prior information in the form of a particular choice of parameters for a conjugate prior.
This is most clearly seen with an example.

Example: Consider a drug to be given for relief of chronic pain. Experience with similar
compounds has suggested that response rates, p, between 0.2 and 0.6 could be feasible. We
plan to observe the response rate in n patients and want to infer a posterior on p. Propose
a suitable conjugate prior for p based on the available information.

A response rate between 0.2 and 0.6 could be used to set a uniform prior in that range.
However, this is not conjugate to the binomial distribution that determines the observed
data. Therefore, it would be better to use a conjugate prior. A U[0.2,0.6] distribution
has mean 0.4 and standard deviation of 0.1. We can find a Beta distribution that has
the same mean and standard deviation. Rearranging the equations given earlier we deduce
Beta(a = 9.2,b = 13.8) has the desired mean and variance. This prior is conjugate and
reflects the expert opinion as regards the expected response rate for the drug. Suppose
now we observe n = 20 patients and x = 15 respond positively. The posterior is then
Beta(9.2 + 15,13.8 + 5) = Beta(24.2,18.8). The prior, (scaled) likelihood and posterior are
illustrated in Figure 4.

4.3.4 Mixture priors

The use of a conjugate prior can be somewhat restrictive as there is limited flexibility within
the prior family. However, one way to get around this is by using mixture priors. A
mixture prior is of the form

p(0) = Z%‘P(m Up), Y om=1 (66)

Here {7,} are called the mixture weights and it is assumed that the hyperparameters, 1;, are
different in each component. If the mixture components are all drawn from the conjugate
prior family, then the mixture prior is also conjugate.

Example: Beta-Binomial mixture prior Suppose X ~ Bin(n,p) and we use a prior
on p that is a mixture distribution

p(plai, b1, as, by) = mBeta(ay, by) + (1 — m)Beta(asg, by).

What is the posterior distribution for p?
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Figure 4: Conjugate prior, Beta(9.2,13.8), likelihood, Bin(20,p), and posterior,
Beta(24.2,18.8) for the drug response problem described in the text. The likelihood has
been rescaled to ensure it has a similar height to the prior and posterior distributions.
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Solution: We find the posterior as follows

p(p | ) o (Z)P’(l -p)" {ﬂB(aibl)p‘“‘l(l —p) T (1 - w)ﬁp”_l(l - p)b2—1}

a23b2
1 a;+z—1 bi+n—xz—1 as+r—1 bo+n—z—1
- 1 1 _ 1 1 _ - 2 1 _ 2
TP (I-p) +( ”)B(ag,bz) (I-p)
_ B(al +x,01 +n— .CE) 1 a1+zfl(1 _p)lernfmfl
B(ay,by) B(ay + z,by + n —x)
B(ag 4+ z,by +n — x) 1 _ e
1— ’ as+x—1 1— bo+n—z—1
LS TP Ry Ty s LS
B(ay + x,by + n —x)
T Blar.by) eta(p | a1 + 2,01 +n — x)
B b —
+(1—-m) (a2 +@,;+ 1 I)Beta(p|a2+x,b2+n—x).

.B((J,Q7 bg)

We finish by normalising the weights to obtain

plax~wBeta(p|a +x,by +n—1x)+ (1 —wy)Beta(p | ag + z,bo +n — x)

Wy =T

B(al,bl) +(1 _77) B(ag,bg)

B(ay +z,by +n — z) ( B(a; +z,by +n — x)
B(al,bl)

B(ag+x,bg+n—x))l

So the posterior is also a mixture of Beta distributions.

4.3.5 Jeffreys prior

If we do not have any prior information, it is normal to use an “uninformative” prior, i.e.,
a prior that assumes as little as possible about the parameter values. It is common to use
uniform priors as uninformative priors, so that the posterior basically corresponds to the
likelihood of the data. This is approach taken for many parameters in parameter estimation
of gravitational wave data and was in fact the approach that Bayes himself advocated.
However, uniform priors are not invariant under re-parameterisation. If one is ignorant
about the value of 6, one is also ignorant about the value of 6% or any other function of
0. Therefore, any uninformative prior should induce the same form of uninformative prior
on any other variables defined by transformation. Jeffreys (1961) proposed a class of priors
that are invariant under re-parameterisations. By identifying the probability density with a
metric on parameter space he argued that the prior should take the form [det(g;;)]/? where

the metric
L of of

f(@) 00, 00,

—

9:5(0)

—

This would lead to an invariant prior for any scalar function f(6). Jeffreys advocated the
use of the likelihood, which introduces a data dependence into the expression, that can be
eliminated by taking the expectation over realisations of the data. This procedure leads to
Jeffreys prior which is

= = = ol ol
p(0) o< \/det[1(0)], where 1(0);; = E [892- 8_9]]

for | = log p(x|0) the log-likelihood is the Fisher information matrix.
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Jeffreys prior is “uninformative” because it can be interpreted as being as close as possible
to the likelihood function and it is invariant under re-parameterisation. However, it is rarely
a member of the conjugate family of distributions or of some other convenient form which
is why it is not always convenient to use it in practice. Note also that the Jeffreys prior is
not always proper, i.e., it does not always have a finite integral and therefore may not be
normalisable.

Example: Poisson distribution For a single observation, z, from the Poisson(\) dis-
tribution with pmf

A2
Pl =25
we have
dlogp =« 0?logp x 9 logp 1
= — — = —— IN=E|— = —.
o A on o o IW N2 X

The Jeffreys prior for the Poisson distribution is therefore p(\) oc 1/v/X. This is an example
of an improper prior, since it cannot be normalised to integrate to 1 unless the range of
rates is restricted.

4.4 Posterior summary statistics

The result of a Bayesian inference calculation is a probability distribution, the full posterior
probability distribution of the parameters, p(ﬂx). This is not only difficult to calculate in
many cases, it is also unwieldy to manipulate and so it is common to use quantities that
summarise the properties of the distribution. These are all of the summary statistics that
we encountered in the first chapter of the course.

4.4.1 Point estimates

To obtain point estimates of a parameter value, #; say, one typically works with the marginalised
distribution for that parameter, defined by

—

pmarg(el‘x> = /p(9|X)d92 .. d@m

From this marginal distribution, we can evaluate the posterior mean

n = / elpmarg<ellx>d91

or the posterior median, m, defined such that

/ pmarg(‘91|x)d91 =0.5= / pmarg(91|x)d01

—0o0 m

or the posterior mode
M = argmax pparg(01]%).

The posterior mean and mode can be defined unambiguously over the full distribution as
well. The posterior mean is the same whether computed over the marginal distribution or
the full distribution, but the mode typically changes. The median is not unambiguously
defined on the whole distribution, as there are infinitely many ways to partition the full
parameter space into equal probability subsets.
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4.4.2 Credible intervals

To move beyond point estimates, it is natural to want to describe ranges in which parameter
values are estimated to lie. The Bayesian equivalent of a frequentist confidence interval is a
credible interval. This is defined as

Definition: An interval (a,b) is a 100(1 — )% posterior credible interval for 6 if

b
/ pmarg(01|x)d01 - (1 - CY), 0 S « S 1.

A credible region can be defined in a similar way. This is any partition of parameter
space that contains 100(1 — )% of the total posterior probability. Clearly credible intervals
and regions are not unique, but there are two types of credible interval that are commonly
used.

Definition: An interval (a,b) is a symmetric 100(1 — «)% posterior credible interval
for 60, if

a a [e’)
[ @10, =5 = [ (s
b

— 00

Definition: An interval (a,b) is a 100(1 — a)% highest posterior density (HPD)
interval for 0, if

1. [a,b] is a 100(1 — «)% credible interval for 6;

2. for all 0 € [a,b] and ¢ ¢ [a, b] we have prarg(0]%) > Dmarg (0']%).

Credible intervals are more intuitive than confidence intervals as they make an explicit
statement about the probability that the parameter takes values in the range, rather than
referencing an ensemble of similar experiments.

4.4.3 Posterior samples

Summary statistics provide a useful way to summarise and compare distributions, but they
inevitably discard information. To retain full information about the parameters we need the
full posterior. Often this cannot be written down in a simple analytic form, but it can be
summarised by drawing a set of samples {0:, e ,§M} randomly from the posterior. Such
samples can then be used to compute integrals over the posterior

Most quantities that one might wish to compute from a posterior distribution can be ex-
pressed as integrals of this form, and so generation of such samples is the most complete way
to represent posterior distributions. Efficient production of samples is non-trivial and will
be the topic of the next chapter of these notes.
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4.5 Interpreting summary statistics
4.5.1 Decision theory

The posterior mean, mode and median are all valid ways to summarise a posterior distribu-
tion. One way to motivate these (and other possible) choices is through decision theory. In
decision theory, understanding which decision is the best is motivated by introducing a loss
function which characterises the cost or penalty of making a particular decision. Formally
we define various quantities

e The sample space X denotes the possible values for the observed data, x.

e The parameter space, )y, denotes possible (unknown) states of nature (or parameter
values characterising the true pdf of observed data sets).

e We define a family of probability distributions, {Py(z) : € X,0 € Qp}, which
describe how the observed data is generated in the possible states of nature.

e The action space, A, is the set of actions that an experimenter can take after observ-
ing data, e.g., reject or accept a null hypothesis, assign an estimate to the value of
etc.

e The loss function, L : 2y x A — R, is a mapping from the space of actions and
parameters to the real numbers, such that L(a, ) is the loss associated with taking
the action a when the true state of nature is 6.

e The set of decision rules, D, is a set of mappings from data to actions. Each element
d € D is a function d : X — A that associates a particular action with each possible
observed data set.

For a parameter value 6 € )y, the risk of a decision rule, d, is defined as

L(0,d(x))p(x;0) for discrete X
= :cEX ) )
R(0,d) = EpL (0, d(X { [y L(0,d(x))p(x;0)dz  for continuous X.

In other words, the risk is the expected loss of a particular decision rule when the true value
of the unknown parameter is #. Note that this is fundamentally a frequentist concept, since
the definition implicitly invokes the idea of repeated samples from the parameter space X
and computes the average loss over these hypothetical repetitions. However, it is possible to
extend these ideas to a Bayesian framework by defining a prior, m(6), over the parameters
of the distribution. The Bayes risk of a decision rule, d, is then defined as

r(m,d) = /aeﬂ R(0,d)m(0)de,

or by a sum in the case of a discrete-valued probability distribution. A decision rule is a
Bayes rule with respect to the prior 7(+) if it minimizes the Bayes risk, i.e.,

r(m,d) = dlIElfDT(ﬂ' d) = m,, say.

Note that, as usual in a Bayesian context, the Bayes rule depends on the specification of the
prior and therefore there will be infinitely many Bayes rules for any particular problem. A
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useful choice of prior is the one that is most conservative in its estimate of risk. This gives
rise to the concept of a least favourable prior. The prior 7() is least favourable if, for
any other prior 7/(#) we have

r(m dy) > r(n, dw)

where d, d. are the Bayes rules corresponding to 7(-) and #’(-) respectively.

4.5.2 Bayes rules as minimizers of posterior expected loss

The Bayes risk can be written as

r(md) = / R(0, d)r(0)d0

_ /Q/L )p(x]0)7(0)dxd
_ / /XL p(6]2)p(z)dzdd
=t/<w{/ Lo, <»<mmw}m

where the second line follows from the definition of the risk function and the third line follows
by using Bayes’ theorem to write p(z|0)7(0) = p(0|z)p(x) in terms of the posterior p(6|x)
and the evidence p(z). The Bayes rule minimizes the Bayes risk. We see that this minimum
is achieved for a particular value of x by making the decision that minimizes the expression
in curly brackets. This is the expected posterior loss associated with the observed x. This
observation simplifies the calculation in many cases and also illustrates the general property
of Bayesian procedures, namely that the decision depends only on the observed data and
not on potential unobserved data sets.

We will illustrate this with four examples. In the first three examples, we are attempting
to make a point estimate and so the decision is an assignment of the value of the parameter
d=9.

Example: Point estimation with squared error loss Suppose we want to make a
point estimate of a parameter and we use a squared error loss function, L(0,d) = (0 — d).
Find the Bayes rule.

Solution

The Bayes rule chooses d(Y') to minimize

Kje—@%wwme

Differentiating with respect to d and setting this to zero gives

=

/ O —dp@le)dd=0 = d= [ op(6lz)do

Qg

In other words, the Bayes estimator of 6, with squared error loss, is the posterior mean.
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Example: Point estimation with absolute magnitude error loss
Suppose we instead use the loss function L(#,d) = |# — d|. Find the new Bayes rule.

Solution
In this case, the Bayes rule minimizes

d )
/ u—emwuma+/ (0 — d)p(6])do.
—00 d
Setting the derivative with respect to d to zero now gives
d 9] d 00 1
/ p(0]x)dd — / p(Olx)dd =0 = / p(0|x)do = / p(f]z)dl = 5
d —00 d

—00

In other words, the Bayes estimator of #, with absolute magnitude error loss, is the posterior
median.

Example: Point estimation with delta-function gain
Suppose we instead use the loss function

o {000 14t

In other words, the loss is infinitely higher for any value except the correct one. Find the
new Bayes rule.

Solution
In this case, the Bayes rule minimizes

~ [ 80~ dpl6le)d0 = ~pldle).
The minimum loss is obtained by setting
d = argmaxp(d|x),

i.e., the posterior mode.

Example: Interval estimation
Suppose we have a loss function of the form

(0 if0—d <5
LW@V‘{1iﬂe—ﬂ>5

for specified 6 > 0. What is the Bayes rule?
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Solution

The expected posterior loss in this case is the posterior probability that |0 — d| > §.
The interval that minimises this loss, among intervals of fixed length 24, is the interval
that contains the highest posterior probability. This is called the highest posterior density
interval.

We see that all of the “natural” ways to obtain a point estimate from a Bayesian posterior
can be interpreted in terms of Bayes rule’s with different loss functions.

4.6 Bayesian hypothesis testing

The denominator that appears in Bayes’ theorem is the Bayesian evidence and can be com-
puted via

— —

2 =p(x) = [ plx | Bp(@)ad

When writing down Bayes’ theorem we suppressed the fact that all of the quantities were
conditioned on the particular model we were assuming for the data generating process.
Explicitly reintroducing the dependence on the model, M, we have

o) POIE (@D
PO =y

This makes it clear that the evidence, p(x|M), represents the probability of seeing the model
data under model M and can be thought of as the likelihood for the model given the observed
data. If we now have more than one model, M; and M, say, that we believe could describe
the data, we can compute the posterior odds ratio for M; over M,

0 _ p(x[My) p(M)
P p(x[Mz) p(Ms)

The first term is called the Bayes factor and is the ratio of the model likelihoods. The
second term is the prior odds ratio, which represents our prior belief about the relative
probability of the two models. The posterior odds is the ratio of model probabilities based
on the observed data and is the basis for Bayesian hypothesis testing. For O15 > 1 we favour
model M, while for O3 < 1 we favour M.

In the case of a flat prior on models the prior odds ratio is just 1 and decisions are based
on the Bayes factor. Kass and Rafferty (1995) described a ‘rule of thumb’ for interpreting
Bayes’ factors. This is summarised in Table 2. This Table can be used to interpret the
results of Bayesian hypothesis tests. Alternatively, the distribution of the Bayes factor can
be computed under the null hypothesis and used, in a frequentist way, to produce a mapping
between p-values and Bayesian posterior odds ratios.

The models M; and M, need not be very different, but could, for example, represent dif-
ferent regions of the parameter space of a distribution, e.g., M; : § € ©1 versus M, : 6 € O,.
If the two hypotheses are both simple then the Bayes factor reduces to the likelihood ratio,
which we saw was the optimal test statistic in the frequentist hypothesis testing context.

Computation of the Bayesian evidence is challenging. Most sampling algorithms that
return independent samples from the posterior ignore the evidence as it is just a normalisa-
tion constant. The evidence can be written as an integral over the posterior which can be
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Bayes Factor Interpretation
<3 No evidence of M; over My
>3 Positive evidence for M;
> 20 Strong evidence for M;
> 150 Very strong evidence for M,

Table 2: Table for intepretation of Bayes’ factors, as presented in Kass and Rafferty (1995).

approximated by a sum over samples

— — M

[ LT
Z p(X ’ 9) 2 M i=1 p(X ’ ‘91)

In other words it is the harmonic mean of the likelihoods of the samples. This is an extremely
unstable approximation, however, as this sum is dominated by points with small likelihoods,
but these are precisely the regions where there will be fewer samples and hence larger Monte
Carlo error. Other techniques, such as nested sampling, can be used to compute evidences
more accurately and these will be discussed in the next chapter.

Example: Suppose we have a two dimensional Normal likelihood of the form

5 1 — 2 1 _ 2 _ _ _ 2
p(x]0) = vi—p exp [__ ((951 2#1) + 20(451 ) (T2 — pi2) + (2 2#2) )] (67)
2mo109 ok 0102 03

and use priors for the parameters py and ps of the form

() = —L [—1 } () = —L— [—1 ] (68)
= ex —_ , = ex — .
Plin) = 5= D | = 5ol Pli2) = 5= oXP |~y

We are interested in comparing the two models
My : s =0, My = g € (—00,00).

The evidence for M; can be computed as

z 1 1 — p? z3(0f — (1 — p*)32) + 2px1290109 + 0523
= exp | —
LT oron\ o2+ 22 P 203(07 + 22

and for M, it is

1 1—p?
2y =5 2( 2 2 2( 2 oy S
2 \| of(03 + X3) + Xi(03 + (1 — p?)33)
23((1 — p*)2% + 0f) + 2pz1220100 + 21((1 — p*)23 + 05)]
253((1 = p*) %5 + 03) + 207 (03 + X5)
which gives the posterior odds ratio in favour of M,, for equal prior odds (which is just the
Bayes factor)

X exp [— (69)

oglzé:ag\/ 52 4 o .
z YU = p?)23 + 03) + 07 (X5 + 03)
" exp[ Y3(w2((1 = p*)XF 4 0F) + pr10103)? } (70)
2(X% + 07)o3(07 (X5 + 03) + X3((1 — p?) 23 + 03))
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This is difficult to interpret, but if we now assume that 32 > o2, i.e., that the prior in ju is
much broader than the typical measurement uncertainty, the odds ratio simplifies to

1 (1—p*)a3
Oy =~
" ”2\/0 A | o

We see that there is a competition between the size of the additional variable dimension
(characterised by ) in the first term and the weight of evidence for the additional effect
in the data (characterised by the second term). Only if the addition of the extra dimension
significantly improves the fit to the data (characterised by x5 which is effectively the peak
of the posterior in uy when that parameter is allowed to vary) should the more complex
model be favoured. If the fit does not improve, then the addition of the extra dimension is
penalised by the first term and so the more complex model should not be preferred. It is
often said that Bayesian posterior odds ratios automatically encode the notion of “Occam’s
razor”, i.e., one should use the simplest model that adequately describes the data since
adding extra degrees of freedom always improves a fit. This is the sense in which it is meant.
Addition of extra dimensions typically includes a prior penalty, as we see here, which will
lead to the disfavouring of an alternative model unless the likelihood shows a significantly
great improvement when the extra degrees of freedom are included.

4.7 Predictive checking

In both a frequentist and a Bayesian context it is natural to ask whether the model is a good
representation of the observed data. In the Bayesian context this is accomplished by using
predictive distributions.

Definition: the prior predictive distribution is the probability distribution

—

) = [ plxiip(d)ad

—

€O

This is the likelihood weighted by the assigned prior distribution and therefore represents
our a priori belief about the distribution of data sets that would be observed. Similarly, we
have the following

Definition: the posterior predictive distribution is the probability distribution

plylx) = / p(y|)p(Elx)dF

—

€O

This is the likelihood weighted by the posterior probability based on the observed data
x and is our expectation about the distribution of future data sets y.

The posterior predictive distribution can be used to assess whether the observed data is
unusual within the posterior distribution, which is an indicator about whether or not the
model is a good fit. Based on the observed data x we generate a large number of new data
sets {y1,...yn} that are similar to x, i.e., they consist of the same number of observations.
For each data set we compute a set of summary statistics, and hence obtain the distribution
of the summary statistics over many realisations of the posterior predictive distribution. We
can then assess the “p-value” of the observed data within these distributions. If it looks like
an outlier in any one of these distributions this suggests the model is not a good fit. Suitable
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summary statistics could include the maximum, minimum, median, skewness, kurtosis etc.
Ideally we choose summary statistics that are orthogonal to the model parameters to increase
sensitivity, since we are using the data twice (once to compute the posterior and once to
compare to the predictive distribution). Statistics that are effectively tuned to the observed
data will tend to lie in the middle of the predictive distributions by construction, even if the
model is poor. We will see an example of this in the next section.

4.8 Example: regression

To illustrate some of the ideas discussed above we will present a Bayesian analysis of a
regression problem. We suppose that we have made measurements of a set of values, {y;},
corresponding to sets of p known explanatory variables, {x;}, and we believe that these
follow a linear relationship with equal variance normally distributed errors

yiNN(X?E,UQ), i=1,...,N.

We want to infer the parameters of the linear relationship, E, and the unknown precision
7 = 1/0?. We use a Bayesian framework and so must write down prior distributions on these
parameters. We can assume a separable prior

P

p(3,7) =p(r) [ p(8)

i=1

and take Normal priors for the ;’s and a Gamma prior for 7 as these are conjugate priors
in the Normal-Gamma model

By~ N(ug,,0%), 7~ Gamma(a,b).

In the absence of prior information it is reasonable to set ug, = 0. Inferred values of
the coefficients that are non-zero then provide evidence for the existence of a relationship
between the observed data and those explanatory variables. Setting 0]2- to a large value, say
10%, indicates large uncertainty in the parameter values and avoids strong prior dependence
in the results. For the prior on 7, it is usual to take small values of a and b, for example
a=>b=0.1o0ra=>b=0.0l. However, such priors lead to a preferred value (i.e., a peak) in
the prior and so the use of such priors is somewhat controversial.

To illustrate fitting such a model, we can use a standard data set, the MTCARS data set,
which is available in the R statistical software package and may also be found online. The
data set contains observations, y;, of the miles driven per gallon in the ¢’th of 32 different
models of car, with explanatory variables z;;, the rear axle ratio, x;5, the weight of the 7’th
car and x;3, the time to drive 0.25 miles from rest. We fit the model

Yi = Bo + Bixi + Pazia + Paviz + &4, € < N(0,1/7), 1=1,...32,
with 3; ~ N(0,1000) and 7 ~ Gamma(0.1,0.1). We can use statistical software (in this case
R) to generate samples from the posterior. Techniques for doing this will be discussed in the
next chapter, and in the associated practical. using these samples we can obtain a posterior
mean and 95% symmetric credible interval for each parameter. These can be compared to
the frequentist estimates of the same parameters and the frequentist 95% confidence interval
(see problem sheet 1). This comparison is in Table 3.
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Bayesian results Frequentist results
Parameter | Posterior mean | 95% credible interval | MLE | 95% confidence interval
By 10.369 [5.008,36.349] | 11.395 [5.134,27.922]
By 1.777 -0.721,4.166] 1.750 0.857,4.169)]
B -4.335 [-5.702,-2.995] -4.347 [-5.787,-3.009]
By 0.968 [0.449,1.493] 0.946 [0.410,1.482]
o7 6.978 [4.160,11.729] 6.554 —

Table 3: Comparison between Bayesian and frequentist estimates of the linear model fit to
the MTCARS data set.

The results of the Bayesian fit are quite consistent between the two approaches, although
there are some differences and the interpretation of the results is different. We now want
to assess the quality of the results. In a frequentist setting, assessment of the quality of a
linear model fit is done through the production of studentised residuals and Q-Q plots. A
studentised residual is .

N yz‘—X;*FB

R

where B are the estimated parameters, ¢ is the esitmated standard deviaiton and h;; is the
i’th diagonal element of the matrix H = x(x’x) 'x”. These quantities follow a student-t
distribution which is why they are called studentised residuals. A @ — @ plot is a plot of
the distribution of these values against the theoretical distribution, which should be approx-
imately a straight line if the model is a good description of the data.

We can construct analogous quantities in the Bayesian case, but now the parameters are
described by distributions rather than point estimates. A point estimate can be constructed
in a number of different ways — using posterior mean values, using a single draw from the
posterior, or averaging over the full posterior. The latter approach involves computing the
studentised residual for a large number of draws from the posterior and averaging them, and
is called the posterior mean of the residual. Studentised residuals are plotted in various ways
in Figure 5.

We can also produce posterior predictive checks as described in section 4.7. We compute
realisations of similar data sets and estimate the distribution of various summary statistics
which we then compare to the values in the observed data sets. In this case we compute
the distributions of the minimum, maximum, median and skewness in repeated data sets.
These are shown in Figure 6, along with the values in the observed data set. We see that
the observed values lie within the distributions in all cases, except for skewness. Seeing that
the observed data lies in the tail of the distribution may indicate a failure of the model. In
this case we might want to try varying the assumption of normally distributed errors and
homoskedacity (equal error variance).

The issue with the posterior predictive checks could indicate a failure of the model, or the
influence of an outlying data point. One way to tackle this is to modify the model so that the
distribution of the errors ¢; is no longer assumed to be normal. The most common approach
is to replace the normal distribution by a t,-distribution, as these have heavier tails. This is
referred to as robust regression. The degrees of freedom, v, in the ¢,-distribution can be
fixed to some reasonable value, or allowed to vary in a hierarchical model (see next section).
In that case the prior on v is usually taken to be a Gamma distribution, v ~ Gamma(c, d).

For the MTCARS dataset we try this, using prior values ¢ = d = 0.1, and then look at the
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Normal Q-Q Plot

Sample Quantiles
Bayesian Studentised residual (posterior mean)

Figure 5: @ — @ plot of the studentised residuals (left), studentised residual versus index of
data point (middle) and studentised residual versus posterior mean of the predicted value,
Ui, for the Bayesian fit to the MTCARS data set. We look for the left hand plot to be on
the diagonal line, for the middle and right hand plots we want the values to be randomly
distributed (i.e., no trend with the x value) and in the range from minus a few to plus a few.
These constraints are all satisfied here and so we see no cause for concern.

posterior predictive distribution again. The results for the skewness are shown in Figure 7.
We that robustifying regression can help to improve the model fit in this case. The observed
dat moves from lying at the 99.6% point of the distribution to lying at the 96.3%. So, it
is still something of an outlier but it is not so much a cause for concern. It is perhaps not
surprising that the use of robust regression only helped a small amount in this case, since
we are trying to compensate for non-zero skew in the data and the t-distribution is also a
symmetric distribution.

4.9 Hierarchical models

In many contexts, for example the observation of mergers of compact binary coalescences
through gravitational wave observations, the likelihood describes the observation of a single
event, and the prior describes the distribution of parameter values in the population from
which the events are drawn. Often the parameters of the population prior are not themselves
known but are of interest. For example, we do not know the distribution of masses of black
holes in binaries and would like to learn about this from observations of the gravitational
wave sources. This leads to the notion of a hierarchical model, in which the likelihood
for data depends on parameters for which we write down a prior that in turn depends on
unknown parameters (usually termed hyperparameters), for which we write down another
prior (the hyperprior).

This hierarchy can be continued to more and more levels, but such models increase
rapidly in complexity. Inference on complex hierarchical models can be simplified by impos-
ing a conditional independence structure in the models, e.g., p(z,y, 2) = p(z|z)p(y|z)p(2).
Conditional dependence structures can be compactly represented using graphical models.
These are directed acyclic graphs that indicate dependencies between various components of
the model. It is important that the graph has no cycles as only then can the joint probability
be factorised. An example of a graphical model is shown in Figure 8. This model represents
the following conditional dependence structure

p(p,q, 78, u,0,w, 2.y, 2) = p(xly, 2)p(ylu, w)p(w|v)p(u)p(v)p(z|r)p(r|p, g)p(p)p(e)  (71)
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Figure 6: Predictive distributions for the maximum (top left), minimum (top right), median
(bottom right) and skewness (bottom right) in replicated data sets of size 32, based on the
posterior distribution from the MTCARS data set. The vertical red lines indicate the values
in the data set form which the posterior was obtained. We see that this lies in the middle of
the distribution in all cases, except skewness, in which it lies in the tail, which might indicate
a failure to properly fit the data.
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Figure 7: Posterior predictive distribution of skewness for the robustified regression model.
The observed value of the skewness is indicated by a vertical red line as before.
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Figure 8: Illustration of a Bayesian graphical model. This is an acyclic directed graph that
indicates conditional dependencies in complex Bayesian hierarchical models.

4.9.1 Selection effects

One thing that is important to account for in hierarchical modelling are selection effects.
The decision about whether or not to include an event in a catalogue used for inference is
based on whether or not the event is “detected”, i.e., whether or not the observed data passes
some pre-determined threshold criterion for inclusion. This is usually a property of the data
only. Selection effects can be included by modifying the likelihood so that it represents the

likelihood of “detected” data sets. If the un-corrected likelihood is p(x|€) then the likelihood
for observed events is just

— —

- 1
p(x]0, 0bs) = —=p(x/0), Wherepsﬁz/ D
(= ) ps(0) (x[6) ) x>threshold

—

(x]0)dx.

The integral is over all data sets that would have been considered as “detections”, i.e.,
passing the threshold for inclusion in inference. What we have done here is renormalise the
likelihood so that it integrates to 1 over all above threshold data sets. Since the partition of
the data into observed and unobserved is a property of x only, the relative probabilities of
different above threshold data sets must be in proportion to their probabilities in the set of
all data sets.

Usually, the likelihood will depend on parameters of the particular source, 5, that are
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themselves determined by the priors, which depends on the hyperparameters of the popula-
tion, A. Then the likelihood for observed events, marginalised over the source parameters is
simply

— —

p(x|X, obs) = 1ﬁ /p(x| )p(A]X)df,  where py(X) :/

Ds(A) x>threshold

— —

/ p(|8)p(F]X)ddidx.

Usually we are interested in the parameters of individual sources as well as the overall
population parameters. The joint likelihood of x and #, conditioned on detection, is

— —

p(x. 0], obs) = p(x], obs)p(6] X, obs).

The first term is Eq. (4.9.1), but for the source parameters g

p(x]0, obs) = L)_,, where p(obs|f) =

p(x|0)dx.
p(obs|d) /x>threshold (x[6)

The second term is the prior on g for events above threshold. However, this prior is modified
from p(A|\) by the conditioning on detection, namely

D(F15, obs) = P05 _ plobsid Dp(d1R) _ plobsi)p(dlX)
p(obs|A) p(obs|X) ()

—

Putting this together we see that the terms relating to selection on 5, p(obs|f), cancel and
the joint likelihood is

p(x Gﬁf obs) = w

giving a posterior on 6

p(0]x, X, obs) o< p(x|0)p(8]X)

which is unchanged from the posterior that would be written down if there is no selection.
We see that the selection effects corrections do not change inference about the parameters
of individual sources, only inference about the hyperparameters governing the population as
a whole.

This approach implicitly assumes that the number of observed events contains no infor-
mation about the unknown parameters. An alternative approach is to write down a joint
likelihood for all events, both the N, events that are observed, {x;}, with parameters {9_;},
and the Ny events that are unobserved, {x;}, with parameters {93} We model the number

of events as a Poisson process with overall rate N (X), and rate density dN/ dd. The joint
likelihood is

Nobs

p({é},{@},{xi},{xj}ri)oc[Hp(xme)%( ]
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We can marginalise over the unobserved data to obtain

(o) [Hobi) 2 @) 5 D] o
where

Npdet (X) = [[x<threshold} dx dgp <x | _)) % (X) ) (74)

We can then marginalise over the unknown number of unobserved events to obtain

p ({7} () 1) [Hp (1) 4 (x)] o[ N (D]

—

We can now introduce the overall rate in the Unvierse, N, by writing dN/df = Np(d]X).
Then

Noal(%) = N [ plxifp(dl0)adax = Np. (3. (76)
x>threshold
Setting a scale-invariant prior on N (which states that the number of detected events does
not convey information about the unknown parameters of the population), p(N) « 1/N we
can marginalise N out of the likelihood and recover Eq. (4.9.1).

4.9.2 Examples of hierarchical models

We finish this section with two examples of Bayesian hierarchical models.

Example 1: Salmon fishery In a given year, several fish hatcheries located along rivers
in Washington state, USA raise coho salmon from eggs to a juvenile stage. Each hatchery
releases a batch of juvenile fish into the rivers. The fish then travel to the ocean and some
of them return to the hatchery 3 years later. The probability that a juvenile salmon returns
varies between hatcheries due to different hatchery practices and river conditions at the point
of release. We construct a hierarchical model for this as follows

e Suppose there are J fisheries and n; salmon observed at fishery j.

e The data for an individual observation, x;;, of the i'th salmon at fishery j is Bernoulli
(salmon returned or did not return), with parameter p;, where j labels the fishery. The
data for the total number of returning salmon at site j, x;, is Binomial with parameters

(nj,p;)-

e We assume that the p;’s are drawn from some common global distribution and use the
conjugate prior of Beta(a, b).

e The parameters a and b are not known and fixed as in the usual case, but these are
unknown quantities of interest as they characterise the variability in the population.
These are the hyperparameters of the prior on p;.

e We define a suitable hyperprior p(a,b) on the hyperparameters, for example a Gamma
prior.
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e The joint posterior on the set ({p;},a,b) is

p({p;}, a,bx) o p(x|{p;}) [Hp(pjla, b)] p(a,b).

Note that the hyperprior on the hyperparameters appears only once as these parameters
are common to all of the individual observations of fisheries.

e The marginal distribution on the hyperparameters (a, b) can be found by marginalising
over the {p,}’s

pla,blx) o< p(a,b) [ | Blat xg(z:)”j — )

j=1

e Marginals on individual p;’s can be found in a similar way.

Example 2: Gravitational wave cosmology In August 2017 the LIGO/Virgo gravi-
tational wave detectors observed gravitational waves from the inspiral and merger of a binary
neutron star for the first time, GW170817. There was both a short gamma ray burst and
a kilonova associated with this event, which allowed the unique identification of the host
galaxy, NGC 4993, and hence the recessional velocity (redshift) of the host. The gravi-
tational waves provide a measurement of the luminosity distance of the source. The rate
of expansion of the Universe as a function of distance is a key observable for constraining
cosmological parameters. The relationship is linear at low distances and the constant of
proportionality is called the Hubble constant,

v=cz= Hyd,

where v is the recessional velocity due to the expansion of the Universe, z is the corre-
sponding redshift, Hy is the Hubble constant and d is the luminosity distance. At low dis-
tance/redshift, the peculiar velocity of individual galaxies, relative to the overall expansion
of the Universe (the “Hubble flow”) is significant and so the observed recessional velocity,
vy, must be corrected by writing v, = Hyd+v,. Observations of galaxies provide an estimate
of the smoothed peculiar velocity field, (v,). We are interested in inferring the value of the
Hubble constant and build a hierarchical model as follows.

e The observed gravitational wave data, rqw, depends on the waveform of the source,
which in turn depends on the source parameters. Most of these are not of interest,
denoted X, and so we can marginalise them out, but we treat distance d and inclination,
L, separately

p(raw | d,cost) = /p(xgw | d, cos ¢, X) p(X)dX. (77)

e The measured recessional velocity, v,, depends on the true recessional velocity, which
depends on the peculiar velocity, v,, and the Hubble redshift, Hyd. Representing the
electromagnetic measurement uncertainty as a Normal distribution we have

p (v | d,vy, Hy) = N [vp + Hyd, agj (vy) (78)
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e The measured smoothed peculiar velocity field at the location of the host galaxy de-
pends on the true peculiar velocity there (and perhaps also on other quantities, but
we suppress other dependencies here)

P () [ 05) = N 05,02 | (1) (79)
e The combined likelihood for the observations of zgw, (v,) and v, is

p(xaw, vr, (Up) | d, cost, vy, Hy) =
1

Ns—(HO)p(xGW | d,cost) p(vy | d,v,, Ho) p({v,) | v,). (80)

Here the factor N(Hp) is the selection effects factor discussed earlier, which corrects
for the fact that we only analyse events that exceed some threshold in the gravitational
wave detector

N (Hp) = / dX dd du, dcos ¢ dzaw do, d(v,)

detectable

X [p(:cgw | d, cos L,X)p(’l)r | d,v,, Hp)
x p((vp) | vp) p(N) p(d) p(v,) plcost)| , (81)

At the time of GW170817 the horizon for detection of binary neutron stars by the
LIGO/Virgo detectors was much smaller (~ 100Mpc) than the distance to which the
kilonova radiation could have been confidently observed (~ 400Mpc). This means
that gravitational wave selection effects were dominant. As these depend directly on
the luminosity distance, the dependence on Hj is a higher order correction and so
the selection function was approximately independent of Hy. A correct treatment of
election effects will become increasingly important as the LIGO horizon increases in
the future.

e We define priors on Hy, d, v, and cost. These are independent and so we write down
a product prior

p(d, cos t, vy, Hy) = p(d)p(cos )p(v,)p(Hp).

We use flat priors on cos: and v,, a volumetric prior on d, p(d) o dV./dd, where V.
is the comoving volume. We leave p(Hy) unspecified, but note that the analysis in
Abbott et al. (2017) used a scale-invariant prior p(Hy) o< 1/Hy.

e We have now fully specified the hierarchical model. A graphical representation of this
model is given in Figure 9. The posterior can now be found as

p(Hy, d,cost,v, | aw, Uy, (Up))

d | d v, H
OC/\/'S(HO)p(IGW‘ ,cost) p(v, | d,vp,, Hp)

X p((vp) | vp) p(d) p(up) plcose), (82)
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Figure 9: Graphical model for the Hubble constant measurement with gravitational wave
observations of binary neutron stars. Figure reproduced from Abbott et al., Nature Lett.

551 85 (2017).

e This posterior can be marginalised over d, cost and v, to give

H
p(HO | TGwW, Ur, <Up>) X ./\7:5(_[{;3) /dddvp dCOSL

x p(zaw | d,cost) p(v, | d,v,, Hy)
x p((vp) | vp) p(d) p(vp) p(cose) . (83)

This marginalised posterior is shown in Figure 10.

o [f we make subsequent observations of binary neutron star mergers with counterparts,
indexed by a superscript ¢ = 1,..., N, we can combine these

p(Ho | {xé}WJUZW <Up>i}) X J\%H [/ dddv, dcos ¢

=1
X p<an | d7 COoSs L) p(U;L“ ’ d? UvaO)

x p((vp)" | vp) p(d) p(up) plcose) | . (84)
Note that, as in the previous example, the prior on the common hyperparameters,

p(Hp), occurs only once. The selection effect correction appears once for every obser-
vation.
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Figure 10: Posterior on the Hubble constant derived from GW170817. Figure reproduced
from Abbott et al., Nature Lett. 551 85 (2017).



