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Working with Bayesian Posteriors

❖ The posterior distribution encodes all information about the parameters of interest 
after data has been observed. Sometimes these are analytic, but usually not.

❖ When they are not analytic, they can be approximated by the Bayesian Central 
Limit Theorem. We suppose that                                               and the prior          and 
likelihood                   are twice differentiable near            , the mode of the posterior 
distribution. Then, for large n, 

❖ where

p(x | ✓)
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Working with Bayesian Posteriors
❖ As discussed in Lecture 4, the primary application of probability distributions is to 

compute expectation values of quantities of interest via integration.

❖ In low numbers of dimensions, such integrals can be computed by direct evaluation 
(numerical integration) on a grid of points.

❖ In larger numbers of dimensions it is better to use stochastic (Monte Carlo) 
sampling. We draw a set of samples                          and then approximate

❖ Monte Carlo integration converges to the true integral asymptotically as the number 
of samples M tends to infinity, which can also be achieved with sufficient 
computational power, whereas the Central Limit Theorem relies on the number of 
observations to tend to infinity, which is much harder to obtain in practice.

❖ Samples can be obtained through direct sampling or Markov Chain Monte Carlo.
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4.4.2 Credible intervals

To move beyond point estimates, it is natural to want to describe ranges in which parameter
values are estimated to lie. The Bayesian equivalent of a frequentist confidence interval is a
credible interval. This is defined as

Definition: An interval (a, b) is a 100(1� ↵)% posterior credible interval for ✓1 if

Z
b

a

pmarg(✓1|x)d✓1 = (1� ↵), 0  ↵  1.

A credible region can be defined in a similar way. This is any partition of parameter
space that contains 100(1�↵)% of the total posterior probability. Clearly credible intervals
and regions are not unique, but there are two types of credible interval that are commonly
used.

Definition: An interval (a, b) is a symmetric 100(1 � ↵)% posterior credible interval
for ✓1 if Z

a

�1
pmarg(✓1|x)d✓1 =

↵

2
=

Z 1

b

pmarg(✓1|x)d✓1.

Definition: An interval (a, b) is a 100(1 � ↵)% highest posterior density (HPD)
interval for ✓1 if

1. [a, b] is a 100(1� ↵)% credible interval for ✓1;

2. for all ✓ 2 [a, b] and ✓0 /2 [a, b] we have pmarg(✓|x) � pmarg(✓0|x).

Credible intervals are more intuitive than confidence intervals as they make an explicit
statement about the probability that the parameter takes values in the range, rather than
referencing an ensemble of similar experiments.

4.4.3 Posterior samples

Summary statistics provide a useful way to summarise and compare distributions, but they
inevitably discard information. To retain full information about the parameters we need the
full posterior. Often this cannot be written down in a simple analytic form, but it can be
summarised by drawing a set of samples {~✓1, . . . , ~✓M} randomly from the posterior. Such
samples can then be used to compute integrals over the posterior

Z
f(~✓)p(~✓|x)d~✓ ⇡ 1

M

MX

i=1

f(~✓i).

Most quantities that one might wish to compute from a posterior distribution can be ex-
pressed as integrals of this form, and so generation of such samples is the most complete way
to represent posterior distributions. E�cient production of samples is non-trivial and will
be the topic of the next chapter of these notes.
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Direct sampling: Method of Inversion
❖ If the posterior distribution has a 

cumulative density function (CDF) 
with a known inverse, samples can 
be generated by drawing samples 
from U[0,1].

❖ If the CDF is denoted by F

❖ We simulate

❖ The xi are samples from f.
Example: exponential with parameter r. 
f(t|r) = r exp(-rt), F(T) = 1-exp(-rT), 
F-1(u) = ln(1/(1-u))/r.

F (⇥|x) = P(✓  ⇥|x)
<latexit sha1_base64="XpmT1VqfoKR2By0kpgSAreIZSbI="></latexit>

ui ⇠ U [0, 1]

✓i = F�1(ui|x)
<latexit sha1_base64="U0ghmzWtKkKaHU/10mlo1sIm7KE="></latexit>



Direct sampling: Rejection Sampling
❖ Rejection sampling uses samples 

drawn from another distribution that 
“contains” the distribution of interest. 
The algorithm is

❖ We require 

❖ The “best” rejection method uses

✓i ⇠ g(✓)

yi ⇠ U [0,Mg(✓)]

If yi  p(✓i|x), accept ✓i
as a sample from p(✓|x)

<latexit sha1_base64="gHqZF4XBor4xMFoB5eaQ5fezaSo="></latexit>

Mg(✓) � p(✓|x) 8 ✓
<latexit sha1_base64="U8y6AHaOE52Ife9GYwDzYq+5xAw="></latexit>

M = sup
✓

✓
p(✓|x
g(✓)

◆
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Example: half-Normal distribution. We
want to sample from N(0,1) I(x > 0). We
draw samples from Exp(1), for which we
need M = 1.3155.



Direct sampling: Importance Sampling
❖ Importance sampling also draws 

samples from another, easy-to-sample 
distribution, but now samples are not 
rejected but given weights

❖ Integrals over the posterior are 
approximated by weighted sums

❖ One advantage is that the 
normalisation of the posterior does not 
need to be known. But, the algorithm 
suffers from high sampling variance.

wi =
p(✓i|x)
g(✓i)

<latexit sha1_base64="M04IBSOyqmjVCYfrq95sk+2MtHU="></latexit>

Z
f(✓)p(✓|x) d✓ ⇡ 1

N

NX

i=1

wif(✓i)
<latexit sha1_base64="gRhq6i73vxH+yML66YLeJC0OR/g="></latexit>

Example: Cauchy distribution. We want 
samples from                                          . We
draw samples from                         and use
importance sampling to estimate                  .

p(✓) = 1/(⇡(1 + ✓2))
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g(✓) = 2/✓2
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P(✓ > 2)
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Direct sampling: Sampling importance Resampling
❖ Sampling importance resampling is a 

variant of importance sampling. 

❖ Importance samples are first drawn 
using the algorithm on the previous sides 
and the weights renormalised

❖ New samples are then drawn at random, 
with replacement, from the first set, with 
relative probabilities given by wi.

❖ This is a form of particle filtering. It can 
suffer from particle depletion, when a 
small number of samples carry the 
majority of the weight.

wi =
wiPn
j=1 wj

<latexit sha1_base64="ZKEJMxfOv7EiYRq+k17ML0CcAtA="></latexit>

Example: histogram of resampled points
from first 1000 importance samples from 
previous slide.



Markov Chain Monte Carlo
❖ Often direct sampling methods cannot be devised, because the target distribution is 

too complicated. In those cases, stochastic methods can be used based on Markov 
Chain Monte Carlo methods.

❖ The idea is to generate a reversible Markov chain (i.e., a sequence such that each 
element depends only on the previous one and not longer past history), with a 
stationary distribution that equals the target distribution.

❖ Such a Markov chain must satisfy detailed balance

❖ In which 

❖ and            denotes the target distribution, in our case                       . 

p(~✓) p(~✓, ~✓0) = p(~✓0) p(~✓0, ~✓)

p(~✓, ~✓0) = p(~✓i = ~✓0|~✓i�1 = ~✓)

p(~✓) p(~✓|d,M)



Gibbs Sampling
❖ Gibbs sampling draws consecutive samples from the full conditional distributions. 

It relies on the conditionals taking known forms. The algorithm is as follows

❖ Initialise the parameters at some starting values

❖ For s = 1, …, S:

❖ Draw 

❖ Draw

❖ ….

❖ Draw

❖ For sufficiently large s 

✓(0) = (✓(0)1 , . . . , ✓(0)p )
<latexit sha1_base64="HzXa2mCJrk5DIAmNTjz1Y2+GmBo="></latexit>

✓(s)1 ⇠ p(✓1 | ✓(s�1)
2 , ✓(s�1)

3 , . . . , ✓(s�1)
p ,x)
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✓(s)2 ⇠ p(✓2 | ✓(s)1 , ✓(s�1)
3 , . . . , ✓(s�1)

p ,x)
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✓(s)p ⇠ p(✓p | ✓(s)1 , ✓(s)2 , . . . , ✓(s)p�1,x)
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(✓(s)1 , . . . , ✓(s)p )
approx.⇠ p(✓1, . . . , ✓p | x)
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Metropolis Hastings Algorithm
❖ Gibbs sampling relies on being able to define the full conditional distributions. 

When this is not possible, the Metropolis-Hastings algorithm provides another way 
to compute a Markov chain.

❖ We initialise by choosing a (random) starting point. Then, at step i: 

- propose a new point,    ,  by  drawing  from  a   proposal distribution,                .

- evaluate the target distribution at the new point. Compute the Metropolis-
Hastings ratio

- and draw a random sample,    , from a U[0,1] distribution. If                then   
set                  , otherwise set                   . NB if              the proposed move is 
definitely accepted.

q(~✓0, ~✓i)~✓0

~✓i+1 = ~✓0 ~✓i+1 = ~✓i

↵ ↵ < H

H > 1

H =
p(~✓0)q(~✓i, ~✓0)

p(~✓i)q(~✓0, ~✓i)



Proposal Distributions
❖ Sampling efficiency is strongly 

influenced by the choice of proposal 
distribution.

❖ Uniform proposal (random sampling) 
very inefficient - better to use a grid.

❖ Ideally want a proposal tuned to the 
distribution you are sampling.

❖ Gaussian a good choice, but need to 
tune width.
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Proposal Distributions
❖ Sampling efficiency is strongly 

influenced by the choice of proposal 
distribution.

❖ Uniform proposal (random sampling) 
very inefficient - better to use a grid.

❖ Ideally want a proposal tuned to the 
distribution you are sampling.

❖ Gaussian a good choice, but need to 
tune width.

❖ too wide: low acceptance rate;

❖ too narrow: high acceptance rate; 
low effective samples.
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Annealing
❖ One way to accelerate convergence is to 

use simulated annealing. 

❖ “Heat up” posterior by making the 
replacement

❖ where

❖ Choosing a high temperature smoothes 
out the posterior which can then be 
more easily sampled.

❖ Allows identification of interesting parts 
of parameter space.

-4 -2  0  2  4
x

kT = 1
kT = 2
kT = 5

kT = 10

� =
1

kT

p(~✓|d,M) !
h
p(~✓|d,M)

i�



Annealing

❖ It is common to use parallel tempering. A sequence of M MCMC chains are run 
simultaneously at different temperatures, {T1, …, TM}.

❖ The chains can exchange information, which is achieved by proposing a swap of the 
states of two chains with different temperatures. The swap is accepted with 
probability

❖ where i, j label the two temperature chains,      denotes the current state of the k’th 
chain and             denotes the target (annealed) distribution for the k’th chain.

min

 
1,

pi(~✓j) pj(~✓i)

pi(~✓i) pj(~✓j)

!

pk(~✓)

~✓k



Burn-in

❖ The MCMC chain does not sample from 
the target distribution immediately.

❖ There is a residual “memory” of the 
initial state. Need to discard the first few 
samples.

❖ This is called the burn-in.

❖ Can identify number of samples to 
discard by looking at trace plots.

❖ Usually a few hundred to a thousand 
samples is sufficient for burn-in. 0 200 400 600 800 1000

−5
−4

−3
−2

−1
0

Chain values of m

True value = red line

m



Autocorrelation and Effective sample size
❖ Consecutive samples in the MCMC chain are not independent samples from the target 

distribution.

❖ Can use all samples for posterior inference but do need to know how many independent 
samples the chain contains in order to assess the precision of inferences.

❖ Compute the (lag-k) autocorrelation

❖ where x now denotes one of the components of    . Choose k=K large enough that the 
autocorrelation                  . The effective sample size is                and formally defined 

❖ Can “thin” chain by keeping only every K’th sample without affecting accuracy of 
posterior inference.

⇢k =

PN�k
i=1 (xi � x̄)(xi+k � x̄)

PN
i=1(xi � x̄)2

~✓
⇢k << 1 ⇠ N/K

ESS =
N

1 + 2
P1

i=1 ⇢k
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Diagnostics

❖ There are various techniques to diagnose the quality of results from a given MCMC 
run.

• compute acceptance rate, i.e., fraction of proposed points that are accepted. 
Acceptance rate ~25% is optimal.

• look at one and two dimensional posterior distributions — do they look 
smooth and well sampled?

• look at trace plots — is the chain moving back and forth or unidirectionally?

• run multiple MCMC chains starting at different points. Do they give consistent 
results?
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smooth and well sampled?
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❖ Run m (at least 2) chains and discard first half of samples from each.

❖ Calculate the within-chain variance

❖ Calculate the between-chain variance

❖ Calculate the estimated variance of a given parameter

❖ Calculate the potential scale-reduction factor

❖ If R is greater than ~1.1 or 1.2, need to run chains for longer.

Gelman-Rubin convergence diagnostic
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Examples of Parameter Posteriors
two. The inferred component masses are shown in Fig. 2.
The formof the two-dimensional distribution is guidedby the
combination of constraints on M and M. The binary was
composed of two black holeswithmassesm1 ¼ 31.2þ8.4

−6.0M⊙
and m2 ¼ 19.4þ5.3

−5.9M⊙; these merged into a final black hole
of mass 48.7þ5.7

−4.6M⊙. This binary ranks second, behind
GW150914’s source [5,37], as themost massive stellar-mass
binary black hole system observed to date.
The black hole spins play a subdominant role in the

orbital evolution of the binary, and are more difficult to
determine. The orientations of the spins evolve due to
precession [62,63], and we report results at a point in the
inspiral corresponding to a gravitational-wave frequency of
20 Hz [37]. The effective inspiral spin parameter χeff ¼
ðm1a1 cos θLS1 þm2a2 cos θLS2Þ=M is the most important
spin combination for setting the properties of the inspiral
[64–66] and remains important through to merger [67–71];
it is approximately constant throughout the orbital evolu-
tion [72,73]. Here θLSi ¼ cos−1ðL̂ · ŜiÞ is the tilt angle
between the spin Si and the orbital angular momentum L,
which ranges from 0° (spin aligned with orbital angular
momentum) to 180° (spin antialigned); ai ¼ jcSi=Gm2

i j is
the (dimensionless) spin magnitude, which ranges from 0 to
1, and i ¼ 1 for the primary black hole and i ¼ 2 for the
secondary. We use the Newtonian angular momentum for
L, such that it is normal to the orbital plane; the total orbital
angular momentum differs from this because of post-
Newtonian corrections. We infer that χeff ¼ −0.12þ0.21

−0.30 .
Similarly to GW150914 [5,37,44], χeff is close to zero with
a preference towards being negative: the probability that
χeff < 0 is 0.82. Our measurements therefore disfavor a
large total spin positively aligned with the orbital angular
momentum, but do not exclude zero spins.
The in-plane components of the spin control the amount

of precession of the orbit [62]. This may be quantified by
the effective precession spin parameter χp which ranges
from 0 (no precession) to 1 (maximal precession) [39].
Figure 3 (top) shows the posterior probability density for
χeff and χp [39]. We gain some information on χeff ,
excluding large positive values, but, as for previous events
[3,5,37], the χp posterior is dominated by the prior (see
Sec. III of the Supplemental Material [11]). No meaningful
constraints can be placed on the magnitudes of the in-plane
spin components and hence precession.
The inferred component spin magnitudes and orienta-

tions are shown in Fig. 3 (bottom). The lack of constraints
on the in-plane spin components means that we learn
almost nothing about the spin magnitudes. The secondary’s
spin is less well constrained as the less massive component
has a smaller impact on the signal. The probability that the
tilt θLSi is less than 45° is 0.04 for the primary black hole
and 0.08 for the secondary, whereas the prior probability is
0.15 for each. Considering the two spins together, the
probability that both tilt angles are less than 90° is 0.05.

FIG. 3. Top: Posterior probability density for the effective
inspiral and precession spin parameters, χeff and χp. The
one-dimensional distributions show the posteriors for the two
waveform models, their average (black), and the prior distribu-
tions (green). The dashed lines mark the 90% credible interval for
the average posterior. The two-dimensional plot shows the 50%
and 90% credible regions plotted over the posterior density
function. Bottom: Posterior probabilities for the dimensionless
component spins, cS1=ðGm2

1Þ and cS2=ðGm2
2Þ, relative to the

normal of the orbital plane L̂. The tilt angles are 0° for spins
aligned with the orbital angular momentum and 180° for spins
antialigned. The probabilities are marginalized over the azimuthal
angles. The pixels have equal prior probability (1.6 × 10−3);
they are spaced linearly in spin magnitudes and the cosine
of the tilt angles. Results are given at a gravitational-wave
frequency of 20 Hz.

PRL 118, 221101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
2 JUNE 2017

221101-4

LVC, Phys. Rev. Lett. 116, 061102 (2016)



Reversible Jump MCMC
❖ Often the number of sources in the data set is also unknown. 

❖ Reversible Jump Markov Chain Monte Carlo is a technique applied in such 
situations, by periodically proposing jumps between models. In GW applications 
these normally correspond to different numbers of events.

❖ Represent a proposed move by tuples (x, u) and (x’, u’). Here x and x’ denote the 
parameters of the current and proposed state (which may have different numbers of 
dimensions) and u, u’ are sets of random numbers that lead to a proposed move 
from x to x’ and back.

❖ Generalisation of acceptance ratio is

↵ = min

✓
1,

p(x0)q(u0)

p(x)q(u)

����
@(x0,u0)

@(x,u)

����

◆
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Product Space MCMC

❖ An alternative to RJMCMC is to use 
standard MCMC but with an extended 
parameter space

❖ K is the current parameter space dimension, 
i.e., number of sources.

❖ Parameter values with k > K are varied but 
do not contribute to the likelihood.

❖ Method can be more efficient than RJMCMC.

n
~�1,~�2, . . . ,~�k . . . ,~�M ,K

o
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Figure 3. Submodel Bayes factors Bm
0 (B0

0 = 0 by definition) for regular and product-space nested sampling with sinusoidal toy data x0000 (SNR ⇢ = 10).
Both methods have Nlive = 2500; regular nested sampling takes 4.2 ⇥ 107 likelihood calls in total, while product-space nested sampling takes 2.7 ⇥ 106 calls.

two methods to achieve the same�P . The other P���C���� runtime
parameter is set as Nrep = 30, which has been chosen empirically
to ensure the convergence of regular evidence estimates.

It is also instructive to study how regular and product-space
nested sampling perform on the penultimate step in the evaluation
of PmodGR

GR , i.e. the individual submodel Bayes factors B
m
0 . Figure

3 shows the B
m
0 and associated errors that are obtained from the

two methods with Nlive = 2500, for the GR data x0000. The Occam
penalty on model complexity is clearly observed in both sets of
results, as the relative evidence for each submodel decreases with
the number of parameters it contains. However, the product-space
method appears to systematically give Bayes factors that are more
pronounced (negative), and in tension with the regular results. This
is likely because the entire hypermodel space is explored with the
same number of live points allocated to each submodel space in the
regular method, leading to a slight degree of sampling bias. The
Bayes factor errors for both methods are nevertheless comparable,
since the errors on a posterior over m are smaller than those on
submodel evidence evaluations (as discussed in Section 3.5).

In Figure 4, the error �P of PmodGR
GR for the two data sets

x0000 and x0010 is plotted against the number of likelihood calls
for a sequence of regular and product-space nested-sampling runs
with 100 6 Nlive 6 2500. Both the rethreading and repetition
error estimates for the product-space method are included; they are
seen to agree well, with the latter showing more scatter (since they
are computed from only 50 evaluations of PmodGR

GR , as opposed
to 103 realisations in the rethreading technique). The rethreading
error estimates are further validated through a reduced chi-squared
test against the sample mean µ of PmodGR

GR in Figure 5, where �2 =Õ
i(Pi�µ)

2
/(12�2

P) ⇡ 1 for both data sets. We also find µ0000 ⇠ �1
in the GR case and µ0010 ⇠ 1 in the B3 case, which is by design
from our choices of SNR and ✏3 for the synthetic data.

For both data sets, it is clear that product-space nested sampling
is e�ective at reducing the computational cost required to reach
a given level of precision (or alternatively, at providing greater
precision with a given number of likelihood calls). In the GR case,
the average gain in e�ciency (i.e. the mean horizontal distance
between the blue and green curves in Figure 4) is a factor of around
24. Furthermore, as the likelihood surface over the hypermodel
space is less complex for x0000, nested sampling explores it nearly
as e�ciently as each of the 16 submodel spaces. This is seen by

(a) Data x0000

(b) Data x0010

Figure 4. Error �P of PmodGR
GR for (a) GR data x0000 and (b) B3 data

x0010. Regular nested sampling (blue) is compared to product-space nested
sampling with error estimates from single-run rethreading (green) and 50
repeated runs (red, dashed). Grey dotted lines indicate regular and product-
space (rethreading) runs of equal Nlive, ranging from 100 to 2500.

MNRAS 000, 1–?? (2018)
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Nested Sampling
❖ Nested Sampling (Skilling 04) provides an efficient way to compute evidences, using a 

1D integral over the prior

❖ Use N ‘live points’, initially chosen at random from the prior. At step i, the point of 
lowest likelihood,     , is replaced by a new point with likelihood              . The prior 
volume is reduced by a factor t, drawn from                           , at each step. We climb 
through nested contours of increasing likelihood as the algorithm proceeds.

Z =
�
L(�)⇥(�)dN� =

� 1

0
L(X)dX, where X(�) =

�

L(�)>�
⇥(�)dN�

Li L > Li

p(t) = NtN�1



❖ The trick is to sample efficiently from the prior within the hard constraint that               . 
MultiNest achieves this using an ellipsoidal rejection sampling scheme. The live point set 
is partitioned into a number of (possibly overlapping) ellipsoids.

❖ The algorithm is well suited to exploring likelihoods with multiple modes. Other 
algorithms (e.g., cpnest) update live points using short MCMC explorations. 

❖ Although designed to compute evidences, nested sampling algorithms also return the 
posterior probability distribution.

MultiNest
L > Li



MultiNest



PolyChord
❖ An alternative nested sampling algorithm is 

PolyChord (Handley et al. 2015). It uses slice 
sampling to sample within the likelihood 
constraint, and affine transformations to 
make contours more spherical.
6 W.J. Handley et. al
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Figure 4. Slice sampling in D dimensions. We begin by “whitening” the unit hypercube by making a linear transformation which turns

a degenerate contour into one with dimensions ⇠ O(1) in all directions. This is a linear skew transformation defined by the inverse of the

Cholesky decomposition of the live points’ covariance matrix. We term this whitened space the sampling space. Starting from a randomly

chosen live point x0, we pick a random direction and perform one-dimensional slice sampling in that direction (Figure 3), using w = 1

in the sampling space. This generates a new point x1 in ⇠ O(a few) likelihood evaluations. This process is repeated ⇠ O(ndims) times

to generate a new uniformly sampled point xN which is decorrelated from x0.

The choice of nrepeats is slightly harder to justify. We
find that for distributions with roughly convex contours
nrepeats⇠ O(ndims) is su�cient, with the constant of propor-
tionality being 2—6. For more complicated contour shapes,
one may require much larger values of nrepeats.

This procedure has the advantage of being dynamically
adaptive, and requires no tuning parameters. However, this
“whitening” process is ine↵ective for pronounced curving
degeneracies. This will be discussed in detail in Section 6.4.

5.3 Clustering

Multi-modal posteriors are a challenging problem for any
sampling algorithm. “Perfect” nested sampling (i.e. the en-
tire prior volume enclosed by the iso-likelihood contour is
sampled uniformly) in theory solves multi-modal problems
as easily as uni-modal ones. In practice however, there are
two issues.

First, one is limited by the resolution of the live points.
If a given mode is not populated by enough live points, it
runs the risk of “dying out”. Indeed, a mode may be entirely
missed if the density of live points is too low. In many cases,
this problem can be alleviated by increasing the number of
live points.

Second, and more importantly for PolyChord, the
sampling procedure may not be appropriate for multi-modal
problems. We “whiten” the unit hypercube using the co-
variance matrix of live points. For far-separated modes, the
covariance matrix will not approximate the dimensions of
the contours, but instead falsely indicate a high degree of
correlation. It is therefore essential for our purposes to have
PolyChord recognise and treat modes appropriately.

This methodology splits into two distinct parts: (i)

recognising that clusters are there, and (ii) evolving the clus-
ters semi-independently.

5.3.1 Cluster recognition

Any cluster recognition algorithm can be substituted at this
point. One must take care that this is not run too often, or
one runs the risk of adding a large overhead to the calcu-
lation. In practice, checking for clustering every ⇠ O(nlive)
iterations is su�cient, since the prior will have only com-
pressed by a factor e. We encourage users of PolyChord

to experiment with their own preferred cluster recognition,
in addition to that provided and described below.

It should be noted that the live points of nested sam-
pling are amenable to most cluster recognition algorithms
for two reasons. First, all clusters should have the same den-
sity of live points in the unit hypercube. Second, there is no
noise (i.e. outside of the likelihood contour there will be no
live points). Many clustering algorithms struggle when ei-
ther of these two conditions is not satisfied.

We therefore choose a relatively simple variant of the k-
nearest neighbours algorithm to perform cluster recognition.
If two points are within one another’s k-nearest neighbours,
then these two points belong to the same cluster. We iter-
ate k from 2 upwards until the clustering becomes stable
(the cluster decomposition does not change from one k to
the next). If sub-clusters are identified, then this process is
repeated on the new sub-clusters.

5.3.2 Cluster evolution

An important novel feature comes from what one does once
clusters are identified.

First, when spawning from an existing live point, the

c� 2015 RAS, MNRAS 000, 1–15
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Figure 3. Slice sampling in one dimension. Given a probability

level (or slice) P0, slice sampling samples within the horizontal

region defined by P > P0. From an initial point x0 within the

slice (P(x0) > P0), a new point x1 is generated within the slice

with a distribution P (x1|x0). External bounds are first set on

the slice L̂ < x0 < R̂ by uniformly expanding a random initial

bound of width w until they lie outside the slice (Neal terms this

the stepping out procedure). x1 is then sampled uniformly within

these bounds. If x1 is not in the slice, then L̂ or R̂ is replaced

with x1, ensuring that x0 is still within the slice. This procedure

is guaranteed to generate a new point x1, and satisfies detailed

balance P (x0|x1) = P (x1|x0). Thus, if x0 is drawn from a uniform

distribution within the slice, so is x1.

each one-dimensional slice requires ⇠ O(a few) likelihood
calculations, the number of likelihood calculations required
scales linearly with dimensionality. Multi-dimensional slice
sampling has many of the benefits of a traditional MH ap-
proach, and uses a proposal distribution which is much more
e�cient at sampling a hard likelihood constraint.

Aitken & Akman (2013) have already applied this pro-
cedure to nested sampling. This works exceptionally well for
cases in which the parameters are non-degenerate. However,
this becomes ine�cient in the case of correlated parameters,
or curving degeneracies.

5 THE PolyChord ALGORITHM

PolyChord implements several novel features compared
to Aitken & Akman’s (2013) slice-based nested sampling. It
utilises slice sampling in a manner that uses the information
present in the live and phantom points to deal with corre-
lated posteriors. PolyChord also uses a general clustering
algorithm that identifies and evolves separate modes of the
posterior semi-independently, and infers local evidence val-
ues. In addition, it has the option of implementing fast-slow
parameters, which is extremely e↵ective in its combination
with CosmoMC (Lewis & Bridle 2002). This is termed Cos-

moChord, which may be downloaded from the link at the
end of the paper.

The algorithm is written in FORTRAN95 and paral-
lelised using openMPI. It is optimised for the case where the
dominant cost is the generation of a new live point. This is
frequently the case in astrophysical applications, either due
to high dimensionality, or to costly likelihood evaluation.

5.1 Multi-dimensional slice sampling

At each iteration i of nested sampling, we generate a new
randomly sampled point within the iso-likelihood contour Li

by our variant of D-dimensional slice sampling. Slice sam-
pling is performed in the unit hypercube with hypercube
coordinates denoted in bold (x).

At each iteration i of the nested sampling algorithm, one
of the live points is chosen at random as a start point for a
new chain with hypercube coordinate x0. We then make a
one-dimensional slice sampling step (Figure 3) with initial
width w in a random direction n̂0 chosen from a probability
distribution P(n̂). This generates a new point x1 which is
uniformly sampled in the unit hypercube, but is correlated
to x0. This process is repeated nrepeats times, with xj�1

forming the start point for a slice along n̂j�1 to produce
xj . This procedure is illustrated in the right hand half of
Figure 4.

Since the probability of drawing xj from xj�1 is the
same as the probability of drawing xj�1 from xj , this pro-
cedure satisfies detailed balance. Thus, the resulting chain
will ergodically be uniformly distributed within the iso-
likelihood contour. This also applies to multi-modal poste-
riors, with the chance of jumping out a mode being equal to
the chance of jumping back in.

The length of the chain nrepeats should be large enough
so that the final point of the chain is decorrelated from the
start point. This final point may now be considered to be
a new uniformly sampled point from the prior distribution
subject to the hard likelihood constraint. The intermedi-
ate points are saved and stored as phantom points. Whilst
phantom points are correlated, they are useful in providing
additional information and posterior points.

There are several elements of this which are left un-
determined, namely the probability distribution P(n̂), the
initial width w, and the chain length nrepeats. These issues
are addressed in the next section.

5.2 Contour whitening

In order to determine an optimal P(n̂) and w, an algorithm
will need some knowledge of the contour in which the chain
is progressing. This information can be supplied by the set
of live and phantom points which are already uniformly dis-
tributed within the contour. We use the sample covariance
matrix of the live and phantom points as a proxy for the
size and shape of the contour.

Uniformly sampled points remain uniformly sampled
under an a�ne transformation. The covariance matrix is
used to construct an a�ne transformation which “whitens”
the contour. Sampling is then performed in this whitened
space, which we term the sampling space. In the sampling
space, the contour has size ⇠ O(1) in every direction. This
means that one may choose the initial step size as w = 1.

To transform from x in the unit hypercube to y in the
sampling space we use the relation:

L�1x = y, (19)

where L is the Cholesky decomposition of the covariance
matrix ⌃ = LLT . This is illustrated further in Figure 4.

Working in the sampling space our choice of P(n̂) is
inspired by the default choice of CosmoMC (Lewis 2013).
Here, a randomly oriented orthonormal basis is chosen, and
these directions are chosen in a random order. Once a basis
is exhausted, a new basis is chosen. This approach satisfies
detailed balance, and mixes rapidly.

c� 2015 RAS, MNRAS 000, 1–15



PolyChord
❖ PolyChord outperforms MultiNest in large numbers of dimensions.
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Figure 7. Comparing PolyChord with MultiNest using a
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�
, whereas MultiNest has an exponen-
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logLlogL

Figure 8. The two-dimensional Rastrigin log-likelihood in the

range [�1.5, 1.5]2. Within this region there are 8 local maxima,

and one global maximum at (0, 0). The clustered samples pro-

duced by PolyChord are plotted on the log-likelihood surface,

with colours that indicating the separate clusters identified.

mixture of two spherical Gaussians, separated by a distance
of 10�.

PolyChord correctly identifies these clusters in arbi-
trary dimensions (tested up to D = 100), providing that
nlive and nrepeats are scaled in proportion to D. It calculates
a global evidence that agrees with the analytic results. In
addition, the local evidences correctly divide the peaks in
proportion to their evidence contribution.

The results for a twin peaks likelihood are of an identical
character to Figures 6 & 7, and hence not included.

6.2.2 Rastrigin function

PolyChord’s clustering capacity is very e↵ective on com-
plicated clustering problems as well. The n-dimensional Ras-
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Figure 9. PolyChord cluster identification for the Rastrigin

function. PolyChord identifies posterior modes and computes

their local evidences, expressed here as a logarithmic fraction of

the total evidence in the mode. Dashed lines indicate the analytic

results computed by a saddle point approximation at each of the

peaks. As can be seen, PolyChord reliably identifies the inner

21 modes with increasing accuracy.

trigin test function is defined by:

f(✓) = An+
nX

i=1

⇥
✓2i �A cos(2⇡✓i)

⇤
, (21)

A = 10, ✓i 2 [�5.12, 5.12].

This is the industry standard “bunch of grapes”, the two-
dimensional version of which is illustrated in Figure 8. For
our purposes, we will treat (21) as the negative log-likelihood
so that L(✓) / exp[�f(✓)]. This is a stereotypically hard
problem to solve, as many algorithms get stuck in local max-
ima.

We ran PolyChord on a two-dimensional Rastrigin
log-likelihood with nlive = 1000 and nrepeats = 6. With
these settings, PolyChord calculates accurate evidence and
posterior samples (Figure 8), and in addition correctly iso-
lates and computes local evidences for the inner 21 modes.
Additional outer modes are also found, but these are com-
binations of lower modes due to their very low posterior
fraction. Increasing the resolution parameter nlive further
increases the number of modes identified. Examples of clus-
tered posterior samples are indicated in Figure 9, coloured
using Green’s (2011) ‘cubehelix’.

6.3 Rosenbrock function

PolyChord is also capable of navigating moderate curving
degeneracies.

The n-dimensional Rosenbrock function is defined by:

f(x) =
n�1X

i=1

(a� xi)
2 + b(xi+1 � x2

i )
2
, (22)

a = 1, b = 100, xi 2 [�5, 5], (23)

the two-dimensional version of which is plotted in Figure 10.
This is the industry standard “banana”, as it exhibits an ex-
tremely long and flat curving degeneracy. We consider n = 4,
in which there is a global maximum at (1, 1, 1, 1) and a local
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