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Working with Bayesian Posteriors

The posterior distribution encodes all information about the parameters of interest
after data has been observed. Sometimes these are analytic, but usually not.

When they are not analytic, they can be approximated by the Bayesian Central
Limit Theorem. We suppose that X1, ..., X, S p(z | @) and the prior p(0)and
likelihood p(x | @) are twice differentiable near 0 the mode of the posterior
distribution. Then, for large 7,

p(O | %) ~ N (8o, [17°°(6,)] )
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Working with Bayesian Posteriors

As discussed in Lecture 4, the primary application of probability distributions is to
compute expectation values of quantities of interest via integration.

In low numbers of dimensions, such integrals can be computed by direct evaluation
(numerical integration) on a grid of points.

In larger numbers of dimensions it is better to use stochastic (Monte Carlo)
sampling. We draw a set of samples {6, ...,0;,} and then approximate
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Monte Carlo integration converges to the true integral asymptotically as the number
of samples M tends to infinity, which can also be achieved with sufficient
computational power, whereas the Central Limit Theorem relies on the number of
observations to tend to infinity, which is much harder to obtain in practice.

Samples can be obtained through direct sampling or Markov Chain Monte Carlo.



Direct sampling: Method of Inversion

If the posterior distribution has a
cumulative density function (CDF)

- - 1.0 -
with a known inverse, samples can

be generated by drawing samples
from U[0,1].
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If the CDF is denoted by F =
0.4 1

F(B|x) =P8 < 0|x)

0.2 1

We simulate
0.0- 4 5

= U[O, 1] *

9@' — F_l(ui\x)

Example: exponential with parameter r.
f(tlr) =rexp(-rt), F(T) = 1-exp(-rT),

The x; are samples from f. F1l(u) =In(1/(1-u))/r



Direct sampling: Rejection Sampling

Rejection sampling uses samples
drawn from another distribution that

“contains” the distribution of interest. 1o
The algorithm is
1.0 A
0; ~ g(0) 081
yi ~ U[0, Mg(0)] "
If i < p(6i]x), accept 6,
as a sample from p(0|x) a
0.0 - He—x X X
We require 0 1 2 3 4 5 6

Mg(6) > p(0|x) Vo
Example: half-Normal distribution. We
The “best” rejection method uses want to sample from N(0,1) I(x > 0). We
< Dl 9\}() draw samples from Exp(1), for which we

M = sup
g(0)

0

need M =1.3155.



Direct sampling: Importance Sampling

Importance sampling also draws
samples from another, easy-to-sample 0.30
distribution, but now samples are not

0.25 A
rejected but given weights
0.20

R p(0i|x) %

P 0.15 - O N O st
g (‘92)

Integrals over the posterior are 0.10 -

approximated by weighted sums 0.05 -

0.00 A
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Example: Cauchy distribution. We want

One advantage is that the samples fromp(6) = 1/(7(1 + 6%)). We

normalisation of the posterior does not  draw samples from g(f) = 2/0° and use

need to be known. But, the algorithm importance sampling to estimate P(6 > 2).
suffers from high sampling variance.




Direct sampling: Sampling importance Resampling

Sampling importance resampling is a
variant of importance sampling.

Importance samples are first drawn
using the algorithm on the previous sides 041

and the weights renormalised
0.3

w; = = 0.2 A

Zj::[ w]

0.1 A

New samples are then drawn at random, .
with replacement, from the first set, with 25 50 75 100 125 150 175 200

relative probabilities given by w;.

— , . Example: histogram of resampled points
This is a form of particle filtering. It can

suffer from particle depletion, when a
small number of samples carry the

from first 1000 importance samples from
previous slide.

majority of the weight.



Markov Chain Monte Carlo

Often direct sampling methods cannot be devised, because the target distribution is
too complicated. In those cases, stochastic methods can be used based on Markov
Chain Monte Carlo methods.

The idea is to generate a reversible Markov chain (i.e., a sequence such that each
element depends only on the previous one and not longer past history), with a
stationary distribution that equals the target distribution.

Such a Markov chain must satisfy detailed balance

— —

p(0) p(0,0") = p(0") p(@', )

In which
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and p(f) denotes the target distribution, in our case p(8|d, M) .



Gibbs Sampling

Gibbs sampling draws consecutive samples from the full conditional distributions.
[t relies on the conditionals taking known forms. The algorithm is as follows

Initialise the parameters at some starting values
0) _ (p0) 0
iRl Rl )
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Draw 05 ~p(d, | 65°,657,...,6 %)
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Metropolis Hastings Algorithm

Gibbs sampling relies on being able to define the full conditional distributions.
When this is not possible, the Metropolis-Hastings algorithm provides another way
to compute a Markov chain.

We initialise by choosing a (random) starting point. Then, at step i:
- propose a new point, §, by drawing from a proposal distribution, q(g’ : «9_;)

- evaluate the target distribution at the new point. Compute the Metropolis-

Hastings ratio o o
p(9")q(6s,6")

H = =
p(6:)a(', ;)

- and draw a random sample, Cv, from a U[0,1] distribution. If & < H then
set (9@+1 — @ otherwise set 9z+1 — @, .NBif H > 1the proposed move is
definitely accepted.




Proposal Distributions

Sampling etficiency is strongly
influenced by the choice of proposal
distribution.

Uniform proposal (random sampling)
very inefficient - better to use a grid.

Ideally want a proposal tuned to the
distribution you are sampling.

Gaussian a good choice, but need to
tune width.
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Proposal Distributions

Sampling etficiency is strongly
influenced by the choice of proposal
distribution.

Uniform proposal (random sampling)
very inefficient - better to use a grid.

Ideally want a proposal tuned to the
distribution you are sampling.

Gaussian a good choice, but need to
tune width.

too wide: low acceptance rate;

too narrow: high acceptance rate; X
low effective samples.



Annealing

One way to accelerate convergence is to
use simulated annealing.

“Heat up” posterior by making the
replacement

— —

p
p(0ld, M) — |p(d]d, M)

where )
f=

kT
Choosing a high temperature smoothes
out the posterior which can then be
more easily sampled.

Allows identification of interesting parts
of parameter space.

KT = 1  —
[G="2 N —
kKT =5
KT =10




Annealing

[t is common to use parallel tempering. A sequence of M MCMC chains are run
simultaneously at different temperatures, {T7, ..., Tm}.

The chains can exchange information, which is achieved by proposing a swap of the
states of two chains with different temperatures. The swap is accepted with

0,)p;(0;
. (1 i(0) p; <q>>
i(0:) p;(6;)
where i, j label the two temperature chains, A1 denotes the current state of the k'th
chain and px (@) denotes the target (annealed) distribution for the k’th chain.

probability




Burn-in

Chain values of m

The MCMC chain does not sample from
the target distribution immediately:. o

There is a residual “memory” of the -
initial state. Need to discard the first few
samples. N

This is called the burn-in.

Can identify number of samples to
discard by looking at trace plots.

Usually a few hundred to a thousand

samples is sufficient for burn-in. 0 200 400 600 800 1000

True value =red line



Autocorrelation and Effective sample size

Consecutive samples in the MCMC chain are not independent samples from the target
distribution.

Can use all samples for posterior inference but do need to know how many independent
samples the chain contains in order to assess the precision of inferences.

Compute the (lag-k) autocorrelation

N —k e s
e Z¢:1 (:13@ — 37)(37@+k = 5’3)
Pk = N

DB ke T

where x now denotes one of the components of §. Choose k=K large enough that the
autocorrelation py, << 1. The effective sample size is ~ N/ K and formally defined

N

ESS = =
142> 1 Pk

Can “thin” chain by keeping only every K'th sample without affecting accuracy of
posterior inference.



Diagnostics

There are various techniques to diagnose the quality of results from a given MCMC
run.

e compute acceptance rate, i.e., fraction of proposed points that are accepted.
Acceptance rate ~25% is optimal.

 look at one and two dimensional posterior distributions — do they look
smooth and well sampled?

e look at trace plots — is the chain moving back and forth or unidirectionally?

e run multiple MCMC chains starting at different points. Do they give consistent
results?



Diagnostics
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Diagnostics

There are various techniques to diagnose the quality of results from a given MCMC
run.

e compute acceptance rate, i.e., fraction of proposed points that are accepted.
Acceptance rate ~25% is optimal.

 look at one and two dimensional posterior distributions — do they look
smooth and well sampled?

e look at trace plots — is the chain moving back and forth or unidirectionally?

e run multiple MCMC chains starting at different points. Do they give consistent
results?

e use Gelman-Rubin convergence diagnostic.



Gelman-Rubin convergence diagnostic

Run m (at least 2) chains and discard first half of samples from each.

Calculate the within-chain variance
N

1 «— 1 3l
W=—> w125 %)
gie=21 d==l:
Calculate the between-chain variance

N e LAz it e TAN
= LN flf:gzwj
= =l

Calculate the estimated variance of a given parameter

1 1

Calculate the potential scale-reduction factor

A Ve
[ ar(x)
|44
If R is greater than ~1.1 or 1.2, need to run chains for longer.




Probaoility Densily

Probability Density

Convergence diagnostics: GW 150914

Aurocorrelation Function
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Examples of Parameter Posteriors

/Mg
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2
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LVC, Phys. Rev. Lett. 116, 061102 (2016)
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Reversible Jump MCMC

Often the number of sources in the data set is also unknown.

Reversible Jump Markov Chain Monte Carlo is a technique applied in such
situations, by periodically proposing jumps between models. In GW applications
these normally correspond to different numbers of events.

Represent a proposed move by tuples (x, #) and (x’, u’). Here x and x” denote the
parameters of the current and proposed state (which may have different numbers of
dimensions) and u, u’ are sets of random numbers that lead to a proposed move
from x to x” and back.

Generalisation of acceptance ratio is

o = min (1, 2000 |00 )
px)a(w) | o(x, )

)



Product Space MCMC

An alternative to RIMCMC is to use
standard MCMC but with an extended

parameter space

—

{Xl,XZ,...,Ak...,XM,K}

K is the current parameter space dimension,
i.e., number of sources.

Parameter values with k > K are varied but
do not contribute to the likelihood.

Method can be more efficient than RIMCMC.
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Chua et al., MNRAS 478, 28 (2018)




Nested Sampling

Nested Sampling (Skilling 04) provides an efficient way to compute evidences, using a
1D integral over the prior

1
Z = /E(@)w(@)dN@ :/ L(X)dX, where X(\) :/ m(©)d"V e
0 L(O)>A
Use N ‘live points’, initially chosen at random from the prior. At step i, the point of
lowest likelihood, £;, is replaced by a new point with likelihood £ > L;. The prior
volume is reduced by a factor t, drawn from p(t) = N tV 1, at each step. We climb
through nested contours of increasing likelihood as the algorithm proceeds.




MultiNest

*  The trick is to sample efficiently from the prior within the hard constraint that £ > L; .
MultiNest achieves this using an ellipsoidal rejection sampling scheme. The live point set
is partitioned into a number of (possibly overlapping) ellipsoids.
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# The algorithm is well suited to exploring likelihoods with multiple modes. Other
algorithms (e.g., cpnest) update live points using short MCMC explorations.

#  Although designed to compute evidences, nested sampling algorithms also return the
posterior probability distribution.



MultiNest
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PolyChord

An alternative nested sampling algorithm is
PolyChord (Handley et al. 2015). It uses slice
sampling to sample within the likelihood
constraint, and affine transformations to
make contours more spherical.

Affine transformationy = L~ !x

P

A

y2

Sampling space



PolyChord

PolyChord outperforms MultiNest in large numbers of dimensions.
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