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Bayesian versus Frequentist Statistics
❖ Frequentist statistics makes references to repeated experiments with parameters 

fixed but unknown.

❖ In Bayesian inference the parameter values are regarded as random variables.

❖ In a given observation, the pdf of the parameters is updated from a prior to a 
posterior using the likelihood of the observed data.

❖ A Bayesian posterior can be interpreted as a probability distribution on the 
parameter values based on the observed data set. It is based only on the observed 
data and does not make reference to hypothetical repetitions of the experiment.

❖ In a GW context, Bayesian inference makes intuitive sense as experiments are not 
repeatable. Even when they are, the Bayesian posterior converges to the fixed but 
unknown parameter value as the number of experiments increases.

❖ Bayes’ Theorem is a mathematical identity. The distinction between frequentist and 
Bayesian inference is philosophical, in the interpretation of various quantities.



Conditional probability
❖ Suppose we choose at random from a set of objects that are red (R) or blue (B) and 

circular (C) or square (S).

❖ 5 out of 10 objects are red, therefore, with no other information, p(R)=0.5.

p(R) = 0.5

p(B) = 0.5



Conditional probability
❖ Suppose we choose at random from a set of objects that are red (R) or blue (B) and 

circular (C) or square (S).

❖ 5 out of 10 objects are red, therefore, with no other information, p(R)=0.5.

p(S) = 0.5

p(C) = 0.5



Conditional probability

p(R) = 0.8
p(B) = 0.2

❖ If we know that the object is  square, the probability changes, since of square objects, 
4 out of 5 are blue.



❖ The idea that, for correlated random variables, the distribution of one can change 
based on the observed value of the other is encoded in the notion of conditional 
probability.

❖ Mathematically we define the probability of A given B as

❖ If A and B are independent then p(A|B) = p(A).

Conditional probability

p(A|B) =
p(A \B)

p(B)
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Probability that A and B occur simultaneously
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❖ Rearranging the definition of conditional probability

❖ we obtain Bayes’ Theorem:

❖ This is mathematically exact, but can be used in an approximate way for inference

• p(A) — prior belief about state of the Universe, “A”;

• p(B|A) — likelihood of seeing data “B” if the state is “A”;

• p(A|B) — posterior belief on the state of the Universe after collecting data;

• p(B) — “evidence” for your model (a normalising constant).

Bayes’ Theorem

p(A|B) =
p(B|A)p(A)

p(B)

p(A|B) =
p(A \B)

p(B)



Bayesian inference: example
❖ Suppose a medical screening test is 95% effective but has a 1% false alarm rate. This 

means that the probability of getting a positive result when the patient does have the 
disease is 0.95, while the probability of getting a positive result when the patient does 
not have the disease is 0.01.

❖ If the disease has a prevalence of 0.5% in the population, what is the probability that 
a person with a positive result has the disease?

p(ill|pos) = p(pos|ill)p(ill)
p(pos|ill)p(ill) + p(pos|well)p(well)

=
0.95⇥ 0.005

0.95⇥ 0.005 + 0.01⇥ 0.995

=
0.00475

0.00475 + 0.00995
= 0.323



Prior choice: informative
❖ The prior plays a key role in Bayesian inference. One advantage of the Bayesian 

approach is the ability to include additional information through the prior.

❖ Priors can be informative or uninformative. An informative prior makes a (strong) 
statement about the values or distribution of the parameters under consideration. 
Uninformative priors attempt to say as little as possible and thereby avoid biasing 
the results.

❖ Informative priors may come from previous experiments, i.e., these could be the 
posterior from a previous (set of) experiment(s). Alternatively they can be based on 
the opinion of “experts”, through their experience in similar situations.

❖ The process of constructing a prior based on expert input is known as elicitation.

❖ Different experts may have different opinions, in which case mixture priors can be 
used 
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case a mixture prior can be constructed

p(~✓) =
JX

j=1

!jpj(~✓)

where j labels which of the J experts we are referring to, pj(~✓) is the prior elicited from that
expert, and !j is the weight given to that expert (or set of experts).

If the prior is based on the posterior from previous observations it is normally clear
how to fold this in. If the prior comes from expert opinion, it may be possible to use this in
several di↵erent ways. In that case, care must be taken to be as conservative as is reasonably
possible in the use of that prior information, to avoid making conclusions form the data that
are too strong.

4.3.2 Conjugate priors

It is convenient to choose a form for the prior that ensures the posterior takes the same form.
In such situations, the posterior from an experiment can be directly be used as a prior for
the next experiment and so on. Such a prior is called conjugate. Definition: A family

of distributions, F , is conjugate to a family of sampling distributions, P , if, whenever the
prior belongs to the family F , the posterior belongs to the same family, for any number and
value of observations from P . The form of the conjugate prior depends on the nature of

the probability distribution, P , from which the observed data is drawn. This gives rise to a
number of conjugate families. In particular, any distribution in the exponential family

p(x| ✓) = exp

(
KX

j=1

Aj(x)Bj(~✓) + C(~✓) +D(x)

)
8x, ~✓

has a conjugate prior in the exponential family of the form

p(~✓|~�, ⌫) = p(~�, ⌫) exp
h
~✓T ~�� ⌫A(~✓)

i
(61)

where ⌫ and ~� are the hyperparameters of the prior distribution.
A full list of conjugate priors can be found in the conjugate prior entry on wikipedia,

but the three most widely used are the Beta-Binomial, Poisson-Gamma and Normal-Normal
families, and we will discuss these further here.

Beta-Binomial model Suppose our observed data X ⇠Bin(n, p) with likelihood

p(x|p) =
✓

n
x

◆
px(1� p)n�x.

The conjugate prior is the Beta(a, b) distribution with density

p(p) =
1

B(a, b)
pa�1(1� p)b�1 =

�(a+ b)

�(a)�(b)
pa�1(1� p)b�1.



Prior choice: conjugate priors
❖ Another commonly used approach to prior definition is to use conjugate priors.

❖ In other words, the posterior is from the same family as the prior and can therefore be 
used as the prior for the next observation and so on. Any distribution in the 
exponential family

❖ has a conjugate prior of the form

❖ The most commonly encountered conjugate prior models are Beta-Binomial, Poisson-
Gamma and Normal-Normal/Normal-Gamma.
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Beta-Binomial model Suppose our observed data X ⇠Bin(n, p) with likelihood

p(x|p) =
✓

n
x

◆
px(1� p)n�x.

The conjugate prior is the Beta(a, b) distribution with density

p(p) =
1

B(a, b)
pa�1(1� p)b�1 =

�(a+ b)

�(a)�(b)
pa�1(1� p)b�1.



Conjugate priors: Beta-Binomial
❖ For binomial observations with likelihood

❖ the conjugate prior is the Beta distribution.

❖ The posterior is then

❖ The mean of a Beta(a,b) distribution is a/(a+b) so the posterior mean is
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Observing binomial distributed data and using the Beta prior gives a posterior

p(p | x) / p(x | p)p(p)

=

✓
n

x

◆
px(1� p)n�x

�(a+ b)

�(a)�(b)
pa�1(1� p)b�1

/ pa+x�1(1� p)b+n�x�1.

So the posterior is also a Beta distribution

p(p | x) = Beta(a+ x, b+ n� x).

The mean and variance of a Beta(a, b) distribution are

E(X) =
a

a+ b
, var(X) =

ab

(a+ b)2(a+ b+ 1)
.

The posterior mean is therefore

E(p|x) = a+ y

a+ b+ n

which we compare to the mean in the observed data of x/n. One interpretation of the prior
data is that it represents having observed a� 1 events in a+ b� 2 previous trials. If a and b
are kept fixed and n, x ! 1 the posterior mean tends to the maximum likelihood estimator
x/n and the posterior variance tends to zero.

Poisson-Gamma model Suppose now that we are observing data, X1, . . . , Xn, from a
Poisson distribution, X ⇠Pois(�), with likelihood

p(x | �) =
nY

i=1

⇢
�xie��

xi!

�
.

The conjugate prior is the Gamma(m,µ) distribution

p(�|m,µ) =
1

�(m)
µm�m�1e�µ�,

which has mean m/µ and variance m/µ2. With this prior the posterior is

p(� | x) / p(x|�)p(�)

=
nY

i=1

⇢
�xie��

xi!

�
1

�(m)
µm�m�1e�µ�

/ e�n��µ��
Pn

i=1 xi+m�1

/ Gamma(m+ nx̄, µ+ n). (62)

The posterior mean can be seen to equal

E(p(� | x)) = m+ nx̄

m+ n
= x̄

✓
n

n+m

◆
+

m

µ

✓
1� n

n+m

◆
,

i.e., it is a compromise between the prior mean, m/µ, and the maximum likelihood estimator
x̄. As the number of samples increases, more weight is placed on the data and less on the
prior, as expected.
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Conjugate priors: Poisson-Gamma
❖ For Poisson-distributed observations

❖ the conjugate prior is a Gamma distribution

❖ The posterior is then

❖ for which the posterior mean is
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i.e., it is a compromise between the prior mean, m/µ, and the maximum likelihood estimator
x̄. As the number of samples increases, more weight is placed on the data and less on the
prior, as expected.
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Conjugate priors: Normal-Normal
❖ We now consider                                                     with likelihood 

❖ If we assume the variance is known the conjugate prior is also Normal

❖ The posterior

❖ which can be recognised as a Normal distribution with mean and variance
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Writing these results in terms of ⌧ = 1/�2, which is called the precision of the Normal
distribution we can see

µn =
⌧0

⌧0 + n⌧
µ0 +

n⌧

⌧0 + n⌧
ȳ

so once again the posterior mean is a balance between the prior mean and the sample mean,
with the relative weighting determined by both the number of observations and the relative
precision of the observations and the prior.

If we suppose that µ is known (which is an unrealistic assumption in practice), but the
variance is uncertain, then we can obtain a conjugate prior by using a Gamma(a, b) prior on
the precision

p(⌧ |a, b) / ⌧a�1e�b⌧

and obtain the posterior
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Conjugate priors: Normal-Gamma
❖ If we now assume instead that the mean is known, but the variance is not, the 

conjugate prior on the precision (the reciprocal of the variance) is a Gamma 
distribution

❖ with posterior

❖ Common practice is to take a and b << 1 and then the posterior is approximately
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Writing these results in terms of ⌧ = 1/�2, which is called the precision of the Normal
distribution we can see
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ȳ

so once again the posterior mean is a balance between the prior mean and the sample mean,
with the relative weighting determined by both the number of observations and the relative
precision of the observations and the prior.

If we suppose that µ is known (which is an unrealistic assumption in practice), but the
variance is uncertain, then we can obtain a conjugate prior by using a Gamma(a, b) prior on
the precision

p(⌧ |a, b) / ⌧a�1e�b⌧

and obtain the posterior
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Normal-Normal/Normal-Gamma model Now we consider X1, . . . , Xn ⇠ N(µ, �2),
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so once again the posterior mean is a balance between the prior mean and the sample mean,
with the relative weighting determined by both the number of observations and the relative
precision of the observations and the prior.
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variance is uncertain, then we can obtain a conjugate prior by using a Gamma(a, b) prior on
the precision

p(⌧ |a, b) / ⌧a�1e�b⌧

and obtain the posterior

p(⌧ | x, µ) / p(x | µ, ⌧)p(⌧ |a, b)

/ ⌧n/2 exp

(
�⌧

2

nX

i=1

(xi � µ)2
)
⌧a�1e�b⌧

= ⌧a+n/2�1 exp

(
�⌧

 
b+

1

2

X

i

(xi � µ)2
!)

⇠ Gamma

 
a+

n

2
, b+

1

2

nX

i=1

(xi � µ)2
!
.

54 Introduction to Statistics for GWs

It is common practice to take the limit in which a and b are both very small and then the
posterior becomes

p(⌧ | x, µ) = Gamma
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so the posterior expectation of the precision is approximately the same as the (frequentist)
sample precision (up to a factor of n/(n� 1)).

Finally we assume that both µ and �2 are unknown. It would be reasonable to just
multiply together the two previous priors, but this does not result in a conjugate prior,
essentially because the posterior on µ in the first case depends on the known variance �2.
However, we can find a correlated conjugate prior (writing ⌧ = 1/�2 as before) by writing

µ ⇠ N(µ0, 1/(n0⌧)), ⌧ ⇠ Gamma(a, b),

or, explicitly,
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The posterior on µ, conditioned on ⌧ , p(µ|⌧,x), is given by the same expression as before
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The posterior on ⌧ can be found by considering the combined posterior, being careful not to
drop any terms that depend on µ or ⌧
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If we now marginalise over µ, the round bracketed term on the final line integrates to a
constant, independent of ⌧ , and the term inside the exponent on the penultimate line can
be simplified to obtain
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And so this is also a conjugate prior model, called the Normal-Gamma model.



Conjugate priors: Normal-Gamma
❖ The final variant of the Normal-Normal model is to assume both mean and variance 

are unknown. In that case a conjugate prior can be found of the form

❖ The posterior on the mean is the same as before

❖ but the posterior on the precision is now
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If we now marginalise over µ, the round bracketed term on the final line integrates to a
constant, independent of ⌧ , and the term inside the exponent on the penultimate line can
be simplified to obtain
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And so this is also a conjugate prior model, called the Normal-Gamma model.
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If we now marginalise over µ, the round bracketed term on the final line integrates to a
constant, independent of ⌧ , and the term inside the exponent on the penultimate line can
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And so this is also a conjugate prior model, called the Normal-Gamma model.
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It is common practice to take the limit in which a and b are both very small and then the
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Finally we assume that both µ and �2 are unknown. It would be reasonable to just
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essentially because the posterior on µ in the first case depends on the known variance �2.
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If we now marginalise over µ, the round bracketed term on the final line integrates to a
constant, independent of ⌧ , and the term inside the exponent on the penultimate line can
be simplified to obtain
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And so this is also a conjugate prior model, called the Normal-Gamma model.



Using expert information in conjugate priors

❖ Informative priors that are also conjugate can be constructed, if the form in which 
the the expert information is available is appropriate.

❖ Example: Consider a drug to be given for relief of chronic pain. Experience with similar 
compounds has suggested that response rates, p, between 0.2 and 0.6 could be feasible. We 
plan to observe the response rate in n patients and want to infer a posterior on p. Propose a 
suitable conjugate prior for p based on the available information. Hence obtain the posterior 
if x = 15 positive responses are observed in a sample of n=20 patients.

• The expert information can be interpreted as U[0.2,0.6].

• A U[0.2,0.6] distribution has mean 0.4 and variance 0.01.

• These are the same mean and variance as a Beta(9.2, 13.8) distribution. 
Therefore we use this is the conjugate prior.

• For n=20, x=15 the posterior is Beta(24.2, 18.8).



Using expert information in conjugate priors
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Prior choice: Jeffreys prior
❖ In the absence of any previous information it is desirable to choose an 

uninformative prior. Uniform priors are often regarded as uninformative. However, 
these are not invariant under transformations.

❖ Jeffreys (1961) proposed an invariant prior of the form

❖ is the Fisher Information matrix.

❖ Example - Poisson distribution: For the likelihood of a single Poisson observation

❖ we have

❖ This is the prior used in standard (FGMC) LVC rate estimation.
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Solution: We find the posterior as follows
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We finish by normalising the weights to obtain
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So the posterior is also a mixture of Beta distributions.

4.3.5 Je↵rey’s prior

If we do not have any prior information, it is normal to use an “uninformative” prior, i.e.,
a prior that assumes as little as possible about the parameter values. It is common to use
uniform priors as uninformative priors, so that the posterior basically corresponds to the
likelihood of the data. This is approach taken for many parameters in parameter estimation
of gravitational wave data and was in fact the approach that Bayes himself advocated.
However, uniform priors are not invariant under re-parameterisation. If one is ignorant
about the value of ✓, one is also ignorant about the value of ✓2 or any other function of ✓.
Therefore, any uninformative prior should induce the same form of uninformative prior on
any other variables defined by transformation. Je↵rey’s (1961) proposed a class of priors
that are invariant under re-parameterisations. By identifying the probability density with a
metric on parameter space he argued that the prior should take the form [det(gij)]1/2 where
the metric

gij(~✓) =
1

f(~✓)

@f

@✓i

@f

@✓j
.

This would lead to an invariant prior for any scalar function f(~✓). Je↵rey advocated the
use of the likelihood, which introduces a data dependence into the expression, that can be
eliminated by taking the expectation over realisations of the data. This procedure leads to
Je↵rey’s prior which is

p(~✓) /
q
det[I(~✓)], where I(~✓)ij = E


@l

@✓i

@l

@✓j

�

for l = log p(x|~✓) the log-likelihood is the Fisher information matrix.
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Je↵rey’s prior is “uninformative” because it can be interpreted as being as close as possible
to the likelihood function and it is invariant under re-parameterisation. However, it is rarely
a member of the conjugate family of distributions or of some other convenient form which
is why it is not always convenient to use it in practice. Note also that the Je↵rey’s prior is
not always proper, i.e., it does not always have a finite integral and therefore may not be
normalisable.

Example: Poisson distribution For a single observation, x, from the Poisson(�) dis-
tribution with pmf

p(x|�) = �xe��

x!
we have

@ log p

@�
=

x

�
� 1,

@2 log p

@�2
= � x

�2
) I(�) ⌘ E


�@2 log p

@�2

�
=

1

�
.

The Je↵rey’s prior for the Poisson distribution is therefore p(�) / 1/
p
�. This is an example

of an improper prior, since it cannot be normalised to integrate to 1 unless the range of
rates is restricted.

4.4 Posterior summary statistics

The result of a Bayesian inference calculation is a probability distribution, the full posterior
probability distribution of the parameters, p(~✓|x). This is not only di�cult to calculate in
many cases, it is also unwieldy to manipulate and so it is common to use quantities that
summarise the properties of the distribution. These are all of the summary statistics that
we encountered in the first chapter of the course.

4.4.1 Point estimates

To obtain point estimates of a parameter value, ✓1 say, one typically works with themarginalised
distribution for that parameter, defined by

pmarg(✓1|x) =
Z

p(~✓|x)d✓2 . . . d✓m.

From this marginal distribution, we can evaluate the posterior mean

µ =

Z 1

�1
✓1pmarg(✓1|x)d✓1

or the posterior median, m, defined such that
Z

m

�1
pmarg(✓1|x)d✓1 = 0.5 =

Z 1

m

pmarg(✓1|x)d✓1

or the posterior mode
M = argmaxpmarg(✓1|x).

The posterior mean and mode can be defined unambiguously over the full distribution as
well. The posterior mean is the same whether computed over the marginal distribution or
the full distribution, but the mode typically changes. The median is not unambiguously
defined on the whole distribution, as there are infinitely many ways to partition the full
parameter space into equal probability subsets.
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Posterior summaries: intervals
❖ The Bayesian analogue of a frequentist confidence interval is a credible interval

❖ A credible region can be defined analogously.

❖ Credible regions/intervals are not unique. The two most common types of credible 
intervals are symmetric and highest posterior density intervals.
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4.4.2 Credible intervals

To move beyond point estimates, it is natural to want to describe ranges in which parameter
values are estimated to lie. The Bayesian equivalent of a frequentist confidence interval is a
credible interval. This is defined as

Definition: An interval (a, b) is a 100(1� ↵)% posterior credible interval for ✓1 if

Z
b

a

pmarg(✓1|x)d✓1 = (1� ↵), 0  ↵  1.

A credible region can be defined in a similar way. This is any partition of parameter
space that contains 100(1�↵)% of the total posterior probability. Clearly credible intervals
and regions are not unique, but there are two types of credible interval that are commonly
used.

Definition: An interval (a, b) is a symmetric 100(1 � ↵)% posterior credible interval
for ✓1 if Z

a

�1
pmarg(✓1|x)d✓1 =

↵

2
=

Z 1

b

pmarg(✓1|x)d✓1.

Definition: An interval (a, b) is a 100(1 � ↵)% highest posterior density (HPD)
interval for ✓1 if

1. [a, b] is a 100(1� ↵)% credible interval for ✓1;

2. for all ✓ 2 [a, b] and ✓0 /2 [a, b] we have pmarg(✓|x) � pmarg(✓0|x).

Credible intervals are more intuitive than confidence intervals as they make an explicit
statement about the probability that the parameter takes values in the range, rather than
referencing an ensemble of similar experiments.

4.4.3 Posterior samples

Summary statistics provide a useful way to summarise and compare distributions, but they
inevitably discard information. To retain full information about the parameters we need the
full posterior. Often this cannot be written down in a simple analytic form, but it can be
summarised by drawing a set of samples {~✓1, . . . , ~✓M} randomly from the posterior. Such
samples can then be used to compute integrals over the posterior

Z
f(~✓)p(~✓|x)d~✓ ⇡ 1M

MX

i=1

f(~✓i).

Most quantities that one might wish to compute from a posterior distribution can be ex-
pressed as integrals of this form, and so generation of such samples is the most complete way
to represent posterior distributions. E�cient production of samples is non-trivial and will
be the topic of the next chapter of these notes.
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Posterior summaries: samples
❖ Constructing summary statistics throws away information that can only be captured 

by the full posterior distribution. Sometimes the posterior distribution is expressible 
in closed form, but usually it is not.

❖ The majority of applications of probability distributions reduce to computing 
integrals. Another way to summarise a posterior is therefore to generate a large 
number of samples                             from the posterior. Posterior integrals can then 
be computed via

❖ In Lecture 6 we will discuss various methods through which such samples can be 
generated efficiently in practice.
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Posterior summaries: interpretation
❖ Posterior summary statistics can be interpreted using decision theory. Central to 

decision theory is the notion of a loss function and the associated risk

❖ The Bayes risk of a decision rule is the expected risk with respect to the prior

❖ A Bayes rule minimises the Bayes risk and can also be seen to minimise the 
posterior expected loss
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4.5 Interpreting summary statistics

4.5.1 Decision theory

The posterior mean, mode and median are all valid ways to summarise a posterior distribu-
tion. One way to motivate these (and other possible) choices is through decision theory. In
decision theory, understanding which decision is the best is motivated by introducing a loss
function which characterises the cost or penalty of making a particular decision. Formally
we define various quantities

• The sample space X denotes the possible values for the observed data, x.

• The parameter space, ⌦✓, denotes possible (unknown) states of nature (or parameter
values characterising the true pdf of observed data sets).

• We define a family of probability distributions, {P✓(x) : x 2 X , ✓ 2 ⌦✓}, which
describe how the observed data is generated in the possible states of nature.

• The action space, A, is the set of actions that an experimenter can take after observ-
ing data, e.g., reject or accept a null hypothesis, assign an estimate to the value of ✓
etc.

• The loss function, L : ⌦✓ ⇥ A ! R, is a mapping from the space of actions and
parameters to the real numbers, such that L(a, ✓) is the loss associated with taking
the action a when the true state of nature is ✓.

• The set of decision rules, D, is a set of mappings from data to actions. Each element
d 2 D is a function d : X ! A that associates a particular action with each possible
observed data set.

For a parameter value ✓ 2 ⌦✓, the risk of a decision rule, d, is defined as

R(✓, d) = E✓L(✓, d(X)) =

⇢ P
x2X L(✓, d(x))p(x; ✓) for discrete XR

X L(✓, d(x))p(x; ✓)dx for continuous X .

In other words, the risk is the expected loss of a particular decision rule when the true value
of the unknown parameter is ✓. Note that this is fundamentally a frequentist concept, since
the definition implicitly invokes the idea of repeated samples from the parameter space X
and computes the average loss over these hypothetical repetitions. However, it is possible to
extend these ideas to a Bayesian framework by defining a prior, ⇡(✓), over the parameters
of the distribution. The Bayes risk of a decision rule, d, is then defined as

r(⇡, d) =

Z

✓2⌦✓

R(✓, d)⇡(✓)d✓,

or by a sum in the case of a discrete-valued probability distribution. A decision rule is a
Bayes rule with respect to the prior ⇡(·) if it minimizes the Bayes risk, i.e.,

r(⇡, d) = inf
d02D

r(⇡, d0) = m⇡, say.

Note that, as usual in a Bayesian context, the Bayes rule depends on the specification of the
prior and therefore there will be infinitely many Bayes rules for any particular problem. A
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useful choice of prior is the one that is most conservative in its estimate of risk. This gives
rise to the concept of a least favourable prior. The prior ⇡(✓) is least favourable if, for
any other prior ⇡0(✓) we have

r(⇡, d⇡) � r(⇡0, d⇡0)

where d⇡, d⇡0 are the Bayes rules corresponding to ⇡(·) and ⇡0(·) respectively.

4.5.2 Bayes rules as minimizers of posterior expected loss
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We will illustrate this with four examples. In the first three examples, we are attempting
to make a point estimate and so the decision is an assignment of the value of the parameter
d = ✓̂.
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❖ The Bayes rule for different loss functions corresponds to various natural summary 
statistics.

• Squared error loss: use posterior mean.

• Absolute magnitude loss: use posterior median.

• Delta-function gain: use posterior mode.

• Interval estimation: for the loss function below, the Bayes rule is the highest 
posterior density interval.

Posterior summaries: interpretation
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Example: Point estimation with absolute magnitude error loss
Suppose we instead use the loss function L(✓, d) = |✓ � d|. Find the new Bayes rule.

Solution
In this case, the Bayes rule minimizes

Z
d

�1
(d� ✓)p(✓|x)d✓ +

Z 1

d

(✓ � d)p(✓|x)d✓.

Setting the derivative with respect to d to zero now gives

Z
d

�1
p(✓|x)d✓ �

Z 1

d

p(✓|x)d✓ = 0 )
Z

d

�1
p(✓|x)d✓ =

Z 1

d

p(✓|x)d✓ =
1

2
.

In other words, the Bayes estimator of ✓, with absolute magnitude error loss, is the posterior
median.

Example: Point estimation with delta-function gain
Suppose we instead use the loss function

L(✓, d) =

⇢
��(✓ � d) if d = ✓

0 if d 6= ✓
.

In other words, the loss is infinitely higher for any value except the correct one. Find the
new Bayes rule.

Solution
In this case, the Bayes rule minimizes

�
Z 1

�1
�(✓ � d)p(✓|x)d✓ = �p(d|x).

The minimum loss is obtained by setting

d = argmaxp(d|x),

i.e., the posterior mode.

Example: Interval estimation
Suppose we have a loss function of the form

L(✓, d) =

⇢
0 if |✓ � d|  �
1 if |✓ � d| > �

for specified � > 0. What is the Bayes rule?
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Example: linear model
❖ Suppose we have data

❖ We want to fit a Bayesian model for the unknown parameters in the model. We first 
need to specify priors

❖ We use “skeptical priors” by setting the means of the Normal distribution to zero, 
the variances to 1000 and a = b  = 0.1.

❖ We fit the standard mtcars data set, which has 3 explanatory variables and N=32 
measurements.
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Bayes Factor Interpretation
< 3 No evidence of M1 over M2

> 3 Positive evidence for M1

> 20 Strong evidence for M1

> 150 Very strong evidence for M1

Table 2: Table for intepretation of Bayes’ factors, as presented in Kass and Ra↵erty (1995).

4.7 Predictive checking

In both a frequentist and a Bayesian context it is natural to ask whether the model is a good
representation of the observed data. In the Bayesian context this is accomplished by using
predictive distributions.

Definition: the prior predictive distribution is the probability distribution

p(x) =

Z

~✓2⇥
p(x|~✓)p(~✓)d~✓.

This is the likelihood weighted by the assigned prior distribution and therefore represents

our a priori belief about the distribution of data sets that would be observed. Similarly, we
have the following Definition: the posterior predictive distribution is the probability

distribution

p(y|x) =
Z

~✓2⇥
p(y|~✓)p(~✓|x)d~✓.

This is the likelihood weighted by the posterior probability based on the observed data x

and is our expectation about the distribution of future data sets y.
The posterior predictive distribution can be used to assess whether the observed data is

unusual within the posterior distribution, which is an indicator about whether or not the
model is a good fit. Based on the observed data x we generate a large number of new data
sets {y1, . . .yN} that are similar to x, i.e., they consist of the same number of observations.
For each data set we compute a set of summary statistics, and hence obtain the distribution
of the summary statistics over many realisations of the posterior predictive distribution. We
can then assess the “p-value” of the observed data within these distributions. If it looks like
an outlier in any one of these distributions this suggests the model is not a good fit. Suitable
summary statistics could include the maximum, minimum, median, skewness, kurtosis etc.
Ideally we choose summary statistics that are orthogonal to the model parameters to increase
sensitivity, since we are using the data twice (once to compute the posterior and once to
compare to the predictive distribution). Statistics that are e↵ectively tuned to the observed
data will tend to lie in the middle of the predictive distributions by construction, even if the
model is poor. We will see an example of this in the next section.

4.8 Example: regression

To illustrate some of the ideas discussed above we will present a Bayesian analysis of a
regression problem. We suppose that we have made measurements of a set of values, {yi},
corresponding to sets of p known explanatory variables, {xi}, and we believe that these
follow a linear relationship with equal variance normally distributed errors

yi ⇠ N(xT

i
~�, �2), i = 1, . . . , N.
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Bayesian results Frequentist results
Parameter Posterior mean 95% credible interval MLE 95% confidence interval

�0 10.369 [-5.098,36.349] 11.395 [-5.134,27.922]
�1 1.777 [-0.721,4.166] 1.750 [-0.857,4.169]
�2 -4.335 [-5.702,-2.995] -4.347 [-5.787,-3.009]
�3 0.968 [0.449,1.493] 0.946 [0.410,1.482]
�2 6.978 [4.160,11.729] 6.554 —

Table 3: Comparison between Bayesian and frequentist estimates of the linear model fit to
the mtcars data set.

We want to infer the parameters of the linear relationship, ~�, and the unknown precision
⌧ = 1/�2. We use a Bayesian framework and so must write down prior distributions on these
parameters. We can assume a separable prior

p(~�, ⌧) = p(⌧)
pY

i=1

p(�j)

and take Normal priors for the �j’s and a Gamma prior for ⌧ as these are conjugate priors
in the Normal-Gamma model

�j ⇠ N(µ�j , �
2

�j
), ⌧ ⇠ Gamma(a, b).

In the absence of prior information it is reasonable to set µ�j = 0. Inferred values of
the coe�cients that are non-zero then provide evidence for the existence of a relationship
between the observed data and those explanatory variables. Setting �2

j
to a large value, say

104, indicates large uncertainty in the parameter values and avoids strong prior dependence
in the results. For the prior on ⌧ , it is usual to take small values of a and b, for example
a = b = 0.1 or a = b = 0.01. However, such priors lead to a preferred value (i.e., a peak) in
the prior and so the use of such priors is somewhat controversial.

To illustrate fitting such a model, we can use a standard data set, the mtcars data set,
which is available in the R statistical software package and may also be found online. The
data set contains observations, yi, of the miles driven per gallon in the i’th of 32 di↵erent
models of car, with explanatory variables xi1, the rear axle ratio, xi2, the weight of the i’th
car and xi3, the time to drive 0.25 miles from rest. We fit the model

yi = �0 + �1xi1 + �2xi2 + �3xi3 + "i, "i
iid⇠ N(0, 1/⌧), i = 1, . . . 32,

with �j ⇠ N(0, 1000) and ⌧ ⇠ Gamma(0.1, 0.1). We can use statistical software (in this case
R) to generate samples from the posterior. Techniques for doing this will be discussed in the
next chapter, and in the associated practical. using these samples we can obtain a posterior
mean and 95% symmetric credible interval for each parameter. These can be compared to
the frequentist estimates of the same parameters and the frequentist 95% confidence interval
(see problem sheet 1). This comparison is in Table 3.

The results of the Bayesian fit are quite consistent between the two approaches, although
there are some di↵erences and the interpretation of the results is di↵erent. We now want
to assess the quality of the results. In a frequentist setting, assessment of the quality of a
linear model fit is done through the production of studentised residuals and Q-Q plots. A
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Example: linear model
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Example: linear model
❖ We can compare the Bayesian inference results to the maximum likelihood estimator.
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Example: linear model
❖ We can diagnose the quality of the model by looking at studentised residuals.
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Figure 5: Q�Q plot of the studentised residuals (left), studentised residual versus index of
data point (middle) and studentised residual versus posterior mean of the predicted value,
ŷi, for the Bayesian fit to the mtcars data set. We look for the left hand plot to be on
the diagonal line, for the middle and right hand plots we want the values to be randomly
distributed (i.e., no trend with the x value) and in the range from minus a few to plus a few.
These constraints are all satisfied here and so we see no cause for concern.

studentised residual is

✏̂i =
yi � xT

i
�̂

�̂
p
1� hii

where �̂ are the estimated parameters, �̂ is the esitmated standard deviaiton and hii is the
i’th diagonal element of the matrix H = x(xTx)�1xT . These quantities follow a student-t
distribution which is why they are called studentised residuals. A Q � Q plot is a plot of
the distribution of these values against the theoretical distribution, which should be approx-
imately a straight line if the model is a good description of the data.

We can construct analogous quantities in the Bayesian case, but now the parameters are
described by distributions rather than point estimates. A point estimate can be constructed
in a number of di↵erent ways — using posterior mean values, using a single draw from the
posterior, or averaging over the full posterior. The latter approach involves computing the
studentised residual for a large number of draws from the posterior and averaging them, and
is called the posterior mean of the residual. Studentised residuals are plotted in various ways
in Figure 5.

We can also produce posterior predictive checks as described in section 4.7. We compute
realisations of similar data sets and estimate the distribution of various summary statistics
which we then compare to the values in the observed data sets. In this case we compute
the distributions of the minimum, maximum, median and skewness in repeated data sets.
These are shown in Figure 6, along with the values in the observed data set. We see that
the observed values lie within the distributions in all cases, except for skewness. Seeing that
the observed data lies in the tail of the distribution may indicate a failure of the model. In
this case we might want to try varying the assumption of normally distributed errors and
homoskedacity (equal error variance).

The issue with the posterior predictive checks could indicate a failure of the model, or the
influence of an outlying data point. One way to tackle this is to modify the model so that the
distribution of the errors ✏i is no longer assumed to be normal. The most common approach
is to replace the normal distribution by a t⌫-distribution, as these have heavier tails. This is
referred to as robust regression. The degrees of freedom, ⌫, in the t⌫-distribution can be
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Figure 5: Q�Q plot of the studentised residuals (left), studentised residual versus index of
data point (middle) and studentised residual versus posterior mean of the predicted value,
ŷi, for the Bayesian fit to the mtcars data set. We look for the left hand plot to be on
the diagonal line, for the middle and right hand plots we want the values to be randomly
distributed (i.e., no trend with the x value) and in the range from minus a few to plus a few.
These constraints are all satisfied here and so we see no cause for concern.

studentised residual is

✏̂i =
yi � xT

i
�̂

�̂
p
1� hii

where �̂ are the estimated parameters, �̂ is the esitmated standard deviaiton and hii is the
i’th diagonal element of the matrix H = x(xTx)�1xT . These quantities follow a student-t
distribution which is why they are called studentised residuals. A Q � Q plot is a plot of
the distribution of these values against the theoretical distribution, which should be approx-
imately a straight line if the model is a good description of the data.

We can construct analogous quantities in the Bayesian case, but now the parameters are
described by distributions rather than point estimates. A point estimate can be constructed
in a number of di↵erent ways — using posterior mean values, using a single draw from the
posterior, or averaging over the full posterior. The latter approach involves computing the
studentised residual for a large number of draws from the posterior and averaging them, and
is called the posterior mean of the residual. Studentised residuals are plotted in various ways
in Figure 5.

We can also produce posterior predictive checks as described in section 4.7. We compute
realisations of similar data sets and estimate the distribution of various summary statistics
which we then compare to the values in the observed data sets. In this case we compute
the distributions of the minimum, maximum, median and skewness in repeated data sets.
These are shown in Figure 6, along with the values in the observed data set. We see that
the observed values lie within the distributions in all cases, except for skewness. Seeing that
the observed data lies in the tail of the distribution may indicate a failure of the model. In
this case we might want to try varying the assumption of normally distributed errors and
homoskedacity (equal error variance).

The issue with the posterior predictive checks could indicate a failure of the model, or the
influence of an outlying data point. One way to tackle this is to modify the model so that the
distribution of the errors ✏i is no longer assumed to be normal. The most common approach
is to replace the normal distribution by a t⌫-distribution, as these have heavier tails. This is
referred to as robust regression. The degrees of freedom, ⌫, in the t⌫-distribution can be


