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Bayesian versus Frequentist Statistics

Frequentist statistics makes references to repeated experiments with parameters
fixed but unknown.

In Bayesian inference the parameter values are regarded as random variables.

In a given observation, the pdf of the parameters is updated from a prior to a
posterior using the likelihood of the observed data.

A Bayesian posterior can be interpreted as a probability distribution on the
parameter values based on the observed data set. It is based only on the observed
data and does not make reference to hypothetical repetitions of the experiment.

In a GW context, Bayesian inference makes intuitive sense as experiments are not
repeatable. Even when they are, the Bayesian posterior converges to the fixed but
unknown parameter value as the number of experiments increases.

Bayes’ Theorem is a mathematical identity. The distinction between frequentist and
Bayesian inference is philosophical, in the interpretation of various quantities.



Conditional probability

Suppose we choose at random from a set of objects that are red (R) or blue (B) and
circular (C) or square (S).

5 out of 10 objects are red, therefore, with no other information, p(R)=0.5.
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Suppose we choose at random from a set of objects that are red (R) or blue (B) and
circular (C) or square (S).

5 out of 10 objects are red, therefore, with no other information, p(R)=0.5.




Conditional probability

If we know that the object is square, the probability changes, since of square objects,
4 out of 5 are blue.




Conditional probability

The idea that, for correlated random variables, the distribution of one can change
based on the observed value of the other is encoded in the notion of conditional

probability.

Mathematically we define the probability of A given B as

p(A N B)
p(B)

p(A|B) =

If A and B are independent then p(A | B) = p(A).



Conditional probability

The idea that, for correlated random variables, the distribution of one can change
based on the observed value of the other is encoded in the notion of conditional
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Mathematically we define the probability of A given B as

Probability that A and B occur simultaneously
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p(A|B) =

If A and B are independent then p(A | B) = p(A).



Conditional probability

The idea that, for correlated random variables, the distribution of one can change
based on the observed value of the other is encoded in the notion of conditional

probability.

Mathematically we define the probability of A given B as

p(A N B)
{p(B)

—

p(A|B) =

Probability that B occurs

If A and B are independent then p(A | B) = p(A).



Bayes™ Theorem

Rearranging the definition of conditional probability

p(AN B)

p(A|B) = (B)

we obtain Bayes’ Theorem:

p(B|A)p(A)
p(B)

This is mathematically exact, but can be used in an approximate way for inference

p(A|B) =

e p(A)— prior belief about state of the Universe, “A”;
e p(BlA)—likelihood of seeing data “B” if the state is “A”;
e p(A|B)— posterior belief on the state of the Universe after collecting data;

e p(B) — “evidence” for your model (a normalising constant).



Bayesian inference: example

Suppose a medical screening test is 95% effective but has a 1% false alarm rate. This
means that the probability of getting a positive result when the patient does have the
disease is 0.95, while the probability of getting a positive result when the patient does
not have the disease is 0.01.

If the disease has a prevalence of 0.5% in the population, what is the probability that
a person with a positive result has the disease?

p(poslill)p(ill)
pos|ill)p(ill) + p(pos|well)p(well)

p(ill|pos) = o

e 0.95 x 0.005
~0.95 x 0.005 + 0.01 x 0.995

v 0.00475
~0.00475 + 0.00995

=RUED0



Prior choice: informauve

The prior plays a key role in Bayesian inference. One advantage of the Bayesian
approach is the ability to include additional information through the prior.

Priors can be informative or uninformative. An informative prior makes a (strong)
statement about the values or distribution of the parameters under consideration.
Uninformative priors attempt to say as little as possible and thereby avoid biasing
the results.

Informative priors may come from previous experiments, i.e., these could be the
posterior from a previous (set of) experiment(s). Alternatively they can be based on
the opinion of “experts”, through their experience in similar situations.

The process of constructing a prior based on expert input is known as elicitation.

Different experts may have different opinions, in which case mixture priors can be
used 7

p(0) = " w;p;(0)



Prior choice: conjugate priors

Another commonly used approach to prior definition is to use conjugate priors.

Definition: A family of distributions, F, is conjugate to a family of sampling distribu-
tions, P, it, whenever the prior belongs to the family F, the posterior belongs to the same
tamily, for any number and value of observations from P.

In other words, the posterior is from the same family as the prior and can therefore be
used as the prior for the next observation and so on. Any distribution in the
exponential family

p(x|6) = exp {Z A;(2)B;(0) + C(0) + D(ZE)} Ve, 0

has a conjugate prior of the form

p(01X, ) = p(X, ) exp | 07X — vA()

The most commonly encountered conjugate prior models are Beta-Binomial, Poisson-
Gamma and Normal-Normal / Normal-Gamma.



Conjugate priors: Beta-Binomial

For binomial observations with likelihood

pclp) = (2 )1
the conjugate prior is the Beta distribution.
1 = @ T b—1
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The posterior is then

p(p | ) o< p(z | p)p(p)
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X p p = Beta(a +z,b+n — x)

The mean of a Beta(a,b) distribution is a/(a+b) so the posterior mean is

a—+ I
a-+b+n

L(plT) =




Conjugate priors: Poisson-Gamma

For Poisson-distributed observations

i )\ZBZ e—>\
x| ) =T[{ |
il g
the conjugate prior is a Gamma distribution

p()\‘m, :u) = W:u

The posterior 1S then p()\ ‘ X) X p(xy)\)p()\)

T [ AZie 1
E m)\m—l — A
- { ;! }F(m)ﬂ :

x Gamma(m + nx, pu +n).

for which the posterior mean is

R S e
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Conjugate priors: Normal-Normal

We now consider X1, ..., X, ~ N(u,c?) with likelihood

1 PR e ( )'
- exp | —=— T; —
(2m0?)2 & ”

202 4
If we assume the variance is known the conjugate prlor is also Normal

p(p | po, 05) = \/%OOGXP[ 1(u uo)}

p(p | x,0%) o p(x | w,o)p(p|po, og)

/

2

p(x|u,0”) =

The posterior

1 2 1 2\
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which can be recognised as a Normal distribution with mean and variance
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Conjugate priors: Normal-Gamma

If we now assume instead that the mean is known, but the variance is not, the

conjugate prior on the precision (the reciprocal of the variance) is a Gamma
distribution

p(T|a,b) x L

with posterior p(7 | x, u) < p(x | w, 7)p(7|a, b)

=il

1
__ _a+tn/2—1 - ie Y A
— T exp{ T<b+22 (x; ,u))}

n = >
~ Gamma <a+§,b—|—§Z(:€i,u) >

1=1

Common practice is to take a and b << 1 and then the posterior is approximately

p(7 | x, ) = Gamma (g, % Z(a;z - M)2> = E[r]|x,pul = (—71; Z(% i M)2>

1=1 7=



Conjugate priors: Normal-Gamma

The final variant of the Normal-Normal model is to assume both mean and variance
are unknown. In that case a conjugate prior can be found of the form

o~ N(ug,1/(ng7)), 7~ Gammal(a,b)

The posterior on the mean is the same as before

Lo o + NI 1 >
no+n (ng+n)T

p(p|T,x) ~ N (

» but the posterior on the precision is now

1 n
p(7|x) ~ Gamma (a — g, b+ 5 ;(QEZ e . nno (i = w)2>



Using expert information in conjugate priors

Informative priors that are also conjugate can be constructed, if the form in which
the the expert information is available is appropriate.

Example: Consider a drug to be given for relief of chronic pain. Experience with similar
compounds has suggested that response rates, p, between 0.2 and 0.6 could be feasible. We
plan to observe the response rate in n patients and want to infer a posterior on p. Propose a
suitable conjugate prior for p based on the available information. Hence obtain the posterior
if x = 15 positive responses are observed in a sample of n=20 patients.

* The expert information can be interpreted as U[0.2,0.6].

A U]0.2,0.6] distribution has mean 0.4 and variance 0.01.

 These are the same mean and variance as a Beta(9.2, 13.8) distribution.
Therefore we use this is the conjugate prior.

* For n=20, x=15 the posterior is Beta(24.2, 18.8).



Using expert information in conjugate priors
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Prior choice: Jelireys prior

In the absence of any previous information it is desirable to choose an
uninformative prior. Uniform priors are often regarded as uninformative. However,
these are not invariant under transformations.

Jeffreys (1961) proposed an invariant prior of the form

= > - Ol Ol |
p(0) x \/det[I(Q)L where 1(0);; = E 96, 96,

is the Fisher Information matrix.

Example - Poisson distribution: For the likelihood of a single Poisson observation

S e
p(z|A) = 3
we have
Ologp «x 0% log p T 0% log p 1
S i e IN\) =E ims
N (o8 R BN A2 ON2 \

This is the prior used in standard (FGMC) LVC rate estimation.



Posterior summaries: point estimates

The output of Bayesian inference is a probability distribution. It is often convenient to
summarise the posterior in various ways, as discussed in Lecture 1.

Usually summaries are computed for individual parameters using the marginal
distributions

—

pmarg((gl’X) == /p( ’X)deg R d@m
The posterior mean is defined by

1 = / Hlpmarg(el |X)d91

— OO
The posterior median m is defined through

/ pmarg(el‘x)del —(J.or'= / pmarg(ellx)del

m

The posterior mode is given by

M = argmax pmarg(61]%)

The mean and mode are also well defined for the full (non-marginal) distribution.



Posterior summaries: intervals

The Bayesian analogue of a frequentist confidence interval is a credible interval

Definition: An interval (a,b) is a 100(1 — «)% posterior credible interval for 6, if

b
/ pmarg(el‘x)del — (1 s Oé), 0<a<l.
A credible region can be defined analogously.

Credible regions/intervals are not unique. The two most common types of credible
intervals are symmetric and highest posterior density intervals.

Definition: An interval (a,b) is a symmetric 100(1 — «)% posterior credible interval

for 6, if
a o (0.}
| pnan®i1906 = 5 = [ (6113006,
b

— OO

Definition: An interval (a,b) is a 100(1 — «)% highest posterior density (HPD)
interval for 6, if

1. |a,b] is a 100(1 — )% credible interval for 6;;

2. for all 6 € [a,b] and &' ¢ |a,b] we have Prarg(0|X) > Pmarg (0']X).



Posterior summaries: samples

Constructing summary statistics throws away information that can only be captured
by the full posterior distribution. Sometimes the posterior distribution is expressible
in closed form, but usually it is not.

The majority of applications of probability distributions reduce to computing
integrals. Another way to summarise a posterior is therefore to generate a large
number of samples {917 ..., 0 M} from the posterior. Posterior integrals can then
be computed via

— —

R PR e
f(0)p(0|x)do ~ Wi 221 f(6;)

In Lecture 6 we will discuss various methods through which such samples can be
generated efficiently in practice.



Posterior summaries: mterpretation

Posterior summary statistics can be interpreted using decision theory. Central to
decision theory is the notion of a loss function and the associated risk

erx L(9 d( ))p(x;0) for discrete X

[, L - )p(x;0)dz  for continuous X

R(0,d) = EoL(0,d(X)) = {
The Bayes risk of a decision rule is the expected risk with respect to the prior

e, 0h) = -/eeQ R(6,d)m(0)dd

A Bayes rule minimises the Bayes risk and can also be seen to minimise the
posterior expected loss

il = / RO, d)m(0)d
: /Q / (0, d(x))p(z]0)m(0)dwds
_ /Q/ \p(8]2)p(z)dzdo

/x {/QQ L(0,d(z))p (Hla:)de}dx



Posterior summaries: mterpretation

The Bayes rule for different loss functions corresponds to various natural summary
statistics.

* Squared error loss: use posterior mean.
2
L(9,d) = (0 — d)

* Absolute magnitude loss: use posterior median.

L(0,d) = |0 — d

* Delta-function gain: use posterior mode.
[ —6(6—4d) ifd=0
LW@”‘{ 0  ifd#0

* Interval estimation: for the loss function below, the Bayes rule is the highest
posterior density interval.

(0 if9—d <6
LW”“‘{1iﬂe—ﬂ>5



Example: linear model

Suppose we have data
IE P i
Yy, ~ N(x; 8,0%), 1=1,...,N

We want to fit a Bayesian model for the unknown parameters in the model. We first

need to specify priors
p

p(B,7) =p(7) | | p(5;)

i=1
B; ~ N (g, O'gj), T ~ Gamma(a, b)

We use “skeptical priors” by setting the means of the Normal distribution to zero,
the variances to 1000 and a=b =0.1.

We fit the standard mtcars data set, which has 3 explanatory variables and N=32
measurements.



Density

Density

Example: linear model
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Example: linear model

We can compare the Bayesian inference results to the maximum likelihood estimator.

Bayesian results

Frequentist results

Parameter | Posterior mean | 95% credible interval | MLE | 95% confidence interval
Bo 10.369 -5.098,36.349] 11.395 -5.134,27.922]
b1 IS -0.721,4.166] 1.750 -0.857,4.169]
B -4.335 -5.702,-2.995] -4.347 -5.787,-3.009
B3 0.968 0.449,1.493] 0.946 0.410,1.482]
o 6.978 4.160,11.729 6.554 —




Sample Quantiles

Example: linear model

# We can diagnose the quality of the model by looking at studentised residuals.

Normal Q-Q Plot

Theoretical Quantiles

Bayesian studentised residual
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Bayesian Studentised residual (posterior mean)
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