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Making sense of data: introduction to statistics for gravitational
wave astronomy

Problem Sheet 1: Frequentist Statistics

Questions marked with a * are a selection that will give experience of all aspects of the
course. For IMPRS students taking this course, these should be completed and handed
in to be marked.
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is properly normalised, i.e., the integral of the pdf is 1.

2. * For the Beta(a, b) distribution, find the mean, mode, variance, skewness and excess
kurtosis.

3. Derive the moment generating function for the exponential distribution, E(λ) and
the Gamma(n, λ) distribution. Hence deduce that the distribution of the sum of n
IID E(λ) random variables is Gamma(n, λ).

4. * Suppose X ∼ N(0, 1) with pdf
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Show that the distribution of T = X/
√
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This is the Student t-distribution with n degrees of freedom.

5. *Gravitational Wave Birthday Problem(s):

(a) How many gravitational wave sources would we have to observe before it is
more likely than not we will have two events on the same date (i.e., day and
month)?

(b) Suppose we have observed n GW events in a particular category, say binary
black hole mergers and then observe an event in a new category. What is the
probability that the new event is on the same date as one of the previously
observed events (consider both the case that we know all the events in the
category are on different days, and the case where this is not specified)?



(c) Given a rate of gravitational wave events of one per week, how many events
would we have to observe before having a greater than 50% chance that two
events were observed within 24 hours? [Hint: to answer the first question
consider the distribution of the minimum difference between successive events
and compute the probability that this is less than 1 day.]

(d) (OPTIONAL) Given a rate of gravitational wave events of one per week, how
long would we expect to wait before having a greater than 50% chance of
observing two events in 24 hours? This latter question is considerably more
difficult to answer than the previous one, but gives a very similar answer.

6. Gravitational wave physicist birthday cake problem: It is traditional at the
Alfred Embleton Institute for gravitational wave physics that when one member of
the institute has a birthday, they bring cake to share with the other members of the
group. One student, Andrew Antony, is very fond of cake and would like to eat it
at least once every two weeks.

(a) Given that the institute has n members, compute the probability distribution
of the maximum separation between birthdays. How large must n be such that
the probability that the maximum separation is less than two weeks is greater
than 50%?

(b) The director of the institute, Alice Bunton, is concerned that the cakes are bad
for the health of the researchers in her institute, and therefore wants to make
sure these celebrations do not occur too often. Find the distribution of the
minimum separation between birthdays. What is the maximum n should be
to ensure the probability that the minimum separation is greater than 2 weeks
is at least 50%?

[Note: all similarities to real institutes and researchers are purely coincidental.]

7. A life test is conducted by installing n items of equipment at time 0 and recording
at times h, 2h, . . . ,mh the numbers nr of items failing in the intervals (r − 1)h
to rh (r = 1, 2, . . . ,m), m and h being a fixed integer and a fixed time interval
respectively. The time to failure is modelled as an Exponential (λ) distribution, and
the lifetimes of different items are assumed independent.

(a) Find the likelihood function for λ.

(b) Hence determine sufficient statistics for λ.

8. Let X1, X2, . . . , Xn be independent r.v.s where Xi has p.d.f. θie
−θix, x > 0 where

θi = (α + iβ) and α, β are unknown parameters.

Find sufficient statistics for (α, β).

9. * Independent Bernoulli r.v.s. X1, X2, . . . , Xn are such that the probability of Xi

taking the value 1 depends on an explanatory variable z, which takes corresponding
values z1, z2, . . . , zn.

Show that for the model

ρj = log
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}
= α + βzj,

the minimal sufficient statistic for (α, β) is
(∑n

j=1Xj,
∑n
j=1 zjXj

)
; the quantity ρj

is called the logistic transformation.



10. * Let X1, X2, . . . , Xn be a random sample from U [0, θ].

(a) Find the p.d.f. of X(n), the largest of the Xis.

(b) Show that 2X̄ (where X̄ is the sample mean) and (n + 1)X(n)/n are both
unbiased consistent estimators of θ, and compare their variances.

11. Let X1, X2, . . . , Xn be a random sample from the exponential distribution with p.d.f.
p(x|λ) = λe−λx x > 0, λ > 0.

Find the maximum likelihood estimator, its mean and variance and the Cramer-Rao
bound on the variance of unbiased estimators of λ. Hence show that the maximum
likelihood estimator for λ is biased, consistent and asymptotically efficient.

12. * Suppose that x1, . . . , xn form a random sample from a distribution with probability
density function

f(x|σ2) =
x

σ2
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)
(x > 0).

Obtain the Cramér-Rao lower bound when the parameter of interest is θ = σ2.

Determine whether the bound is attainable, and if it is attainable give the estimator
which attains the bound.

13. Let X1, X2, . . . , Xn denote n independent, identically distributed random variables
with a Bernoulli density p(x|p) = px(1 − p)1−x for x = 0, 1. Show that X1 is
an unbiased estimator for p and compute its variance. Show that S =

∑
Xi is a

sufficient statistic. Use the Rao-Blackwell theorem to obtain an estimator of lower
variance and compute its variance.

14. Linear modelling: Consider observations

yi = βTxi + εi

where εi ∼ N(0, σ2), β is a vector of parameters and xi is a vector of k covariates
for each observation yi.

(a) Show that the maximum likelihood estimate for β is

β̂ = (XTX)−1XTY

where X is the design matrix, defined by Xij = (xi)j.

(b) Show that the distribution of β̂ is

N
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.

(c) Show that the quantity

σ̂2 =
yTy − β̂TXTy

n− k
is an unbiased estimator of the variance σ2. In fact it is relatively straightfor-
ward to show that this quantity is independent of β̂ and follows a chi-squared
distribution.

(d) For a fixed constant vector c, show that

cT β̂ − cTβ

σ̂
√
cT (XTX)−1c

follows a t-distribution and hence deduce a 95% confidence interval for cTβ.



15. Let X1, X2, . . . , Xn denote n independent, identically distributed random variables
having a Poisson distribution with mean λ.

(a) Derive the form of the most powerful test, of size α, of the simple null hypothe-
sis H0 : λ = λ0 against the simple alternative hypothesis H1 : λ = λ1 (λ1 > λ0).

Deduce the form of the uniformly most powerful (UMP) test of the simple
hypothesis H0 : λ = λ0 against the composite alternative hypothesis H1 : λ >
λ0.

(b) Determine the moment generating function of Xi, and hence show that
∑
Xi

has a Poisson distribution with parameter nλ.

Explain how the distribution of
∑
Xi may be used to determine a critical region

for the test in (a), and obtain the critical value for a test with a nominal level of
5% when n = 10 and λ0 = 1. Compare this critical value with an approximate
critical value obtained by using a normal approximation to the distribution of∑
Xi.

(c) Calculate the power of the test in (b) when λ = 2.

(d) Suppose now that we require a test of H0 : λ = λ0 against the alternative H1 :
λ 6= λ0. Determine whether a uniformly most powerful test exists. Calculate
(approximate) critical values of a two-sided 5% level test obtained by using a
normal approximation to the distribution of

∑
Xi when n = 10 and λ0 = 1

16. * Let x1, . . . , xn denote a random sample from a distribution with probability density
function

p(x | θ) =
x

θ
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)
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where θ is a positive constant.

(a) Obtain a minimal sufficient statistic for θ based on x1, . . . , xn, and explain why
it is minimal sufficient.

(b) Show that the most powerful test of size α of

H0 : θ = θ0,

against H1 : θ = θ1 (θ1 > θ0),

involves a minimal sufficient statistic.

Deduce the form of the uniformly most powerful test of H0 : θ = θ0 against
the composite alternative hypothesis H ′1 : θ > θ0.

(c) Let Yi = X2
i /θ, i = 1, . . . , n, where Xi is defined as above. Show that Yi has

an exponential distribution with mean 2, i.e. a χ2
2 distribution.

Deduce the critical value of the uniformly most powerful test of H0 : θ = 1
against H ′1 : θ > 1 in (b) when there are five observations and the size of the
test is 5%. Find the power of the test as a function of θ.

17. * Let x1, . . . , xn be observations of independent random variables X1, . . . , Xn from
the distribution with the probability density function

p(xi | θ) =
(ziθ)

a

Γ(a)
xa−1i e−θzixi , xi > 0,

with known covariates zi > 0 and known a > 0, that is, Xi ∼ Γ(a, ziθ).



(a) Derive the form of the most powerful test of size α, of the simple null hypothesis
H0 : θ = 1 against the simple alternative hypothesis H1 : θ = θ1 (θ1 > 1).

(b) Deduce the form of the uniformly most powerful (UMP) test of the simple
hypothesis H0 : θ = 1 against the alternative hypothesis H1 : θ > 1.

(c) Does there exist a UMP test of the simple hypothesis H0 : θ = 1 against the
alternative hypothesis H1 : θ 6= 1?

(d) For observed data with a = 2, n = 311 and
∑
i ziyi = 571, test the hypothesis

that θ = 1 against θ > 1.

[Hint: use the Central Limit Theorem to find an approximate distribution of
the test statistic.]

(e) Find the power of the test H0 : θ = 1 against the alternative hypothesis H1 :
θ = 3 as a function of n for a = 2 and α = 0.05. Find the smallest n such that
the power of the test is greater than 0.9.

[Hint: use the Central Limit Theorem to find an approximate distribution of
the test statistic.]

(f) Determine the best critical regions of size α, of the simple null hypothesis
H0 : θ = θ0 against the simple alternative hypothesis H1 : θ = θ1 (θ1 > θ0).
Use these critical regions to construct a one-sided 90% confidence interval for
θ for the data given in (d).


