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3 Hypothesis testing

Often when we observed data we have some ideas about the random processes that are
generating the observations. Having collected data it is natural to test whether the observed
data are consistent with those expectations. The idea of hypothesis testing is to say if the
data provides su�cient evidence to rule out those assumptions. The emphasis is always
placed in favour of the assumptions, rather than the alternative. We require strong evidence
that the data are inconsistent with the assumptions before we reject them.

Formally, we suppose that we have data x = (x1, . . . , xn) and want to examine whether
they are consistent with a hypothesis H0 (the null hypothesis or hypothesis under test)
about the distribution function FX of X.

A hypothesis is simple if it defines PX completely:

H0 : PX = P0

otherwise, it is composite. If PX is parametric with more than one parameter, a composite
hypothesis might specify the values of some or all of them. (e.g. one regression coe�cient)

The distribution of X under H0, P0, is called null distribution.
Examples of hypotheses

• A significant trigger in a gravitational wave detector is due to instrumental fluctuations.
This is a composite hypothesis as the distribution of triggers under the noise assumption
is not fully specified.

• The numbers of gravitational wave events x1, . . . , x7 observed on Monday, . . . , Sunday.
The null hypothesis is that all days are equally likely, i.e., the joint distribution is
Multinomial(n; 1

7
, . . . , 1

7
). This is a simple hypothesis.

• The right ascensions x1, . . . , xn angles of observed gravitational wave events. The
hyypothesis that the Xj’s are independently Uniform on [0, 2⇡) is simple.

Suppose we want to test that there is clustering around some angle, then we can assume
that the distribution is von Mises with pdf

p(x| ✓,�) = 1

2⇡I0(�)
e� cos(x�✓), x 2 X = [0, 2⇡); � � 0, 0  ✓ < 2⇡;

for unknown �. This is a composite hypothesis.

• The hypothesis that the number of gravitational wave events in each monthX1, . . . , Xn

are independently Poisson(✓) with unknown ✓ is composite.

3.1 Definitions and basic concepts

1. A sample of n observations is available to make inference about parameter ✓.

2. We wish to decide between two hypotheses: H0, the null hypothesis, and H1, the

alternative hypothesis.

H0 is often simple (only one value is specified for ✓)

i.e. H0 : ✓ = ✓0 (e.g. H0 : µ = 100, H0 : p = 1

2
).
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H1 can be simple: H1 : ✓ = ✓1 but more commonly it is composite (more than one
value is allowed for ✓). The most common alternatives are

H1 : ✓ < ✓0 or H1 : ✓ > ✓0 — one-sided/one-tailed alternative

or H1 : ✓ 6= ✓0 — two-sided/two-tailed alternative.

3. Two possible decisions: to reject or not to reject H0 in favour of H1.

The decision whether or not to reject H0 is based on the value of a test statistic, which
is a function of the observations.

4. Values of the test statistic for which H0 is not rejected form the acceptance region, C̄.

Values of the test statistic for which H0 is rejected form the rejection region (or critical
region), C.

The form of these regions depends on the form of H1.

5. There are two possible types of error:

Reject H0 when H0 is true — Type I error

Fail to reject H0 when H0 is false — Type II error

The probability of Type I error, denoted by ↵, is the significance level (or size) of
the test.

The probability of Type II error, denoted by �, is only defined uniquely if H1 is simple.
In which case

⌘ = 1� � is the power of the test.

For composite H1, ⌘(✓) is the power function.

Generally we consider Type-I error (false rejection) to be worse than Type-II (incorrect
failure to reject) as usually in the latter case more data will be collected and the test will
be re-evaluated. It is therefore usual to specify the significance level of the test in order
to determine the threshold for rejection, or the quote a p-value (see next section) when
quoting test results.

We can define a test function �(x) such that

�(x) =

⇢
1 if t(x) 2 C
0 if t(x) 2 C̄

and when we observe �(X) = 1, we reject H0. This function has the property that ↵ =
EH0(�(X)) and ⌘ = EH1(�(X)), in which the subscript denotes the hypothesis under which
the expectation value is to be calculated.

For discrete distributions, the probability that the test statistic lies on the boundary of
the critical region, @C, may be non-zero. In that case, it is sometimes necessary to use a
randomized test, for which the test function is

�(x) =

8
<

:

1 if t(x) 2 C
�(x) if t(x) 2 @C
0 if t(x) 2 C̄

for some function �(x) and we reject H0 based on observed data x with probability �(x).
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3.2 Test statistic

Often to construct a test (i.e. the decision whether to reject H0 or not based on observed
data x), a test statistic is used.

Definition 10. A real-valued function t(x) on X is a test statistic for testing H0 i↵

(i) values of t are ordered with respect to the evidence for departure from H0

(ii) the distribution of T = t(X) under H0 is known, at least approximately. For composite

H0 the distribution should be (approximately) the same for all simple hypotheses making

up H0.

For any observation x, we measure the consistency of x with H0 using the significance

probability or the p-value, e.g. if larger values of t correspond to stronger evidence for
departure from H0, the p-value is defined by

p = P(T � t(x)|H0),

the probability (under H0) of seeing the observed value of t or any more extreme value. The
smaller the value of p the greater the evidence against H0.

3.3 Alternative hypothesis

Can be specified or unspecified.

3.3.1 Pure significance tests

In a pure significance test, only the null hypothesis H0 is explicitly specified. The p-value
of the observed value under the null distribution is evaluated, and if it is su�ciently small,
the null hypothesis would be rejected. Such tests are done if we want to avoid specifying a
parametric family of alternative distributions.

There will often be multiple quantities that could be computed under the null hypothesis
and we can choose any of them to evaluated the distribution of the test statistic. The best
choice can be guided if we have a specific idea of the type of departure from H0 we are
looking for, e.g.,

• Directional data: Might look for a tendency for the observed directions to cluster about
a (possibly unknown) direction. But not a specific set of alternatives such as von Mises
distributions.

• Pois(✓): if the alternative is not a Poisson distribution, we might test whether variance
6= expectation.

An important class of pure significance tests are goodness of fit tests where either the
sample distribution function P̂X(x) =

1

n

P
n

i=1
I(x 6 xi) or the histogram are compared to

those of the null distribution.

Examples
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• Event frequency on di↵erent days: H0 : X1, . . . , X7 ⇠ Mult(n; 1
7
, . . . , 1

7
).

With no particular alternative we might use Pearson’s �2 test, comparing

X2 =
7X

i=1

�
xi � n

7

�2
n

7

with �2

6
.

• Right ascension of GW sources: If alternative to H0 is clustering about the reference
direction (e.g. galactic centre) we could use

P
cos xj, the projection onto the reference

axis of the resultant sum vector (
P

cos xj,
P

sin xj).

• Pois(✓) : might use index of dispersion,

d =

P
(xi � ȳ)2

ȳ
,

which is approximately �2 with (n� 1) degrees of freedom under H0 for ✓ � 1.

Note that given
P

Xj = s, the distribution of X1, . . . , Xn is Mult(s, 1

n
, . . . , 1

n
) and

d is the �2 statistic for testing the fit of this distribution.

3.3.2 Specified alternative hypothesis

For a parametrised family of distributions p(x| ✓), ✓ 2 ⇥, say H0 : ✓ = ✓0, then

H1 : ✓ 2 ⇥1 ⇢ ⇥ \ {✓0},

e.g. ✓ 6= ✓0 (two-sided), ✓ > ✓0 or ✓ < ✓0 (one-sided).
Below we consider two cases: with simple and composite alternative hypotheses (and a

simple null hypothesis).

With composite alternative hypotheses, the power of the test becomes the power function
defined over ✓ 2 ⇥1:

⌘(✓) = P(reject H0| ✓) = P✓(reject H0).

3.4 Critical regions

In § 3.2 we defined for each x 2 X the significance probability

p = P(T � t(x)|H0)

associated with a test statistic t. A di↵erent, but equivalent, approach defines a test using
critical regions rather than test statistics. This

(i) facilitates comparison of di↵erent tests of H0 according to their properties under H1;

(ii) is useful for establishing a connection between tests and confidence regions.

For any ↵ in the interval (0, 1), a subset R↵ of X is a critical region of size ↵ if

P(X 2 R↵|H0) = ↵ (54)

Interpretations of R↵:
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(i) points in R↵ are regarded as not consistent with H0 at level ↵;

(ii) points in R↵ are “significant at level ↵”;

(iii) if x 2 R↵, then H0 is “rejected” in a test of size ↵.

A significance test is defined by a set of critical regions {R↵ : 0 < ↵ < 1} satisfying

R↵1 ⇢ R↵2 if ↵1 < ↵2. (55)

Thus, for example, if data x are significant at the 1% level, they are also significant at the
5% level.

The significance probability (also called p-value) for data x is then defined as

P = inf(↵;x 2 R↵),

i.e. the smallest ↵ for which x is significant at level ↵.
The definition of a test in §3.2 corresponds to critical regions of the form

Rt

↵
= {x : t(x) � t↵},

where t↵ is the upper ↵ point of T = t(X) under H0, since

P(X 2 Rt

↵
|H0) = P(t(X) � t↵|H0) = ↵,

by the definition of t↵; also if ↵1 < ↵2 then t↵1 > t↵2 and Rt

↵1
⇢ Rt

↵2
satisfying (55). Finally,

P = P(t(X) � t(x) : H0)

= inf(↵; t(x) � t↵)

= inf(↵;x 2 Rt

↵
),

the smallest ↵ for which x is significant at level ↵.

Example

• Xj independent N(µ, �2) (� known and hence =1 without loss of generality) To test
H0 : µ = µ0 vs µ > µ0, obvious test statistics are Ȳ or (Ȳ � µ0)

p
n. The significance

probability is

P = P
�
(Ȳ � µ0)

p
n > (ȳ � µ0)

p
n|H0

�
= 1� �((ȳ � µ0)

p
n).

The corresponding critical regions are R↵ = {x : (ȳ � µ0)
p
n � ��1(1� ↵)}. Thus

P(X 2 R↵|H0) = P((Ȳ � µ0)
p
n � ��1(1� ↵)) = ↵,

as required, and if ↵1 < ↵2, then ��1(1� ↵1) > ��1(1� ↵2), so that R↵1 ⇢ R↵2 . Also

inf(↵;x 2 R↵) = inf(↵; (ȳ � µ0)
p
n � ��1(1� ↵))

= inf(↵;↵ � 1� �((ȳ � µ0)
p
n)

= P.
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3.5 Construction of confidence intervals using critical regions

The construction of hypothesis tests leads naturally to the construction of confidence inter-
vals and regions. For any value  0 of  , let R↵( 0) be a size-↵ critical region for testing the
null hypothesis  =  0 against  6=  0 (or possibly  <  0 or  >  0). For any x define

S↵(x) = { 0 : x 62 R↵( 0)}.

Then S↵(X) is a (1� ↵) confidence interval for  since

P(S↵(X) 3  0; 0,�) = P(X 62 R↵( 0) :  0,�) = 1� ↵ 8 0,�

[R̄↵( 0) comprises x values judged consistent with  0 (at level ↵), so S↵(x) comprises  
values consistent with x.]

If ↵1 < ↵2, then from (19) { 0 : x 2 R↵1( 0)} ⇢ { 0 : x 2 R↵2( 0)}, so that (53) holds.
For scalar  , critical regions for alternatives  <  0 lead to upper confidence limits.

Example

• Exp(�): Find the best size-↵ critical region for testing � = �0 against � < �0.

The best size-↵ critical region for testing � = �0 against � < �0 is R↵(�0) = {x :P
xj > 1

2
��1

0
�2

2n
(↵)}. The corresponding (1 � ↵) confidence region for � is {�0 :P

xj  1

2
��1

0
�2

2n
(↵)} i.e. {�0 : �0  1

2
(
P

xj)�1�2

2n
(↵)}, so that 1

2
(
P

xj)�1�2

2n
(↵)} is

the (1� ↵) upper confidence limit for �.

3.6 Examples of hypothesis tests

We give three commonly encountered examples of hypothesis tests.

3.6.1 z-test

Suppose that we observe two independent samples

X1, . . . , Xn ⇠ N(µ1, �
2), Y1, . . . , Ym N(µ2, �

2).

We assume additionally that �2 is known and we are interested in testing the hypothesis

H0 : µ1 � µ2 = 0 versus H1 : µ1 � µ2 6= 0.

If the null hypothesis is violated we expect that the magnitude of the di↵erence in sample
means, |X̄ � Ȳ |, will be large. The statistic

Z =

✓
1

n
+

1

m

◆� 1
2 (X̄ � Ȳ )

�

follows a N(0, 1) distribution under the null hypothesis so we use a critical region of the form

|z| > z↵
2

to define a test with significance ↵. Here z↵
2
denotes the upper ↵/2 point in the Normal

distribution, i.e., the point such that

P(X ⇠ N(0, 1) > z↵
2
) =

↵

2
.
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3.6.2 t-test

We now suppose that we want to test the same hypothesis as in the previous example, but
assuming that �2 is not known. Once again, we expect the di↵erence in sample means to be
large when the null hypothesis is false, but exactly how large now depends on the unknown
value of �2. If we use the same test statistic, but with the known variance replaced by the
estimated value we have

T =

✓
1

n
+

1

m

◆� 1
2 (X̄ � Ȳ )

�̂
where �̂2 =

1

m+ n� 2

 
nX

i=1

(Xi � X̄)2 +
mX

j=1

(Yi � Ȳ )2
!

which follows a tm+n�2 distribution under the null hypothesis.
The critical region of a size-↵ test is to reject H0 when

|t| > t↵
2
,

where z↵
2
denotes the upper ↵/2 point in the t-distribution with m+n�2 degrees of freedom.

3.6.3 Analysis of variance: F-test

Suppose we have observations of random variables Xij where j = 1, . . . , ni labels di↵erent
observations of one particular group, and i = 1, . . . , k labels the di↵erent groups. We denote
the mean in each group by

X̄i• =
1

ni

niX

j=1

Xij

and the overall mean by

X̄•• =
1

N

X

ij

Xij, N =
kX

i=1

ni.

We are interested in testing that the means of all the groups are equal. If this is true then
we expect that the between samples sum of squares

SSb =
X

i

ni(x̄i• � x̄••)
2

is comparable to the within samples sum of squares

SSw =
X

ij

(xij � xi•)
2.

If the means are di↵erent then we expect the former to be larger than the latter. Therefore,
we reject the null hypothesis for large values of SSb/SSw. The quantity

F =
(N � k)SSb

(k � 1)SSw

follows an Fk�1,N�k-distribution under the null hypothesis and so our critical regions are of
the form to reject H0 when

F > Fk�1,N�k(↵)

the upper ↵ critical point of the Fk�1,N�k distribution.
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3.7 Calculating thresholds for tests

For the examples above the test statistics followed known distributions under the null hy-
pothesis and so the critical values can be directly calculated. This is not always possible. In
other situations it might be possible to compute the mean, µ, and variance, �2, of the test
statistic, if not its full distribution. In that case, a Normal approximation can often be used
by appealing to the Central Limit Theorem.

Example: E(�): we saw above that X =
P

xj can be used for testing � = �0 versus
� < �0. While in this case we know the exact distribution of the test statistic, if we did not
we can approximate

X ⇠ N

✓
n

�0
,
n

�2
0

◆

and reject the hypothesis at significance ↵ if

�0X � np
n

> z↵.

The power of the test can be approximated in a similar way, by writing down a Normal
approximation to the distribution of the test statistic under the alternative hypothesis.

If the mean and variance cannot be easily calculated, or the form of the test statistic
does not lend itself to approximation by the Central Limit Theorem, then usually the best
approach is to do a simulation study, i.e., generate many realisations of the test statistic
under H0 and determine thresholds numerically. In principle, the power of the test can be
evaluated in a similar way although this might not be practical for composite alternative
hypotheses.

3.8 Multiple testing

When presented with new data, there is a temptation to keep asking di↵erent questions of
the same data. When doing this you have to be careful to avoid multiple testing (or, in
the language of the gravitational wave community trials factors). If you keep carrying out
independent tests that have a significance of ↵ then you would expect to reject a hypothesis
every 1/↵ tests purely by chance. Therefore, if you plan to carry out m independent tests
and want the overall significance to be ↵, the significance levels applied to the individual
tests must be lower.

If we carry out m independent tests, each with significance ↵, then the combined signif-
icance is

1� (1� ↵)m = ↵c.

To reach a target significance of the combined tests requires using individual tests with
significance ↵ = 1 � (1 � ↵c)1/m = 1 � exp(log(1 � ↵c)/m) ⇡ ↵c/m. The first expression is
the Ŝidák correction, while the latter correction is referred to as the Bonferroni correction.

It is also possible to not divide the total significance evenly between the di↵erent indi-
vidual tests. The Holm-Bonferroni method orders the individual test p-values and then tests
the i’th (starting from the smallest) at a significance level of ↵c/(m� i+ 1). This approach
gives better overall performance.

In practice, multiple tests on the same data will not be independent and so using the
corrections based on independence will be conservative and the true significance of any
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rejection of the null hypothesis will be greater (i.e., the true p-value will be smaller than
that estimated in this way). Understanding the dependency of multiple tests is typically
highly non-trivial so it is usually best to assess the true p-value of a testing programme
using simulations.

Another issue to be cautious of is changing the question based on the data. Changing
the question based on what was observed can lead to results appearing significant when they
are not, as the following example illustrates.

Example: LIGO/Virgo operate for 8 months from January to August and sees event
counts (1, 0, 0, 0, 0, 1, 1, 4). Are the 4 events in the last month unusual? A total of 7 events
have been observed in 8 months, so we have a rate of ⇠ 7/8 per month. Assuming that the
events are Poisson distributed with this rate, the probability that a given month would have
4 or more events in it is ⇠ 1.2%, which would be significant at the 5% level usually used
for hypothesis tests. But it is not fair to ask “Is four events in August unusual?”, since we
only decided to look at August in particular when we saw the data. The fair question to
ask is “Is four events in one of the months unusual”, which means we must multiply by 8 to
account for the fact that we have 8 potentially unusual months to choose from. The resulting
probability of ⇠ 9.8% is much less significant 1. Note that it is perfectly fine, having made
these observations, to ask “Is August unusual in the next observing run?” and specifically
target the month that was an outlier in previous data in the next analysis. However, this
is less sensitive than doing the test “Is any month unusual?” on all of the data from both
observing runs together. Suppose in the next year we also take data from January to August
and observe events (0, 1, 0, 1, 1, 0, 0, 2). The probability of observing two or more events in
August, given the rate of 5/8 events per month, is 13%, so this would not be considered
significant. However, adding the two observing runs together we have (1, 1, 0, 1, 1, 1, 1, 6)
and the rate for binned observations is 4/3. The probability of seeing 6 or more events in a
Poisson distribution with rate 4/3 is 0.25%, which is significant 2.

3.9 Receiver operator characteristic

As mentioned above, Type-I errors are considered to be more serious than Type-II errors
and so tests are quoted by the significance level. However, there may be (infinitely) many
tests with the same significance, so how do we choose between them? This is done using the
power function. Clearly if one test is more powerful than another for the same significance
level then it is better and should be used.

In general, one way to compare di↵erent tests is by plotting a receiver operator charac-
teristic (ROC) curve. This is a plot of the power versus significance of a test, or equivalently
the “detection rate” of deviations in the null hypothesis against the “false alarm rate”. For
a random test, i.e., we toss a coin and, regardless of the observed data, say that if it is heads
we have made a detection, the ROC curve is the diagonal line. Tests that lie above the
line are more powerful than random at given significance, and so the further away from the
diagonal line the better the test is. ROC curves can be used to compare tests visually, or

1Another way to tackle this problem is to say that we expect the distribution of events across the 8
months to be Multinomial with equal probability of 0.125 in each month. The distribution of events in a
specific month is Binomial with n = 7 and p = 0.125 and so the probability that a specific event will have
four or more events out of the 7 is ⇠ 0.6%, but this rises to ⇠ 5.0% when we compute the probability that
one (unspecified) month has four or more events.

2In the multinomial analysis the probabilities are 12% and 0.18% respectively
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by computing the area between the curve and the diagonal line. Sometimnes the curves can
cross, so one test may be better at one significance level and another at another. The best
test then depends on what regime you are operating in.

In the following subsections we will present a number of results that describe how to find
tests that have the highest power at a given significance, under various assumptions about
the hypotheses and the underlying distributions. As we shall see below, it is not always
possible to find a test that is the best everywhere.

3.10 Designing the best test: simple null and alternative hypothe-
ses

Consider null and alternative hypotheses H0, H1 corresponding to completely specified
p.d.f.’s p0, p1 forX. For these hypotheses, comparison between the critical regions of di↵erent
tests is in terms of

P(X 2 R↵|H1)

the power of a size-↵ critical region R↵ for alternative H1. A best critical region of size ↵
is one with maximum power.

In terms of p0, p1, the power is
Z

R↵

p1(x)dx =

Z

R↵

p0(x)r(x)dx

 
or
X

R↵

p0(x)r(x)

!

= E{r(X)|X 2 R↵;H0}

where

r(x) =
p1(x)

p0(x)
=

L(✓; H1)

L(✓; H0)
,

the likelihood ratio (LR) for H1 vs H0. We can prove that the power is maximized when
R↵ has the form {x : r(x) � k↵} or {x : L(✓;H1)

L(✓;H0)
� k↵}, i.e. when R↵ is a LR critical region.

Thus we have the Neyman-Pearson lemma.

Theorem 4. (Neyman-Pearson lemma). For any size ↵, the LR critical region is the best

critical region for testing simple hypotheses H0 vs H1. (It is also better than any critical

region of size < ↵.)

A LR test is a test whose critical regions are LR critical regions for all ↵ for which such
a size-↵ region exists (all ↵ in the continuous case).

Examples

• Angles: If H0, H1 correspond to a Uniform distribution and a von Mises distribution
with parameter ✓1, the LR is

r(x) =
p1(x)

p0(x)
= {2⇡I0(✓1)}�n

e✓1
P

j cosxj

(2⇡)�n
,

which is an increasing function of t(x) =
P

cos xj. So the LR critical regions have
the form {x :

P
cos xj > t↵}. For any ↵, t↵ is given by P(

P
cosXj � t↵|H0) =

↵. From §3.3
P

cosXj is approximately N(0, 1
2
n) under H0, so t↵ is approximately

�
1

2
n
�1/2

��1(1� ↵). Note that the critical regions, and hence the test, do not depend
on the value of ✓1.
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• E(�) : X1, . . . , Xn are i.i.d. with d.f. 1�e��y (y > 0). H0 is � = �0; H1 is � = �1 < �0

r(x) =
p1(x)

p0(x)
=

✓
�1
�0

◆n

exp{(�0 � �1)
X

xj},

which is increasing in
P

xj. So the test is based on
P

xj or 2�0
P

Xj, which is �2

2n

under H0, and the critical regions are {x :
P

xj >
1

2
��1

0
�2

2n
(↵)}, where �2

2n
(↵) is the

upper ↵ point of �2

2n
. The power is

P(2�0
X

Xj > �2

↵
|H1) = P

✓
2�1

X
Xj >

�1
�0
�2

2n
(↵)|H1

◆

= Q2n

✓
�1
�0
�2

2n
(↵)

◆

where Q2n is 1� distribution function for �2

2n
.

For comparison, we might base a test on x(1), which has distribution function 1�e�n�y;
size ↵ critical regions are given by {x : x(1) > �(n�0)�1 ln↵}, and the power is ↵�1/�0 ,

which is < Q2n

⇣
�1
�0
�2

↵

⌘
for n > 1 and �1 < �0, and does not depend on n.

3.11 Designing the best test: simple null and composite alterna-
tive hypotheses

Suppose now there is a parametric family {p(x| ✓) : ✓ 2 ⇥1} of alternative p.d.f.’s for X.
The power of a size-↵ critical region R↵ generalizes to the size-↵ power function

pow(✓;↵) = P(X 2 R↵| ✓)

=

Z

R↵

p(x| ✓)dy
 
or
X

R↵

p(x| ✓)dy
!

(✓ 2 ⇥1).

A size-↵ critical region R↵ is then uniformly most powerful size ↵ (UMP size ↵) if it
has maximum power uniformly over ⇥1. A test is UMP if all its critical regions are UMP.
More formally

Definition 11. A uniformly most powerful or UMP test, �0(X), of size ↵ is a test t(x)
for which

(i) E✓�0(X)  ↵ 8 ✓ 2 ⇥0;

(ii) given any other test �(·) for which E✓�(X)  ↵ 8 ✓ 2 ⇥0, we have E✓�0(X) �
E✓�(X) 8 ✓ 2 ⇥1.

Such tests cannot be found in general, as this requires that the Neyman-Pearson test
should be the same for every pair of simple hypotheses. However, for one sided testing
problems, i.e., tests of the form H0 : ✓  ✓0 against H1 : ✓ > ✓0, there are a wide class of
parametric families for which UMP tests exist. These are distributions that have monotone
likelihood ratio or MLR.
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Definition 12. The family of densities {p(x|✓), ✓ 2 ⌦✓ ✓ R} with real scalar parameter ✓
is said to be of monotone likelihood ratio if there exists a function s(x) such that the

likelihood ratio

p(x|✓2)
p(x|✓1)

is a non-decreasing function of s(x) whenever ✓1 < ✓2.

Note that the same result applies for a non-increasing test statistic, by replacing t(x) by
�t(x).

Theorem 5. Suppose X has a distribution from a family that is monotone likelihood ratio

with respect to some continuous test statistic s(X) and we wish to test H0 : ✓ = ✓0 against

H1 : ✓ > ✓0, then a UMP test exists with critical region of the form s � s↵.

Proof. For testing ✓ = ✓0 against ✓ = ✓1 for any specific ✓1 2 ⇥1, the Neyman-Pearson
lemma tells us that the most powerful critical region is given by the likelihood ratio critical
region. The LR is a non-decreasing function of s(y) for any ✓1 > ✓0, and so the critical
region is of the form s � s↵. s↵ is determined by the size of the test and depends only on
✓0. Hence, this critical region is identical for all ✓1 � ✓0 and this test is UMP.

Corollary 2. If X1, . . . , Xn are i.i.d with p.d.f. of the form

p(x| ✓) = exp{a(x)b(✓) + c(✓) + d(x)}

with ✓ a scalar parameter and b(✓) strictly increasing, then for testing the null hypothesis

that ✓ = ✓0 against ✓ > ✓0 the LR test has critical regions corresponding to large values of

s =
P

a(xj) and is UMP.

Proof For any ✓1 > ✓0, the LR is

pX(x| ✓1)
pX(x| ✓0)

= exp[{b(✓1)� b(✓0)}s+ n{c(✓1)� c(✓0)}].

Since b(✓1) > b(✓0), this is monotone likelihood ratio and so the conditions of Theorem 5
are satisfied. This applies to all one-parameter exponential families, e.g. Normal, Binomial,
Poisson. There are similar results for ✓ < ✓0, when b(✓) is a decreasing function.

Example.

• Angles : take H0 to be that angles X1, . . . , Xn are i.i.d. and Uniform on [0, 2⇡).

A set of alternatives representing a type of symmetrical clustering about y = 0 has the
Xj i.i.d. with von Mises p.d.f.

exp(✓ cos x)

2⇡I0(✓)
(0  x < 2⇡; ✓ > 0).

So we test the hypothesis H0 : ✓ = 0 against the alternative ✓ > 0.
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3.12 Designing the best test: composite null and alternative hy-
potheses

3.12.1 One-sided tests

Previously we considered tests of hypotheses where the null hypothesis was simple. Testing
composite hypotheses is more complex in general. However, the above result for monotone
likelihood ratio distributions also applies to one-sided tests of the form H0 : ✓  ✓0 against
H1 : ✓ > ✓0.

Theorem 6. Suppose X has a distribution from a family that is monotone likelihood ratio

with respect to some continuous test statistic s(X) and we wish to test H0 : ✓  ✓0 against

H1 : ✓ > ✓0, then

(a) The test

�0(x) =

⇢
1 if s(x) > s0,
0 if s(x)  s0,

(56)

is UMP among all tests of size  E✓0 {�0(X)}.

(b) Given some 0 < ↵  1, there exists an s0 such that the tests in (a) has size exactly equal

to ↵.

Proof. 1. From Theorem 5, �0 is UMP for testing H0 : ✓ = ✓0 against H1 : ✓ > ✓0.

2. E✓{�0(x)} is a non-decreasing function of ✓. If we have ✓2 < ✓1 and E✓2{�0(x)} = �,
then the trivial test �(x) = � has E✓1{�(x)} = �. The test �0 is UMP for testing ✓2
against ✓1 and so it must be at least as good as �, i.e., E✓1{�0(x)} � �. Hence, if we
construct the test with E✓0{�0(x)} = ↵, then E✓{�0(x)}  ↵ for all ✓  ✓0, so �0 is
also of size ↵ under the larger hypothesis H0 : ✓  ✓0.

3. For any other test � that is of size ↵ under H0, we have E✓0{�(x)}  ↵ and by the
Neyman-Pearson lemma E✓1{�(x)}  E✓1{�0(x)} for any ✓1 > ✓0. This shows that this
test is UMP among all tests of its size.

4. If ↵ is specified we must show that there exists a s0 such that P✓0{s(X) > s0} = ↵,
but this follows from the assumption that s(X) is continuous.

3.12.2 Two-sided tests

In more general situations we will be interested in testing hypotheses of the formH0 : ✓ 2 ⇥0,
where ⇥0 is either an interval [✓1, ✓2] for ✓1 < ✓2 or a single point ⇥0 = {✓0}, against the
generic alternative H1 : ✓ 2 ⇥1, with ⇥1 = R/⇥0. For a family with monotone likelihood
ratio with respect to a statistic s(X), we might expect a good test to have a test function of
the form

�(x) =

8
<

:

1 if s(x) > s2 or s(x) < s1,
�(x) if s(x) = s2 or s(x) = s1,
0 if s1 < s(x) < s2.

Such a test is called a two-sided test. For such two-sided tests, we cannot usually find a
UMP test. However, under certain circumstances it is possible to find a uniformly most
powerful unbiased (UMPU) test.
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Definition 13. A test �(y) of H0 : ✓ 2 ⇥0 against H1 : ✓ 2 ⇥1 is called unbiased of size
↵ if

sup
✓2⇥0

E✓ {�(Y)}  ↵

and

E✓ {�(Y)} � ↵ for all ✓ 2 ⇥1.

In other words, an unbiased test is one which has higher probability of rejecting H0 when
it is false than when it is true. Note that if the power function is a continuous function of
✓ then an unbiased test of size ↵ must have size equal to ↵ on the boundary of the critical
region (since the size is less than or equal to ↵ within the critical region and greater than or
equal to ↵ outside).

Definition 14. A test which is uniformly most powerful among the set of all unbiased tests

is called uniformly most powerful unbiased.

For a scalar exponential family of the form given in Corollary 2 the following theorem
holds

Theorem 7. If X1, . . . , Xn are i.i.d with p.d.f. of the form

p(x| ✓) = exp{a(x)b(✓) + c(✓) + d(x)}

with ✓ a scalar parameter and b(✓) strictly increasing, then there exists a unique UMPU

test of size ↵, �0
, for testing the hypothesis H0 : ✓ 2 [✓1, ✓2], against the generic alternative

H1 : ✓ 2 R� [✓1, ✓2], of the form

�0(x) =

8
<

:

1 if s(x) > s2 or s(x) < s1,
�j if s(x) = sj,
0 if s1 < s(x) < s2.

(57)

where S =
P

a(xj), for which

E✓j�0(X) = E✓j�(X) = ↵, j = 1, 2.

The boundaries of the critical region, s1, s2, and the rejection probabilities on the boundaries,

�1, �2, are determined from the conditions E✓j�0(X) = ↵.

Example. Suppose a sample Y is drawn from an Exp(�) distribution, so that f(y|�) =
� exp(��y). Construct a uniformly most powerful unbiased test of size ↵ = 0.05 of the
hypothesis H0 : � 2 [1, 2] against the generic alternative � 2 [0, 1) [ (2,1).

For a single sample from the exponential distribution, the su�cient statistic is the ob-
served value, y. Using the previous result, the UMPU test is of the form (57). The probability
that s = si is zero for any single value si and therefore the �i’s do not need to be determined.
The boundaries of the critical region can be found from the constraints

↵ = 0.05 = 1� exp(�s1) + exp(�s2) = 1� exp(�2s1) + exp(�2s2),

from which we find s1 = 0.02532 and s2 = 3.6889. The corresponding power function ⌘(�)
is shown in Figure 2. This shows that the test is unbiased as the probability of rejecting H0

is less than or equal to the size ↵ within the region defined by H0, it is equal to ↵ on the
boundary, and greater than ↵ everywhere outside that region.
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Figure 2: Power of the UMPU test of � 2 [1, 2] against a generic alternative for an exponential
distribution, as a function of �, i.e., P�(reject H0). The horizontal line indicates the size of
the test, ↵ = 0.05.

3.12.3 Testing a point null hypothesis

A test of the null hypothesis H0 : ✓ = ✓0 against H1 : ✓ 6= ✓0 can be considered as the limit
of the preceding two-sided test when ✓2 � ✓1 ! 0. Therefore, as a corollary to the previous
result, there must exist a unique UMPU test, �0, of this hypothesis of the form (57) for which

E✓0{�0(X)} = ↵,
d

d✓
E✓{�0(X)}|✓=✓0 = 0. (58)

Di↵erentiability of the power function for any test function is ensured from the assumption
that the distribution is in the exponential family.

Example. Returning to the example of the preceding section of a single sample from an
Exp(�) distribution, if we instead want to test the hypothesis that � = 1 then we proceed
as before, but the constraints on the boundary of the rejection region are now

↵ = 0.05 = 1� exp(�t1) + exp(�t2),

0 = t1 exp(�t1)� t2 exp(�t2),

which can be solved numerically to give t1 = 0.0423633, t2 = 4.76517. The power function is
shown in Figure 3. We see that it reaches a minimum of ↵ = 0.05 at ✓ = ✓0 so it is unbiased
and of size ↵ as desired.

3.13 Designing the best test: similar Tests

So far we have focussed on tests of one-parameter distributions. However, often the dis-
tribution will depend on more than one parameter. In that case we are interested in tests
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Figure 3: Power of the UMPU test of � = 1 against a generic alternative for an exponential
distribution, as a function of �, i.e., P�(reject H0). The horizontal line indicates the size of
the test, ↵ = 0.05.

that perform as well as possible in inferring the value of one parameter of the distribution,
irrespective of the value of the other parameters of the distribution. This gives rise to the
notion of a similar test.

Definition 15. Suppose ✓ = ( ,�) and the parameter space is of the form ⌦✓ = ⌦ ⇥ ⌦�.

Suppose we wish to test the null hypothesis H0 :  =  0 against the alternative H1 :  6=  0,

with � treated as a nuisance parameter. Suppose �(x), x 2 X is a test of size ↵ for which

E 0,� {�(x)} = ↵ for all � 2 ⌦�.

Then � is called a similar test of size ↵.

This definition can be extended to composite null hypotheses. If the null hypothesis
is of the form ✓ 2 ⇥0, where ⇥0 is a subset of ⌦✓, then a similar test is one for which
E✓ {�(x)} = ↵ on the boundary of ⇥0.

If a test is uniformly most powerful among all similar tests then it is calledUMP similar.
There is close connection to UMPU tests. If the power function of a test is continuous then
we saw earlier that any unbiased test of size ↵ must have size exactly equal to ↵ on the
boundary, i.e., it must be similar. In such cases, if we can find a UMP similar test and it
turns out to also be unbiased, then it is necessarily UMPU.

Moreover, in many cases it is possible to demonstrate that a test which is UMP among
all tests based on the conditional distribution of a statistic S given the value of an ancillary
statistic A, this test is UMP among all similar tests. In particular, this applies if A is a
complete su�cient statistic for the variables �.



46 Introduction to Statistics for GWs

One common situation in which this occurs is for multi-parameter exponential families,
for which the likelihood can be written

p(x|✓) = exp

(
pX

i=1

Ai(x)Bi(✓) + C(✓) +D(x)

)
.

Consider a test of the form H0 : B1(✓)  ✓⇤
1
against H1 : B1(✓) > ✓⇤

1
. If we take

s(x) =
P

j
A1(xj) and A = (

P
j
A2(xj), . . . ,

P
j
Ap(xj)), then the conditional distribution of

S given A is also of the exponential form and doesn’t depend on B2(✓), . . . , Bp(✓), so A is
both su�cient and complete for B2(✓), . . . , Bp(✓). The Conditionality Principle suggests we
should make inference about B1(✓) based on the conditional distribution of S given A. Tests
constructed in this way are UMPU (Ferguson 1967). The optimal one-sided test is then of the
following form. Based on observations s1 =

P
j
A1(xj), s2 =

P
j
A2(xj), . . . , sp =

P
j
Ap(xj),

we reject H0 if and only if s1 > s⇤
1
, where s⇤

1
is calculated from

PB1(✓)=✓
⇤
1
{S1 > s⇤

1
|S2 = s2, . . . , Sp = sp} = ↵.

It can be shown this is a UMPU test of size ↵.
Similarly, to construct a two-sided test of H0 : ✓⇤

1
 B1(✓)  ✓⇤⇤

1
against B1(✓) < ✓⇤

1
or

B1(✓) > ✓⇤⇤
1
, we first define the conditional power function

w✓1(�|s2, . . . , sp) = E✓1 {�(S1)|S2 = s2, . . . , Sp = sp} .

Then we can construct a two-sided conditional test of the form

�0(s1) =

⇢
1 if ss < s⇤

1
or s1 > s⇤⇤

1
,

0 if s⇤
1
 s1  s⇤⇤

1
,

where s⇤
1
and s⇤⇤

1
are chosen such that

w✓1(�
0|s2, . . . , sp) = ↵ when B(✓1) = ✓⇤

1
or B(✓1) = ✓⇤⇤

1
.

It can be shown that these tests are also UMPU of size ↵. If the test is of a simple hypothesis
B(✓1) = ✓⇤

1
against the generic alternative B(✓1) 6= ✓⇤

1
then the test is of the same form but

the conditions are that the power function is equal to ↵ and its derivative with respect to ✓
is equal to 0, as in Eq. (58).

3.14 Generalized likelihood ratio tests

In the previous sections we focussed on finding the “best” tests by one metric or another.
However, as we have seen this is not always easy and the resulting test statistics are not
always straightforward to evaluate. Under many circumstances, in the limit n ! 1, the
likelihood ratio follows a �2 distribution and so this can be used to construct a test that is
valid asymptotically.

In particular, suppose we are testing H0 : ~✓ 2 ⇥0 versus H1 : ~✓ 2 ⇥1. We define the
likelihood ratio

LX(H0, H1) =
sup~✓2⇥1

p(x|✓)
sup~✓2⇥0

p(x|✓)
and denote by p = |⇥1 � ⇥0| the di↵erence in the numbers of degrees of freedom in the
unknown parameters between the two hypotheses. Then as n ! 1

2 logLX(H0, H1) ⇠ �2

p
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under H0 and tends to be larger under H1. Therefore critical regions of the form 2 logLX >
�2

p
(↵) give tests of approximately size ↵.
The interpretation of p is the number of constraints that have been placed to reduce the,

typically more general, alternative hypothesis, to the more restrictive null hypothesis. For
example, the null hypothesis might be specified by fixing the values of p of the parameters,
or by imposing p linear constraints on the parameters, or by writing the k parameters of ⇥1

as functions of an alternative k � p dimensional parameter space.


