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This course will provide a general introduction to statistics, which will be useful for re-
searchers working in the area of gravitational wave astronomy. It will start with some of the
basic ideas from classical (frequentist) and Bayesian statistics then show how some of thee
ideas are or will be used in the analysis of data from current and future gravitational wave
(GW) detectors. The final section of the course will introduce some advanced topics that
are also relevant to GW observations. These topics will not be expounded in great depth,
but some of the key ideas will be described to provide familiarity with the concepts. The
aim of the course will be to establish su�cient grounding in statistics that students will be
able to understand research seminars and papers, and know where to begin if carrying out
research in these areas.

The lectures will be supported by a number of computer practicals. Statisticians typically
use the community software packageR and this is also commonly used by researchers in other
disciplines. Most new statistical methods that are developed are implemented as R packages
and so familiarity with R will enable the user to carry out fairly sophisticated analyses
straightforwardly. However, in physics it is more common these days to use python and
there are a number of libraries of statistical functions and methods available for python as
well. Therefore, the practicals will use python.
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Course outline

1. (weeks 1–2) Classical (frequentist) statistics.

– Random variables: definition, properties, some useful probability distributions,
central limit theorem.

– Statistics: definition, estimators, likelihood, desirable properties of estimators,
Cramer-Rao bound.

– Hypothesis testing: definition, Neyman-Pearson lemma, power and size of tests,
type I and type II errors, ROC curves, confidence regions, uniformly-most-powerful
tests.

2. (weeks 3–4) Bayesian statistics.

– Bayes’ theorem, conjugate priors, Je↵rey’s prior.

– Bayesian hypothesis testing, hierarchical models, posterior predictive checks.

– Sampling methods for Bayesian inference.

3. (weeks 5–6) Statistics in gravitational wave astronomy.

– Stochastic processes, optimal filtering, signal-to-noise ratio, sensitivity curves.

– Frequentist statistics in GW astronomy: false alarm rates, Fisher Matrix, PSD
estimation.

– Bayesian statistics in GW astronomy: parameter estimation, population inference,
model selection.

4. (weeks 7–8) Advanced topics in statistics.

– Time series analysis: auto-regressive processes, moving average processes, ARMA
models.

– Nonparametric regression: kernel density estimation, smoothing splines, wavelets.

– Gaussian processes, Dirichlet processes.
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1 Random variables

In classical physics most things are deterministic. There are physical laws governing the
evolution of a system which can be solved and used to predict the state of the system
in the future. In reality there are many situations in which things are not (or e↵ectively
not) deterministic, and so the outcome of an experiment cannot be predicted with certainty.
However, if the experiment is repeated many times some outcomes will occur more frequently
than others. This notion of in-deterministicity in measurements is encoded in the concept
of a random variable. A random variable, X, is a quantity that, when observed, can take
one of a (possibly infinite) number of values. Prior to making a measurement the value of
the random variable cannot be predicted, but the relative frequency of the outcomes over
many experiments are described by a probability distribution. The value that X takes in a
particular observation (or experiment), xi, say is called a realisation of the random variable.

Random variables can be discrete, in which case the values that the variable takes are
drawn from a countable set of discrete possibilities, or continuous in which case the random
variable may take on any value within one or more ranges.

1.1 Discrete random variables

A discrete random variable X can take on any of a (possibly infinite but countable) set of
possible values, {x1, x2, . . .)}, which together comprise the sample space. The probability
that X takes any particular value is represented by a probability mass function (pmf), which
is a set of numbers {pi} with the properties 0  pi  1 for all i and

P
pi = 1. The probability

that X takes the value xi is pi.

1.2 Examples of discrete random variables

1.2.1 Binomial and related distributions

The Binomial distribution is the distribution of the number of success in n trials for which
the probability of success in one trial is p. We write X ⇠ B(n, p) and

P (X = k) = pk =

8
<

:

✓
n
k

◆
pk(1� p)n�k if k 2 {1, . . . , n},

0 otherwise
. (1)

When n = 1 this is the Bernoulli distribution. The binomial distribution is the distribution of
the sum of n Bernoulli trials, i.e., the number of “successes” in n trials. A related distribution
is the negative binomial distribution which has pmf

P (X = k) = pk =

8
<

:

✓
k + r � 1

k

◆
pk(1� p)r if k 2 {0, 1, . . .},

0 otherwise
. (2)

This is the distribution of the number of successes in a sequence of Bernoulli trials that will
be observed before r failures have been observed. Setting r = 1 and p ! (1� p) this is the
geometric distribution, which is the distribution of the number of trials required before the
first success.
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Another generalisation of the Binomial distribution is the multinomial distribution. In
this case the outcome of a trial is not a binary ‘success’ or ‘fail’, but it is one of k pos-
sible outcomes. The probability of each outcome is denoted pi with

P
k

i=1
pi = 1 and the

multinomial distribution describes the probability of seeing n1 occurrences of outcome 1, n2

occurrences of outcome 2 etc. in n trials. The pmf is

P ({n1, . . . , nk}) =
⇢

n!

n1!n2!...nk!
pn1
1
pn2
2
. . . pnk

k
if ni � 0 8i and

P
k

i=1
ni = n

0 otherwise
. (3)

Applications: counting problems, e.g., distribution of events in categories or time, trials
factors.

1.2.2 Poisson distribution

This is the distribution of the number of occurrences of some event in a certain time interval
if that event occurs at a rate �. The quantity X follows a Poisson distribution, X ⇠ P (�) if

P (X = k) = pk =

⇢
�ke��/k! if k 2 {0, 1, . . .},
0 otherwise

. (4)

The Poisson distribution is the limiting distribution of B(n, p) as n ! 1, p ! 0 with np = �
fixed.

Applications: distribution of number of events in a population, e.g., gravitational wave
sources.

1.3 Continuous random variables

A continuous random variable can take any (usually real, but the extension to complex
RVs is straightforward) value within some continuous range, or some set of ranges, which
together comprise the sample space X . The probability that X takes a particular value is
characterised by the probability density function (pdf), p(x). The probability that X takes
a value in the range x to x + dx is p(x)dx. The pdf has the properties 0  p(x)  1 for all
x 2 X and Z

x2X
p(x)dx = 1. (5)

For single valued random variables with non-disjoint sample spaces continuous random vari-
ables may also be characterised by the cumulative density function or CDF, defined as

P (X  x) =

Z
x

�1
p(x)dx. (6)

1.3.1 Uniform distribution

X is uniform on an interval (a, b), denoted X ⇠ U [a, b] if the pdf is constant on the interval
[a, b]

p(x) =

⇢
1

b�a
if x 2 [a, b]

0 otherwise
. (7)

X takes values only in the range [a, b].
Applications: often used as an “uninformative” prior in parameter estimation.



Introduction to Statistics for GWs 5

1.3.2 Normal distribution

X is Normal with mean µ and variance �2, denoted X ⇠ N(µ, �2) if the pdf has the form

p(x) =
1p
2⇡�

exp

✓
�(x� µ)2

2�2

◆
. (8)

X takes all values in the range (�1,1). If µ = 0 and �2 = 1 we say that X follows a
standard Normal distribution.

Applications: distribution of noise fluctuations in a gravitational wave detector, priors
on mass distribution, most common distribution to assume in parametric statistics.

1.3.3 Chi-squared distribution

X is chi-squared with k degrees of freedom, denoted X ⇠ �2(k) or �2

k
is the pdf has the form

p(x) =
1

2k/2�(k/2)
x

k
2�1e�

x
2 (9)

Here �(n) is the Gamma function, defined by

�(n) =

Z 1

0

xn�1e�xdx (10)

and such that �(n+ 1) = n!. X takes non-negative real values only, x 2 [0,1). This is the
distribution of the sum of the squares of n independent standard normal distributions.

There is also a non-central chi-square distribution which depends on two parameters —
degrees of freedom, k > 0, as before plus a non-centrality parameter, � > 0. This has the
pdf

p(x) =
1

2
e�

(x+�)
2

⇣x
�

⌘ k
4�

1
2
I k

2�1
(
p
�x) (11)

where I⌫(y) is the modified Bessel function of the first kind. The non-central chi-square
distribution again takes non-negative values only and arises as the distribution of the sum of
k independent normal distributions with equal (unit) variance, but non-zero means, denoted
µi. The non-centrality parameter is then � =

P
k

i=1
µ2

i
.

Applications: used to test for deviations from normality, e.g., in noise fluctuations in a
gravitational wave detector.

1.3.4 Student’s t-distribution

X follows Student’s t-distribution with n > 0 degrees of freedom, X ⇠ tn, if it has pdf

p(x) =
�
�
n+1

2

�
p
n⇡�

�
n

2

�
✓
1 +

x2

n

◆�n+1
2

. (12)

The Student t-distribution arises in hypothesis testing as the distribution of the ratio of
a standard Normal distribution to the square root of an independent �2

n
distribution, nor-

malised by the degrees of freedom. Specifically if X ⇠ N(0, 1 and Y ⇠ �2

n
then X/

p
Y/n

follows a tn distribution.
Applications: used for statistical test on significance of parameters in linear models,

used as a “heavy-tailed” distribution for robust parameter estimation, arises naturally when
marginalising over uncertainty in power-spectral density estimation.
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1.3.5 F-distribution

X follows an F-distribution with degrees of freedom n1 > 0 and n2 > 0 if it has pdf

p(x) =
1

B
�
n1
2
, n2

2

�
✓
n1

n2

◆n1
2

x
n1
2 �1

✓
1 +

n1

n2

x

◆�n1+n2
2

(13)

where B(a, b) is the beta function, which is given by

B(a, b) =

Z
1

0

xa�1(1� x)b�1dx (14)

and is related to the Gamma function through B(a, b) = �(a)�(b)/�(a + b). The F-
distribution arises as the ratio of two independent chi-squared distributions with n2 and
n2 degrees of freedom.

Applications: arises primarily in analysis of variance to test di↵erences between groups.

1.3.6 Exponential distribution

X is exponential with rate � > 0, X ⇠ E(�) if it has pdf

p(x) =

⇢
�e��x if x > 0
0 otherwise

(15)

X takes positive real values only, x 2 (0,1). The exponential distribution is the distribution
of the time that elapses between successive events of a Poisson process.

Applications: distribution of time lag between events, e.g., gravitational wave signals.

1.3.7 Gamma distribution

X is Gamma with parameters n > 0 and � > 0, X ⇠Gamma(n,�), if it has pdf

p(x) =

⇢
1

�(n)
�nxn�1e��x if x > 0

0 otherwise
(16)

X takes positive real values only, x 2 (0,1). The Gamma distribution is the distribution
of of the sum of n exponential distributions with parameter �.

Applications: conjugate distribution to the Poisson distribution, so useful in Bayesian
analysis of rates. Useful as prior distribution whenever variable has support on [0,1).

1.3.8 Beta distribution

X is Beta with parameters a > 0 and b > 0, X ⇠Beta(a, b), if it has pdf

p(x) =

⇢
1

B(a,b)
xa�1(1� x)b�1 if 0 < x < 1

0 otherwise
(17)

X takes values in the range x 2 (0, 1) only.
Applications: conjugate to binomial distribution. Useful as prior when variable has

support on [0, 1], e.g., for probabilities.
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1.3.9 Dirichlet distribution

The Dirichlet distribution is a multivariate extension of the Beta distribution. A realisation of
a Dirichlet random variable is a set ofK values, {xi}, satisfying the constraints 0 < xi < 1 for
all i and

P
K

i=1
xi = 1. The Dirichlet distribution is characterised by a vector of concentration

parameters ~↵ = (↵1, . . . ,↵K) satisfying ↵i > 0 for all i and has pdf

p(x) =
1

B(~↵)

KY

i=1

x↵i�1

i
, where B(~↵) =

Q
K

i=1
�(↵i)

�
⇣P

K

j=1
↵j

⌘ . (18)

Applications: infinite dimensional generalisation is a Dirichlet process which is used
as a distribution on probability distributions. Very important in Bayesian nonparametric
analysis.

1.3.10 Cauchy distribution

X follows a Cauchy distribution (also known as a Lorentz distribution) with location param-
eter x0 and scale parameter � > 0, if it has pdf

p(x) =
1

⇡�


1 +

⇣
x�x0
�

⌘2
� . (19)

X takes any real value x 2 (�1,1). The Cauchy distribution arises as the distribution of
the x intercept of a ray issuing from the point (x0, �) with a uniformly distributed angle. It
is also the distribution of the ratio of two independent zero-mean Normal distributions.

Applications: used to model distributions with sharp features. In a gravitational wave
context it is used as a model for lines in the spectral density of gravitational wave detectors,
for example in BayesLine (and hence BayesWave).

1.4 Properties of random variables

The pdf (or pmf) of a random variable tells us everything about the random variable. How-
ever, it is often convenient to work with a smaller number of quantities that summarise the
properties of the distribution. These characterise the ‘average’ value of a random variable
and the spread of the random variable about the average. We summarise a few of these quan-
tities here. They all rely on the notion of an expectation value, denoted E. The expectation
value of a function, T (X), of a discrete random variable X is defined by

E(T (X)) =
1X

i=1

pit(xi). (20)

A similar definition holds for continuous random variables by replacing the sum with an
integral

E(T (X)) =

Z 1

�1
p(x)t(x)dx. (21)
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1.4.1 Quantities representing the average value of a random variable

• Mean The mean, often denoted µ, is the expectation value of X, µ = E(X).

• Median The median, m, is the central value of the distribution in probability, i.e., a
value such that the probability of obtaining a value smaller than that or larger than
that is (roughly) equal. For discrete random variables m = xk, where

X

i:xi<xk

pi < 0.5 and
X

i:xixk

pi � 0.5. (22)

For continuous random variables m is the value such that
Z

m

�1
p(x)dx =

Z 1

m

p(x)dx =
1

2
. (23)

• Mode The mode, M , is the ‘most probable’ value of the random variable. For discrete
random variables

M = argmax
i2Xpi (24)

and for continuous random variables

M = argmax
x2Xp(x). (25)

The mode may not be unique.

1.4.2 Quantities representing the spread of a random variable

• Variance The variance, often denoted �2, is the expectation value of the squared
distance from the mean, i.e.,

Var(X) = E
⇥
(X � E(X))2

⇤
. (26)

• Standard deviation The standard deviation is simply the square root of the variance,
usually denoted �.

• Covariance When considering two random variables, X and Y say, the covariance is
defined as the expectation value of the product of their distance from their respective
means, i.e.,

cov(X, Y ) = E [(X � E(X)) (Y � E(Y ))] . (27)

Here the expectation value is taken with respect to the joint distribution (see section
on independence below).

• Skewness Given the mean, µ, and variance, �2, defined above, the skewness of a
distribution is

�1 = E
"✓

x� µ

�

◆3
#
. (28)
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• Kurtosis In a similar way, kurtosis is defined as

Kurt(X) = E
"✓

x� µ

�

◆4
#
. (29)

This measures the heaviness of the tails of the distribution of the random variable.
The kurtosis of the Normal distribution is 3, so it is common to quote excess kurtosis,
which is the kurtosis minus 3, i.e., the excess relative to the Normal distribution.

• Higher moments Higher moments can be defined in a similar way. The n’th moment
about a reference value c of a probability distribution is

E [(X � c)n] . (30)

Moments are usually defined with c taken to be the mean, µ, as in the definition of
skewness and kurtosis above.

1.4.3 Moment generating functions

A useful object for computing summary quantities of a probability distribution is themoment
generating function, MX(t), which is defined as

MX(t) = E
⇥
etX

⇤
t 2 R. (31)

It is clear that derivatives of this function with respect to t, evaluated at t = 0, give successive
moments about zero of the distribution. Moment generating functions (MGFs) are defined
in the same way for both discrete and continuous random variables.

In Table 1 we list these various summary quantities for the probability distributions listed
earlier. Where quantities are not known in closed form they are omitted from this table.
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Distribution Mean Median Mode Variance Skewness Excess kurtosis MGF

Binomial(n, p) np bnpc b(n+ 1)pc np(1� p) 1�2pp
np(1�p)

1�6p(1�p)

np(1�p)
(1� p+ pet)n

Poisson(�) � ⇡ b�+ 1

3
� 0.02

�
c d�e � 1, b�c � �� 1

2 ��1 exp [�(et � 1)]

Uniform[a, b] 1

2
(a+ b) 1

2
(a+ b) all 1

12
(b� a)2 0 �6

5

e
tb�e

ta

t(b�a)

Normal(µ, �2) µ µ µ �2 0 0 exp
⇥
µt+ 1

2
�2t2

⇤

�2

n
n ⇡ n

�
1� 2

9n

�3
max(n� 2, 0) 2n

q
8

n

12

n
(1� 2t)�k/2

Student’s tn 0 0 0 n

n�2
0 for n > 3 6

n�4
for n > 4 —

F(n1, n2)
n1

n2�2
— n2(n1�2)

n1(n2+2)

2n
2
2(n1+n2�2)

n1(n2�2)2(n2�4)

(2n1+n2�2)

p
8(n2�4)

(n2�6)

p
n1(n1+n2�2)

see caption —

E(�) 1

�

ln 2

�
0 1

�2 2 6 �

��t

Gamma(n,�) n

�
— n�1

�

n

�2
2p
n

6

n

�
1� t

�

��n

Beta(a, b) a

a+b
I [�1]

1
2

(a, b) a�1

a+b�2

ab

(a+b)2(a+b+1)

2(b�a)
p
a+b+1

(a+b+2)

p
ab

see caption see caption

Dirichlet (K, ~↵) ↵iPK
j=1 ↵j

— ↵i�1PK
j=1 ↵j�K

↵̄i(1�↵̄i)

↵0+1
— — —

Cauchy (x0, �) undefined x0 x0 undefined undefined undefined does not exist

Table 1: Summary of important properties of common probability distributions. The excess kurtosis of the F distribution is 12n1(5n2�
22)(n1 + n2 � 2) + (n2 � 4)(n2 � 2)2/[n1(n2 � 6)(n2 � 8)(n1 + n2 � 2)]. For the Beta(a, b) distribution, the excess kurtosis is 6[(a �
b)2(a+ b+ 1)� ab(a+ b+ 2)]/[ab(a+ b+ 2)(a+ b+ 3)] and the MGF is 1 +

P1
k=1

⇣Q
k�1

r=0

a+r

a+b+r

⌘
t
k

k!
. For the Dirichlet distribution, the

mean and variance are quoted for one component of the distribution, xi, the parameters ↵0 =
P

K

j=1
↵j and ↵̄i = ↵i/

P
K

j=1
↵j and the

covariance cov(xi, xj) = �↵̄i↵̄j/(1 + ↵0).
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1.5 Independence

Most of the random variables described above are single valued, but a few of them, e.g., the
multinomial and Dirichlet distributions, return multiple values. In other situations, several
random variables might be evaluated simultaneously, or sequentially, or the same random
variable might be observed multiple times. When dealing with multiple random variables,
covariance as introduced above is an important concept, as is independence. A set of random
variables {X1, . . . , XN} are said to be independent if

P (X1  x1, X2  x2, . . . , XN  xN) = P (X1  x1)P (X1  x1) . . . P (X1  x1) 8 x1, x2, . . . , xN .
(32)

In terms of the pdf (or pmf) the random variables are independent if their joint distribution
p(x1, . . . , xN) can be separated

p(x1, . . . , xN) = pX1(x1)pX2(x2) . . . pXN (xN). (33)

Independence of two random variables implies that the covariance is 0, but the converse is
not true except in certain special cases, for example for two Normal random variables.

A set of variables {Xi} is called independent identically distributed or IID if they are
independent and all have the same probability distribution. This situation arises often, for
example when taking multiple repeated observations with an experiment.

1.6 Linear combinations of random variables

Suppose X1, . . . , XN are (not necessarily independent) random variables and consider a new
random variable Y defined as

Y =
NX

i=1

aiXi. (34)

For any set of random variables

E(Y ) =
NX

i=1

aiE(Xi), Var(Y ) =
NX

i=1

a2
i
Var(Xi) +

X

i 6=j

aiajcov(Xi, Xj). (35)

If the random variables are independent then the variance expression simplifies to

Var(Y ) =
NX

i=1

a2
i
Var(Xi) (36)

and the moment generating function of Y can be found to be

MY (t) =
NY

i=1

MXi(ait). (37)

A commonly used linear combination of random variables is the sample mean of a set of IID
random variables, defined as

µ̂ =
1

N

NX

i=1

Xi (38)

for which

E(µ̂) = E(X1), Var(µ̂) =
1

n
Var(X1), Mµ̂(t) =

✓
MX1

✓
t

N

◆◆N

. (39)
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1.7 Laws of large numbers

Suppose that X1, . . . , Xn are a sequence of IID random variables, each having finite mean µ
and variance �2. We denote the sum of the random variables by

Sn =
nX

i=1

Xi, which implies E(Sn) = nµ, Var(Sn) = n�2. (40)

Laws of large numbers tells us that the sample mean becomes increasingly concentrated
around the mean of the random variable as the number of samples tends to infinity.

1.7.1 Weak law of large numbers

The weak law of large numbers states that, for ✏ > 0,

P

✓����
Sn

n
� µ

���� > ✏

◆
! 0, as n ! 1. (41)

1.7.2 Strong law of large numbers

The strong law of large numbers states simply

P

✓
Sn

n
! µ

◆
= 1. (42)

1.7.3 Central limit theorem

In many applications, people assume that the data generating process is Normal. This is
partially because the Normal distribution is convenient to work with and has many nice
properties, but also because regardless of the distribution large samples of random variables
tend to look quite Normally distributed. This fact is encoded in the Central Limit Theorem,
which states that the standardized sample mean, S⇤

n
, is approximately standard Normal in

the limit n ! 1
S⇤
n
=

Sn � nµ

�
p
n

. (43)

Formally the statement of the central limit theorem is

limn!1P (a  S⇤
n
 b) = �(b)� �(a) = limn!1P (nµ+ a�

p
n  Sn  nµ+ b�

p
n). (44)



Introduction to Statistics for GWs 13

2 Frequentist statistics

In the last section we discussed the notion of a random variable. When observing phenomena
in nature or performing experiments we would like to deduce the distribution of the random
variable, i.e., the probability distribution from which realisations of that random variable are
drawn. In parametric inference we assume that the distribution of the random variable
takes a particular form, i.e., it belongs to a known family of probability distributions. All
of the distributions that were described in the previous section are characterised by one or
more parameters and so inference about the form of the distribution reduces to inference
about the values of those parameters.

In frequentist statistics we assume that the parameters characterising the distribution are
fixed but unknown. Statements about the parameters, for example significance and confidence
are statements about multiple repetitions of the same observation, with the parameters fixed.
Key frequentist concepts are statistics, estimators and likelihood.

A statistic is a random variable or random vector T = t(X) which is a function of X
but does not depend on the parameters of the distribution, ✓. Its realised value is t = t(x).
In other words a statistic is a function of observed data only, not the unknown parameters.

An estimator is a statistic used to estimate the value of a parameter. Typically the ran-
dom vector would be a set of IID random variables, X1, . . . , Xn with pdf p(x| ✓). A function
b✓(X1, . . . , Xn) of X1, . . . , Xn used to infer the parameter values is called an estimator of ✓;
note that b✓ is a random variable with a sampling distribution in this latter context. The
value of the estimator at the observed data b✓(x1, . . . , xn) is called an estimate of ✓.

A statistic might also be used to provide an upper or lower limit for a confidence interval
on the value of a parameter, or to evaluate the validity of a hypothesis in hypothesis testing.

2.1 Likelihood

Likelihood is central to the theory of frequentist parametric inference.
If an event E has probability which is a specified function of parameters ~✓, then the

likelihood of E is P(E| ~✓), regarded as a function of ~✓.
The likelihood, denoted L(~✓;x), is functionally the same as the pdf of the data generating

process, the di↵erence is that the likelihood is regarded as a function of the parameters ~✓
while the pdf is regarded as a function of the observed data, x. It is often convenient to
work with the log likelihood

l(✓;x) = ln[L(✓;x)] = ln[p(x| ✓)] (✓ 2 ⇥)

Another useful quantity is the score
@l

@✓i

which is a vector that is also regarded as a function of ~✓ with the data fixed at the observed
values.

One interpretation of likelihood is that, given data x, the relative plausibility of or support
for di↵erent values ~✓1, ~✓2 of ~✓ is expressed by

L(~✓1;x)

L(~✓2;x)
or l(~✓1;x)� l(~✓2; |x).


