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Hypothesis testing: key concepts

Having observed data x we often want to ask if it is consistent with some pre-
conceived assumptions, for example the form of the probability distribution form
which the data is drawn or the parameters of that distribution.

Hypothesis testing is usually formulated as a test of a reference null hypothesis, H,
against an alternative hypothesis, H;.

If a hypothesis is completely specified it is called simple otherwise it is composite.
Examples:

Ho: the average number of gravitational wave events {n, ..., n;} observed on
different days of the week is the same is simple.

Ho: a trigger in a gravitational wave detector is due to noise is composite, as the
instrumental noise distribution is not completely specified.

Hoy: the number of gravitational wave events per year is Poisson(A) is composite.



Hypothesis testing: key concepts

The outcome of a hypothesis is a decision to reject or accept (not to reject) the null
hypothesis.

The decision is based on the value of a test statistic, #(x). Values of the test statistic
leading to acceptance of the hypothesis form the acceptance region. Values leading
to rejection form the critical region (or rejection region).

There are two types of error that can be made
- Reject Hp when Hp is true - Type I error
- Fail to reject Ho when it is false - Type Il error
The probability of a Type I error, (¢, is the significance level (or size) of the test.

1 - the probability of a Type Il error, 7 = 1 — (3, is the power of the test. This is the
probability of correctly rejecting Ho.

Type I errors are considered worse, so we usually quote the significance when
describing test results or comparing tests.



Test function

We can define the acceptance/rejection regions using a test function defined by

1 ift(x)eC
W@:{Oﬁu@ec

This is designed to have the properties
B, (9(X)) =
Ep, (p(X))=n=1-8

For tests on discrete distributions, there can be a non-zero probability of observing a
result on the boundary of the test region. In that case we use a randomized test

1 if t(x) € C

6() =4 () it t(x) € 90
0 if t(x) € C




T est statistics

Test statistics used for hypothesis testing need to have certain properties

Definition 10. A real-valued function t(x) on X is a test statistic for testing Hy iff
(i) values of t are ordered with respect to the evidence for departure from Hy

(ii) the distribution of T = t(X) under Hy is known, at least approximately. For composite
Hy the distribution should be (approximately) the same for all simple hypotheses making
up Hy.

In traditional hypothesis testing a threshold is set on the test statistic and values
exceeding that threshold lead to rejection.

[t is now common to quote the p-value or significance probability of a test result.
This is the smallest significance level at which the observed test statistic would have
led to rejection of the hypothesis.

p=P(T > t(x)| Ho)



Alternative hypothesis

The alternative hypothesis can be left unspecified, leading to a pure significance
test. This avoids having to specify H;.

The choice of test statistic can be based on the type of deviation from Hy that the
tester is interested in, e.g., look for clustering in observed right ascensions of
gravitational wave sources.

Goodness of fit tests compare the sample distribution function, or histogram of
event frequencies to the null distribution.

Example: event frequencies on days of the week. Use Pearson’s chi-squared test,
comparin 7 2
paring ( T, — n)
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Alternative hypotheses can also be specified, e.g.

Hi: 006, Co\{6}



Critical regions

Tests can also be defined in terms of critical regions instead of test statistics.
For any « in the interval (0, 1), a subset R, of X is a critical region of size « if
P(X € R,| Hy) = «
Points in R, are regarded as inconsistent with Hy or “significant at level a”.
A significance test is defined by a set of critical regions {R. : 0 < a < 1} satistying
Ral C Rag if oy < g
The significance probability (p-value) for data x is
P =inf(a;x € R,)

Tests based on test statistics have critical regions of the form

R, = {x:t(x) > ta} P(X € R,| Hy) = P(t(X) > to| Ho) =



Confidence intervals from critical regions

Critical regions for hypothesis tests provide another way to obtain confidence
intervals. Suppose R, (%) denotes a size-« critical region for testing

H() Z¢:¢0 VETISuUS Hl Iw#wo
Define
Sa(X) = {%0 : x € Ra(tbo)}
then P(Sa(X) 2 v0;%0,A) = P(X & Ro(v0) : Y0, A) =1—a Viho, A
s0 Sy (X) is a (1 — a) confidence interval for .

Example: For n IID exponential random variables the best size- critical region for

testing A = Ag against A < Agis
R ( { Z% in( )}

which leads to the (1 — @) confidence region for At R 1 X2 ( oz)
0O« "0 9 Z ajj 2n




Hypothesis test examples: z-test

+  We observe data

Xi,..., X, ~ N(ui,o%), Yi,..., Y N(ug,o%)

A 1o
- We assume 0° is known and want to test

HO:,ul—,uQ:O versus le,ul—,ug#()

»  The statistic - <1 | 1 )5 (X' = Y)

1 T o

+  follows an N(0,1) distribution and so the critical region takes the form

2| > Za P(XNN(O,1)>ZQ):%

2



Hypothesis test examples: t-test

» Asin the previous example, we observe data

Xi,..., X, ~ N(ui,o%), Yi,..., Y N(ug,0%)

We now assume O 2 is unknown and want to test
HO:,ul—,uQ:O versus le,ul—,ug#()

The statistic

N —

= (%—I_%)_ (X;Y) where 6* = - <zn:(XiX)2+zm:(Y;Y

m-+n—2

1=1 ==l

follows an t+4-2 distribution and so the critical region takes the form

‘t‘ > fa
2

)



Hypothesis test examples: F-test

We observe n;samples, denoted x;; for j=1,...,n; in each of k categories and we want to
test the hypothesis that the means in all the families are equal. We denote the sample

b [rag t
Xio S n_;X’L]

7 .

mean in each group by

and the overall sample mean by

k
X.,Z%ZXZ'J') N:an
1] 1=1

We define the between samples sum of squares and within samples sum of squares

by
SSb = an(fz. = 3_3..)2 st — Z(CEZ] — xio)z
Z (N — k)SS, ’
The test statistic i ( ol 1) SS. follows an Fi.1 -« distribution.

Critical regions take the form

e L ()



Calculatng test statstic thresholds

Thresholds for hypothesis tests can be
constructed in three ways

- Analytically: the distribution of the test
statistic may take a known form, e.g., testing
need for parameters in a linear model

= b tn_o for testing 81 =0
02/ Szz

- Using a Normal approximation: depending

on the form of the test statistic, the CLT can

be used to approximate the distribution, e.g.,

= ij ~ N (;, ;) for testing A = Ag in (o)
U240,
- From a simulation study: Hy is normally
fully specified, so it can be used to

numerically construct the distribution of #(x).

+ The power of the test can be similarly evaluated.
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Caution: muluple testing corrections

Often the same data will be used for multiple hypothesis tests. If m independent tests
of significance (tare carried out on the same data, the combined significance is

1 —(1—a)™ =qa,

To achieve a certain target significant for the set of tests, the individual tests should

have significance @ = 1 — (1 — ag)/™

For small significances and numbers of tests, this is approximately av /&~ . /m, which
is called the Bonferroni correction.

The total significance can be divided unevenly between the different tests. the Holm-
Bonferroni method sets @; = /(M — ¢ 4+ 1), where i labels the tests in order of P-
value (starting from the smallest).

Multiple tests are usually not really independent, so these are all conservative
procedures. The true significance of the family of tests must usually be evaluated
through simulation.

In LIGO this effect is referred to as a trials factor.



Caution: don’t change the question!

Hypothesis tests may be more or less specific based on prior information. Avoid the
temptation to make them more specific after observing the data.

Example: LIGO observes for 8 months from January to August and sees (1, 0, 0, 0, 0,
1, 1, 4) events. Are the 4 events in August significant?

- The probability of seeing 4 or more events in a specific month is ~1.2%
(assuming a Poisson distribution with rate 0.875) or ~0.62% (assuming a
multinomial distribution with equal probabilities in all bins and 7 events).

- The correct question is “How improbable is it to see 4 or more events in a
month out of the eight?”. The probabilities are then 8 times higher, giving 9.8%
or 5% respectively.

- We can use past data to inform future tests, but these aren’t necessarily more
powerful than analysing the combined data set. Suppose the next set of
observationsis (0,1,0,1, 1,0, 0, 2) then seeing 2 events in August has a 12%
probability (in the multinomial analysis). But the combined observations of (1,
1,0,1,1,1, 1, 6) have probability of 0.18%.



Caution: don’t change the question!

In 2002, the EXPLORER and
NAUTILUS teams announced an
excess of events towards the galactic
centre, based on an excess of events in
one bin.

After seeing the data and realising that
bin corresponded to increased
sensitivity toward the galactic centre,
they decided that they should ask “is
there an excess in this particular bin?”.

Such an excess in one (unspecified) bin
was not significant.

The observation was not reproduced
in subsequent data.
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ROC Curves

A receiver operator characteristic (ROC) curve is a plot of the power (or detection rate)
versus significance (or false alarm probability).

Tests with ROC curves that are further from the diagonal are better, i.e., more powerful.
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Designing tests: Neyman-Pearson Lemma

The “best” test is the most powerful test at a given significance. Under certain
circumstances the best test is given by the likelihood ratio

r) — 2109 _ L6 Hy)

For testing a simple hypothesis against a simple alternative

po(x)  L(6;Hp)

H() 19:90 vVersus Hl 1(9:(91

the Neyman-Pearson lemma states that the optimal test is a likelihood ratio test
with critical regions of the form

L(6;:H
Bresiion) gl e bk LEH;H;; >l

Example: X;,..., X, IID from E(A). Hyis A = Agversus Hi: A = A1 < Ag. The
optimal test is based on

0 = 20— () exp{ 00 - 2 o)

Po(x)

with critical regions {x : >_z; > A5 X3, ()}



Designing tests: UMP tests

If the null or alternative hypotheses (or both) are not simple, the Neyman-Pearson
lemma does not apply. What we are instead interested in are uniformly most
powerful (UMP) tests.

Definition 11. A uniformly most powerful or UMP test, ¢pq(X), of size a is a test t(x)
for which

(i) Bgto(X) < a V6 €0y

(ii) given any other test ¢(-) for which Egp(X) < a V 0 € Og, we have Egpo(X) >
Es6(X) V €0,

The existence of such tests requires that the Neyman-Pearson test takes the same
form for all parameter values in the alternative hypothesis, so this in general is not
the case.

However, for one sided testing problems with simple null hypotheses UMP tests
exist for any distributions which have monotone likelihood ratio.



Designing tests: UMP tests

Definition 12. The family of densities {p(x|0),0 € Qy C R} with real scalar parameter 0

is said to be of monotone likelihood ratio if there exists a function s(x) such that the
likelihood ratio

p(x|02)
p(x|01)

is a non-decreasing function of s(x) whenever 6; < 6.

Theorem 5. Suppose X has a distribution from a famaly that is monotone likelihood ratio
with respect to some continuous test statistic s(X) and we wish to test Hy : 0 = 0y against
Hy:0 >0y, then a UMP test exists with critical region of the form s > s,.

Corollary 2. If Xy, ... ,X,, are i.i.d with p.d.f. of the form
p(z]0) = exp{a(z)b(0) + c(0) + d(x)}

with 6 a scalar parameter and b(0) strictly increasing, then for testing the null hypothesis

that 0 = 6y against 0 > 6y the LR test has critical regions corresponding to large values of
s =Y a(x;) and is UMP.



Designing tests: composite hypotheses

This result also applies to distributions with monotone likelihood ratio for
composite tests of the form

Hy:0 <64 Versus Hi:0 >0,

The test takes the following form

Theorem 6. Suppose X has a distribution from a family that is monotone likelihood ratio

with respect to some continuous test statistic s(X) and we wish to test Hy : 0 < 6y against
H,:0 >0, then

(a) The test |
e { 1 if s(x) > so, (56)

0 ZfS(X) S S0,
is UMP among all tests of size < Eg, {po(X)}.

(b) Given some 0 < a < 1, there exists an sg such that the tests in (a) has size exactly equal
to o.



Designing tests: composite hypotheses

For two-sided tests of the form

Hgy: 0 € [(91,(92] VEersus H{:0 <60{o0r6 >0,

UMP tests do not usually exist. However, uniformly most powerful unbiased

(UMPU) tests may exist.
Definition 13. A test ¢(y) of Hy : 0 € ©g against Hy : 0 € Oy is called unbiased of size
a if
sup Eg {o(Y)} < «
0Oy
and

E¢{o(Y)} > a for all § € O4.

Definition 14. A test which is uniformly most powerful among the set of all unbiased tests
1s called uniformly most powerful unbiased.



Designing tests: UMPU tests

For scalar exponential families, UMPU tests always exist and are of the following
form.

Theorem 7. If Xy, ... . X, are i.1..d with p.d.f. of the form
p(z|0) = exp{a(z)b(8) + c(0) + d(z)}

with 0 a scalar parameter and b(0) strictly increasing, then there exists a unique UMPU
test of size o, @', for testing the hypothesis Hy : 0 € 01,05, against the generic alternative
Hy:0 € R—0,,05], of the form

(1 if s(x) > sy or s(X) < sy,

d(x) =1 v if s(x)=sj, (57)

0 if s1 < s(x) < s9.

\

where S = > a(x;), for which
Eo,#(X) =Eg6(X) =a, j=1.2

The boundaries of the critical region, s1, S2, and the rejection probabilities on the boundaries,
V1,72, are determined from the conditions [y, ¢ (X) = a.



Designi

0.2

ng tests: UMPU tests

0.15 |

>
I
& 01}
0
o
0.05
0




Designing tests: similar tests

If the distribution under test depends on more than the parameter under test we are
interested in similar tests.

Definition 15. Suppose 6 = (¥, \) and the parameter space is of the form Qg = Qy x Q.
Suppose we wish to test the null hypothesis Hy : 1) = 1y against the alternative Hy : 1 # 1y,
with A treated as a nuisance parameter. Suppose ¢(x), x € X is a test of size a for which

E¢O,A {¢(X)} — o for all \ € ,.
Then ¢ s called a similar test of size «.

A test that is uniformly most powerful among similar tests is called UMP Similar.
UMP similar tests are closely related to UMPU tests.

UMP similar tests do not exist in general, but they do exist for exponential families
p
Hy : Bi(8) < 6 against Hy : Bi(f) > 6 p(zld) =exp {Z Ai(x)Bi(0) + C(0) + D(x)}
=

The test statistic takes the form gb' ( ) | RSl e Sik or s; > ST*
S1) = :
P airdes=t o= &



Generalised likelihood ratio test

If none of the previous results apply, the likelihood ratio is usually still a good test
statistic, leading to the generalised likelihood ratio test.

Suppose we are testing

— —

Hy : 0 € ©y versus H; : 6 € O,

We denote by p the difference in the number of degrees of freedom in the two
hypotheses, p = |©; — ©y|, and denote the likelihood ratio by

Sup§€@1 p(.flj‘e)

Lx(Hy, Hy) =
X( & 1) Supé’g@Op(x‘H)

Under certain assumptions the asymptotic distribution is 2log Lx (Hg, Hy) ~ X?y
a.nd critical regions of the form 2log Lx > XZQQ () give tests of approximately
size (v.



