Making sense of data: introduction to
statistics for gravitational wave astronomy

Lecture 1: introduction to random variables

AEI IMPRS Lecture Course
Jonathan Gair jgair@aei.mpg.de
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Outline of course

“ Lectures will take place at 11:30am Wednesday and Friday in

the weeks beginning Nov 18th, 25th and Dec 2nd and 9th 2019
and the weeks beginning Jan 13th, 20th, 27th and Feb 3rd 2020.

* Lectures will all take place in seminar room 0.01 at the AEI and

will be broadcast via Zoom

- https:/ /mpi-aei.zoom.us/j/ 867860487

“ Lecture recordings and other material will be made available

on the course website

- https:/ /imprs-gw-lectures.aei.mpg.de/potsdam-2019 /



Outline of course

Section 1 (weeks 1 and 2): Frequentist statistics

* Random variables: definition, properties, some useful probability
distributions, central limit theorem.

o Statistics: definition, estimators, likelihood, desirable properties of
estimators, Cramer-Rao bound.

« Hypothesis testing: definition, Neyman-Pearson lemma, power and
size of tests, type I and type II errors, ROC curves, confidence regions,
uniformly-most-powertul tests.



Outline of course

Section 2 (weeks 3 and 4): Bayesian statistics
 Bayes' theorem, conjugate priors, Jeffrey's prior.

 Bayesian hypothesis testing, hierarchical models, posterior predictive
checks.

« Sampling methods for Bayesian inference



Outline of course

Section 3 (weeks 5 and 6): Statistics in gravitational wave astronomy

e Stochastic processes, optimal filtering, signal-to-noise ratio, sensitivity
curves.

 Frequentist statistics in GW astronomy: false alarm rates, Fisher
Matrix, PSD estimation.

* Bayesian statistics in GW astronomy: parameter estimation,
population inference, model selection.



Outline of course

Section 4 (weeks 7 and 8): Advanced topics in statistics

» Time series analysis: auto-regressive processes, moving average
processes, ARMA models.

» Nonparametric regression: kernel density estimation, smoothing
splines, wavelets.

» Gaussian processes, Dirichlet processes.



Outline of course

+ Every fourth lecture, which comes at the end of a block, will be a
computational practical class, illustrating how to compute some of the
quantities introduced in lectures in practice. These practicals will use

python.

»  One problem set will be provided for each block of lectures. Solutions

will be made available later.



Random variables

* Random variables are quantities
that are not fixed, but can take
new values each time they are
observed (a realisation).

“ Over many realisations the
distribution of the random
variable is described by a
probability distribution.

+ Random variables can be discrete
(taken values in a countable set)
or continuous (taking real values

in some interval).
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Discrete random variables
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Discrete RVs: Poisson distribution

* Poisson distribution is defined

for non-negative k by
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+  Arises as the distribution of the

number of counts of a process
occurring in a certain period of
time.
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»  For example, Uniform distribution

Conunuous random variables

*  Continuous random variables are

characterised by a probability density 2 -
function, satistying
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Contunuous RVs: Normal distributon

+* Normal distribution is characterised

by mean [t and variance ¢
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* Arises as a limiting distribution and = ¢ -
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as the distribution of noise in %
gravitational wave detectors. <
Commonly used as the default

distribution in parametric statistics
and as a prior in Bayesian analysis.
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Continuous RVs: chi-squared distribution

* Chi-squared distribution
depends on a degrees of freedom
parameter k > 0

1 k
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+ It is the distribution of the sum
of squares of k standard normal
random variables.

“ There is also a non-central chi-
square distribution which has
also a non-centrality parameter.
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* Student’s t-distribution also s

“ It arises in hypothesis testing as the

Continuous RVs: Student’s t-distribution
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ratio of a standard Normal

distribution to a chi-squared
distribution. It is used as a heavy-

tailed distribution in inference.
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Continuous RVs: F-distribution
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* The F-distribution depends on
two degrees of freedom
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“ This arises as the ratio of two
chi-square distributions and is

the basis for analysis of variance. §\
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* The Exponential distribution

+ This arises as the distribution of

Continuous RVs: Exponential distribution
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Continuous RVs: Gamma distribution

* The Gamma distribution
depends on a shape parameter n >
0 and a scale parameter A >0
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+ The Gamma distribution is
commonly used in Bayesian

inference as a prior with support 5 - /
on the positive real line, and is
conjugate to the Poisson o

distribution. . . 0 o



Contnuous RVs: Beta distribution

* The Beta distribution depends on & -
two shape parameters a, b > 0
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* The Beta distribution is conjugate
to the Binomial distribution and is 2 -
used as a prior for parameters with

support in [0,1]. S -




Continuous RVs: Dirichlet distribution

* The Dirichlet distribution is a multivariate
distribution, generating K samples {x;/ A
constrained such that 0 < x; <1 and ‘ o ‘ o
D iz1 Ti = "

* The distribution depends on a vector of
concentration parameters
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* The Dirichlet process is used as a prior on
probability distributions in Bayesian
nonparametric inference.



* The Cauchy distribution (or

Continuous RVs: Gauchy distribution
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Summarising random variables: average

* The pdf (or pmf) completely characterises a

probability distribution, but it is often more
convenient to work with summary quantities.

* These are based on expectation values & ] ~
B(T(X) = | plajt(a)ds - -
* There are various quantities that summarise — %Eg}n
the average value of a random variable 2
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Summarising random variables: spread

#  QOther quantities summarise the spread of a RV

- Variance/Standard deviation

Var(X) = E [(X — E(X))’]

Standard deviation = 1




Summarising random variables: spread

#  QOther quantities summarise the spread of a RV

- Variance/Standard deviation

Var(X) = E [(X — E(X))’]
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Skewness = 0.5963
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Summarising random variables: spread

#  QOther quantities summarise the spread of a RV

- Variance/Standard deviation

Var(X) = E [(X — E(X))’]
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. .
x R
v =K ( M)
] o i 2 - <— —>
- Excess Kurtosis _ 4 z
L — /’L N Excess kurtosis = 3
Kurt(X) =E — .
%




Summarising random variables: spread

#  QOther quantities summarise the spread of a RV

* Moments can be efficiently computed using

- Variance/Standard deviation

Var(X) = E [(X — E(X))’]
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- Higher moments
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the moment generating function
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Independence

“ A set of random variables { X1, X, ..., Xn/ is independent if, for all choices
of

P(Xl SZEl,XQSZCQ,...,XNSZEN):P(XlSZEl)P(Xl SZEl)P(Xl <£131)

* In terms of the density function this is equivalent to

p(T1,- -, TN) = px; (T1)Px,(T2) - - - Pxy (TN)

“ Two independent random variables have zero covariance
cov(X,Y)=E[(X —EX)) (Y —E(Y))] =0

* but the converse is not necessarily true.

* Random variables are independent identically distributed (1ID) if they are
independent and are all drawn from the same probability distribution.



| inear combinations of RVs

» Suppose Xj, ..., Xy are random variables and consider a new RV

N
W= Z CLZ'XZ'
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> Y has the properties
N N
EY)=> aE(X;), Var(Y)=)> a?Var(X;)+» a;ajcov(X;, X;)
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» The first equation holds for any random variables. If the RVs are independent

then the relationships simplify
N

Var(Y) =) a?Var(X;) My (t) = H Mx, (a;t)
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» If {Xi} are IID then the sample mean defined by a;=1/N for all i has the

properties

) =E(X1),  Var(p) = %VM(X”’ Math) = <MX1 G»N




Laws of large numbers

* Averages of random variables have
various nice asymptotic properties
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* Central Limit Theorem: for S’ =
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