
IMPRS GW Astronomy – Computational Physics 2025

Ordinary Differential Equations: Part 1

Takami Kuroda

1 What are ODEs?

ODEs are equations as a function of y(x) and its derivatives y′ ≡ dy/dx, y′′ ≡ d2y/dx2,
· · · , y(n)

′ ≡ dny/dxn where y(x) has only one argument x. ODEs are expressed in a
general form as

g
(
x, y, y′, y′′, · · · , y(n)′

)
= 0 (1)

1. Example: Particle motion

The motion of a particle, whose mass is m, is expressed as

F = ma(t), (2)

with F and a(t) being the force acting on the particle and the acceleration of the
particle at time t, respectively. Since the acceleration a(t) is defined by the second
time derivative of the position of the particle x(t) as

a(t) =
d2x(t)

dt2
, (3)

the ODE is expressed as

g (t, x, ẋ, ẍ) = F −mẍ = 0. (4)

Eq. (4) can be solved for given initial values at time t = t0: x(t0) = x0 and
dx(t0)/dt ≡ v(t0) = v0. The solution of this ODE is

F = ma(t) ⇐⇒ x(t) = x0 + v0t+
F

2m
t2. (5)

1.1 Equivalence to first order differential equations

We next show that one ODE can be equivalent to first order simultaneous differential
equations, with which we can solve the original ODE more easily. Let us first rewrite
Eq. (1) as

y(n)
′
= f

(
x, y, y′, y′′ · · · , y(n−1)′

)
. (6)

Then such n-th order differential equation can be reduced to

dy

dx
= y′

dy′

dx
= y′′

...
dy(n−2)′

dx
= y(n−1)′

dy(n−1)′

dx
= y(n)

′
(
= f

(
x, y, y′, y′′ · · · , y(n−1)′

))
. (7)

Therefore it indicates that a single n-th order differential equation is equivalent to the
first order differential equations with n variables. Such first order simultaneous differen-
tial equations can be solved for given initial values:

y(x0) = y0, y(n)
′
(x0) = an, (8)

making them to be termed as initial value problem (IVP).

2 Numerical methods for ODEs

How can we numerically solve a set of first order simultaneous equations (7)? In practice,
we numerically solve such systems by means of numerical differentiation. Namely, for
given right hand side (RHS) values (y′, y′′, . . . , y(n)

′
) in Eq. (7) at position x = x0, which

actually correspond to the slope (i.e. LHS), we estimate the next values (y, y′, . . . , y(n−1)′)
at x = x0 + h. Here h denotes the step size. Afterward, we continue this procedure till
reaching a desired final point x = xfin. Therefore we should focus on solving each line of
Eq. (7), taking a form of

y′ = f(x, y). (9)

Here we assume for the simplicity that the function f has only two variables (x, y). How-
ever, the extension from two to more variables such as to (x, y, y′, y′′, · · ·) is straightfor-
ward and we do not explicitly consider the existence of derivative terms in the following
discussion. We also note that y as well as its derivatives y′, y′′, · · · , y(n)′ have only one
argument x.

2.1 Numerical differentiation: Forward/backward/central finite dif-
ferences

We begin with explaining the basic of numerical differentiation: the slope of function y.
The slope of y at position x (i.e. y′ = dy/dx) can be written as

dy(x)

dx
= lim

h→0

y(x+ h)− y(x)

h
. (10)

Using the Taylor series expansion, y(x+ h) is expressed as

y(x+ h) = y(x) + hy′(x) +
1

2
h2y′′(x) +

1

6
h3y′′′(x) + · · · . (11)

Plugging Eq. (11) into Eq. (10) yields the forward difference for a finite step size h

dy

dx
≈ y(x+ h)− y(x)

h
= y′(x) +

1

2
hy′′(x) +

1

6
h2y′′′(x) + · · · . (12)

From this we can estimate the error value as

err ≈ y(x+ h)− y(x)

h
− y′(x) =

1

2
hy′′(x) +

1

6
h2y′′′(x) + · · · = O(h), (13)

indicating that this finite difference method is first-order accuracy. Analogously, the back-
ward difference results in the same order of accuracy with the forward one as

err ≈ y(x)− y(x− h)

h
− y′(x) = −1

2
hy′′(x) +

1

6
h2y′′′(x)− · · · = O(h). (14)

Finally if we take the central difference as follows

dy

dx
≈ y(x+ h)− y(x− h)

2dh
= y′(x) +

1

6
h2y′′′(x) +

1

120
h4y(5)(x) · · · , (15)

the estimated error becomes

err ≈ y(x+ h)− y(x− h)

2h
− y′(x) =

1

6
h2y′′′(x) + · · · = O(h2). (16)

It implies that we can get one order of magnitude smaller error, i.e., the second-order
accuracy.
Like these, each method as well as other various methods that will be mentioned later
give different numerical accuracy and one should carefully choose which is the most
suitable one for one’s purpose. We also have to pay attention for the numerical cost:
Generally the higher the numerical accuracy is, the slower the computational speed is.

2.2 Stiffness and stability

Before going to the introduction of several major numerical methods, we shortly touch
the stiffness of the equation(s) that we are going to solve and the stability of numerical
methods. Although there are no concrete definition for the stiffness of the system, we
can intuitively understand that the system (or equation(s)) is stiff, if the source term
(RHS of Eq. (7)) changes quite rapidly during an integration path considered or there
are significantly large differences between the source terms of each equation (7). From
the mathematical point of view, the latter condition can be understood as follows. If
the system is non-linear, then we can take a local linear approximation. Anyhow, let
us consider a generalized linear system of Eq. (7) (y′ = f(x,y)). The equation is then
expressed as

y′ = Ax+By, (17)

where A and B are vector of size n and n× n matrix, respectively. A general solution to
this equation is

y =

∫
dxAx+

n∑
i=1

bie
λix. (18)

From this, λi can be read as eigen values. The stiffness is roughly defined by a ratio of
the fastest and slowest propagation mode of the system

s =
max |ℜλi|
min |ℜλi|

, (19)

and if s is large, typically s ≳ 104−5, then the system can be said as stiff. In the stiff
system, if we do not appropriately choose the step size, the deviation of numerically
estimated value from the true solution tends to become large. Moreover, the deviation
sometimes diverges, i.e. numerical instability, meaning that |y| → ∞, and we cannot
continue the simulation.
The stability of numerical methods are often discussed by applying a test function

y′ = λy, (20)

where λ ∈ C. Eq. (20) can be analytically solved and one gets the solution

y(x) = eλx. (21)

At the same time in the finite difference expression this solution can be alternatively
expressed as

yi+1 = eλ(xi+h) = eλheλxi ≡ R(λh)yi = (R(λh))i+1y0, (22)

here yi is the value at i-th point xi and the finite difference h is defined by h = xi+1 − xi.
In the equation, R(z) with z ∈ C is the so-called stability function. The stability of a
method is then discussed when yi → 0 is achieved for i → ∞. This means a step size
h, which satisfies R(λh) < 1, is considered to be a safe step size without entering an
instability regime. On the complex plane, the region R(λh) < 1 is termed as the region
of absolute stability. The actual form of R(z) differs from method to method, and those
having a larger stable region are more stable methods.
Furthermore as a useful index of strong stability, there is a terminology “A-stable”. The
numerical integration scheme is called A-stable when its stable function R(z) covers the
whole complex region with ℜz < 0. Recall that z = λh, this means that for any step size
the A-stable method allows us to eventually reach a non-divergent (usually 0) asymptotic
value for the result (y = eλx) of the test function y′ = λy. Therefore, the A-stable methods
are generally considered to be the ideal method for solving quite stiff equation.

2.3 Euler method

The Euler method is the simplest one-step method to solve IVP y′ = f(x, y) and to obtain
a series of yi at each discretized position xi for given initial values y0 and f(x0, y0) at x0.
There are two types of the Euler method: explicit and implicit one. Below we discuss
their basic concept especially focusing on their stability.

2.3.1 Explicit method

Based on the forward finite difference form (Eq. (11)) and neglecting higher order terms
than h2, we can express the approximate value at the next discretization point xi+1 as

y(xi+1) ≈ y(xi) + hf(xi, yi), (23)

where h = xi+1 − xi is the step size. As can be seen, the explicit Euler method evaluates
the value at (i + 1)-th step simply applying the current slope f(xi, yi). This makes the
scheme simple and quite easy to implement.
It is also important to keep in mind the local truncation error, which measures the devi-
ation of numerical result from the exact solution. As for the Euler method, the next step
value is obtained via Eq. (23). Meanwhile the exact solution can be read as

y(xi + h) = y(xi) + hy′(xi) +
h2

2
y′′(xi) +O(h3). (24)

Therefore the expected deviation is given by

y(xi + h)− y(xi+1) =
h2

2
y′′(xi) +O(h3). (25)

This indicates that the Euler method is expected to produce an error of the order of O(h2)
at every time step.
As a drawback of its simple expression, the Euler method is known to often suffer from
numerically instability. It sometimes returns quantitatively different values y(x+ h) and
consequently resulting in an inaccurate sequence of solutions y(x + 2h), y(x + 3h), · · ·
(i.e. the overall behavior of y(x) becomes qualitatively incorrect).
If we apply the test function (y′ = λy) to the explicit Euler method, one obtains

yi+1 = yi + hy′(xi) = yi + λhyi = (1 + λh)yi. (26)

Therefore the stability function becomes R(z) = 1 + z and |1 + z| < 1 is the region of
stability for the Euler method. Such a narrow stability region enforces us to employ a
sufficiently small time step, leading generally to time consuming numerical simulation.

2.3.2 Implicit method

To overcome the quite narrow stability region of the explicit Euler method, one can
alternatively solve the IVP implicitly. This is equivalent to rewrite Eq. (23) as

y(xi+1) ≈ y(xi) + hf(xi+1, yi+1), (27)

thus evaluating the slope y′(= f) at (i + 1)-th position instead of at i. The more stable
nature of this method in comparison to the explicit method can be understood as follows.
Again applying the former test equation y′ = λy, this implicit Euler method yields

yi+1 = yi + hy′(xi+1) = yi + λhyi+1. (28)

It can be rewritten as

yi+1 =
1

1− λh
yi. (29)

Therefore, the stability function becomes

R(z) =
1

1− z
. (30)

As a consequence, the stability region (|R(z)| < 1) appears for almost all complex num-
bers z (except |1− z| < 1), which is quite a larger domain compared to the one with the
previous explicit Euler method.
Note that ensuring the numerical stability is not equivalent to achieving sufficient ac-
curacy in numerical results. For instance, the explicit methods sometimes give more
accurate results such as for the shock wave propagation. As already mentioned, how-
ever, the explicit methods should employ significantly shorter (time-)step size, meaning
that the total simulation time to reach the desired final simulation time can sometimes
be an order of magnitude or even more longer than the implicit models. Otherwise,
the numerical instability appears in the explicit scheme and would eventually crush the
simulation.

2.4 Runge-Kutta method

However, their accuracy (local truncation error) is of the order of O(h2), which is usually
not so high. To achieve a higher order accuracy, there are also multi-step methods. The
Runge-Kutta methods are one of them and are iterative methods to solve IVP y′ = f(x, y).
In these methods, the value at next step yi+1 is obtained after s-stages by

yi+1 = yi + h
s∑

n=1

bnkn, (31)

where

kn = f(xi + cnh, yi + h
s∑

l=1

anlkl), n = 1, . . . , s. (32)

From a condition of the Taylor expansion

h
s∑

n=1

bn = h, (33)

∑s
n=1 bn must be unity. Furthermore, the following condition is often used to determine

the coefficients.
s∑

l=1

anl = cn, n = 1, . . . , s, (34)

with c1 = 0.

To more easily understand the coefficients appearing in the Runge-Kutta method, the
following Butcher tableau is commonly used.
Note that for the explicit Runge-Kutta methods, the upper triangle (i.e. aij with j ≥ i)
becomes always 0. This means for calculating kn, we need the values only for km with
m < n. Therefore we can evaluate k1, k2, · · · , ks in a sequential manner. Meanwhile

c1 a11 a12 a13 · · · a1s
c2 a21 a22 a23 · · · a2s
...

...
...

...
cs as1 as2 as3 · · · ass

b1 b2 b3 · · · bs

for the implicit method, aij with j ≥ i are not always 0. Therefore when calculating
for instance k1, we need the values of k2, k3, · · · , which makes the implementation of
such implicit scheme more complicated. In the following, we focus only on the explicit
Runge-Kutta methods.

2.4.1 Stability function of Runge-Kutta methods

Applying again the test function y′ = λy to Runge-Kutta methods, one immediately ob-
tains an alternative expression to Eq. (32) as follows

kn = λ

(
yi + h

n−1∑
l=1

anlkl

)
, (35)

where we use a condition anl = 0 for l ≥ n of the explicit Runge-Kutta methods. Plugging
this equation into Eq. (31) yields

yi+1 = R(λh)yi (36)

with

R(z) = 1 + z
∑
i

bi + z2
∑
i,j

biaij + z3
∑
i,j,k

biaijajk + · · · . (37)

Recalling that aij is s×s lower triangular matrix, as = 0. Therefore, the stability function
R(z) is a polynomial of degree ≤ s. If we discuss whether the Runge-Kutta methods are
A-stable or not, since

|R(z)| = ∞, for z → −∞, (38)

they are not A-stable. indicating we have to choose some appropriate step size.

2.4.2 Accuracy of Runge-Kutta methods

For smaller numbers of stages (s ≤ 4), it is known that the order of numerical accuracy p
is the same with the number of stages, i.e., p = s. This means, if one needs a fourth-order
accuracy code, Runge-Kutta with at least four stages is required. However, to achieve a
higher order accuracy beyond 5th-order, s ≥ p + 1 is known to be necessary, though the
actual minimum number of stages is not well understood.

2.4.3 Second-order methods with two stages (s = 2)

One example of Butcher tableau for Runge-Kutta methods with two stages (s = 2) is
Here α is a parameter and the method is called “midpoint method” for α = 1/2 and

0
α α

1− 1
2α

1
2α

“Heun’s method” for α = 1. The next step value can be explicitly written as

yi+1 = yi + h

[(
1− 1

2α

)
f(xi, yi) +

1

2α
f(xi + αh, yi + αhf(xi, yi))

]
. (39)

2.4.4 RK4: Runge-Kutta with four stages (s = 4)

Generally the Runge-Kutta method refers to this four-stage method, which is fourth-order
accuracy. The Butcher tableau of RK4 is denoted as

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

Therefore the value at the next step yi+1 is explicitly given by

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4), (40)

where

k1 = f(xi, yi)

k2 = f(xi + h/2, yi + hk1/2)

k3 = f(xi + h/2, yi + hk2/2)

k4 = f(xi + h, yi + hk3). (41)

Ordinary Differential Equations: Part 2

3 Adaptive step

In the previous section, we have discussed several major numerical methods for solving
IVPs, particularly focusing on their numerical accuracy and stability. In general, smaller
step size can suppress the local truncation error (though eventually inhibited by the
machine round-off error). As a drawback, the total number of steps may increase sig-
nificantly. Therefore we have to pay attention to how we can optimize the step size so
that we can simultaneously achieve both the numerical accuracy and efficient calculation
without encountering any numerical instability. To this end, the overall strategy is:

• Estimate the local error after one step.

• If the local error is larger than a tolerance ϵ, then we have to use a smaller step size
and redo the same step.

• If not, we can increase the step size.

Now for more details.

3.1 Estimation of local error: Multi-step method

We first discuss how we can efficiently estimate the local error after one step. This multi-
step method might be the most straightforward way to estimate the local error and adjust
the step size. It can be applied to any method, but in the following let’s take the Euler
method for example, which is first order (p = 1). As has been already explained, the next
step value yi+1 is estimated by

yi+1 = y(x+ h) + Ah2 +O(h3). (42)

Here the second term in RHS y(x+h) denotes a true solution at x+h and A is a constant
not varying so much along the integral path. We also do the same estimation but for
instance with two steps using a half smaller step size h/2. What we get after two steps is

yi+1+1 = y(x+ h) + 2A

(
h

2

)2

+O(h3). (43)

The factor 2 before A accounts for the two steps. Now take difference between these two
estimated values. The residual is the error per unit step:

err ≈ Ah2

2
. (44)

If it is larger than a certain tolerance value ϵ, i.e. err > ϵ, then we have to shorten the
current step size to

h′ = 0.9
(ϵ

err

)1/2
h. (45)

Here the factor 0.9 is an extra safety margin and can be another number smaller than
unity. In addition, as for other p-th order methods,

h′ = 0.9
(ϵ

err

)1/(p+1)

h. (46)

As said, this may be the simplest way and easy to implement into the code, however, one
additional work at x+h/2 in the 2-step way might be sometimes annoying. Furthermore,
in case of multi-stage methods such as RK4, those extra works at intervals become more
problematic and time consuming. For instance, for a single step, we have to calculate
four kn at x, x + h/2 (twice), and x + h. Meanwhile for 2 steps, we have to do it seven
times at x, x+h/4 (twice), x+h/2, x+3h/4 (twice), and finally x+h as illustrated in Fig. 1.

Figure 1: Schematic picture illustrating how many times we have to evaluate the func-
tion f(x, y, y′, · · ·). Black and red filled circles denote single and twice evaluation, respec-
tively. In total we have to calculate f , 4 times in one-step RK4 and 7 times in two-step
method.

3.2 Estimation of local error: Embedded RK

To reduce the number of works for calculating f(x, y, y′, · · ·) at discretized several mini-
steps, Embedded RK method was proposed. Again, as has been introduced in Sec. 2.4,
the explicit RK methods are described by

yi+1 = yi + h
s∑

n=1

bnkn, (47)

where

kn = f(xi + cnh, yi + h

s∑
l=1

anlkl), n = 1, . . . , s. (48)

In the embedded RK method, the following Buthcher tableau is employed.

Here we assume the coefficients bi and b∗i are corresponding to those with order p and
(p − 1), respectively. Note that for lower stage RK methods (s ≤ 4 stages), the number
of stage s is the same with the numerical acuracy p. Meanwhile for p ≥ 5, s ≥ p + 1 is

0
c2 a21
c3 a31 a32
...

...
... . . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs
b∗1 b∗2 · · · b∗s−1 b∗s

usually required. If we can appropriately choose the common coefficients aij and ci, so
that kn for n = 1, 2, · · · , p− 1 can be the same for both (p− 1)- and p-th order methods,
then the only one extra calculation for kp allows us to estimate the local error such as

err = yi+1 − y∗i+1 = h

s∑
n

(bn − b∗n)kn ∼ O(hp). (49)

3.2.1 Embedded RK: Midpoint(Heun)-Euler

For instance, let’s calculate

k1 = f(xi, yi),

k2 = f(xi + αh, yi + αhk1), (50)

which are used for the midpoint method (α = 1/2) and Heun’s method (α = 1). Then
we can immediately estimate two values:

y
Midpoint/Heun
i+1 = yi + h

[(
1− 1

2α

)
k1 +

1

2α
k2

]
+O(h3). (51)

and

yFEi+1 = yi + hk1 +O(h2). (52)

Note that the midpoint/Heun’s method is a second order method (p = 2) and the forward
Euler method is first order (p = 1). Consequently we can easily evaluate the local error
as

err =
∣∣∣yMidpoint/Heun

i+1 − yFEi+1

∣∣∣ ∼ O(h2). (53)

In such a way, we can reuse the the coefficients k1 and k2, which are originally needed
for the midpoint/Heun’s method (p = 2), to the FE method for evaluating yFEi+1, which
has a less numerical accuracy by one order (p = 1). Once we can successfully estimate
the local error, we adjust the step size according to Eq. (46), i.e. h′ = (ϵ/err)1/(p+1)h with
p = 1 (not with p = 2, as the error is err ∼ O(h2).
We have to pay attention that this method is designed to adjust the step size h, so that
the local error of the lower accuracy method (the FE method this time) decreases and
not of the higher one (Midpoint/Heun’s method). Therefore we should ideally trust the
value yFEi+1 as for the next step value.

3.2.2 Embedded RK: Runge-Kutta-Fehlberg method[RK4(5)]

As an extension to higher order, Erwin Fehlberg proposed a method (now called Runge-
Kutta-Fehlberg method), in which one calculates six kn’s as follows (indeed looks quite
complicated, but the calculation from k1 to k6 is straight forward)

k1 = f (xi, yi)

k2 = f

(
xi +

1

4
h, yi +

1

4
hk1

)
k3 = f

(
xi +

3

8
h, yi +

1

32
h (3k1 + 9k2)

)
k4 = f

(
xi +

12

13
h, yi +

1

2197
h (1932k1 − 7200k2 + 7296k3)

)
k5 = f

(
xi + h, yi + h

(
439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4

))
k6 = f

(
xi +

1

2
h, yi + h

(
− 8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5

))
.

(54)

Once we prepare kn for n = 1, 2, · · · , 6, we evaluate the following two next step values:

p=5yi+1 = yi + h

(
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6

)
, (55)

which is the RK with six stages (s = 6) and has a fifth order accuracy (p = 5), and

p=4yi+1 = yi + h

(
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5

)
, (56)

which is the RK with four stages (s = 4) and has a fourth order accuracy (p = 4). As
we estimate the local error from these fourth and fifth order accurate values, the Runge-
Kutta-Fehlberg method is often termed as RK4(5).
This time the error can be estimated as

err = |p=5yi+1 − p=4yi+1| ∼ O(h5), (57)

and the adjusted step size h′ becomes

h′ =
(ϵ

err

) 1
5
h. (58)

Again the Runge-Kutta-Fehlberg method is designed to estimate an appropriate step size
for the lower order method RK4. Therefore we should use p=4yi+1 for the next step value.

3.2.3 Embedded RK: Dormand-Prince method(RKDP)

Contrary to the Runge-Kutta-Fehlberg method, the Dormand-Prince method is designed
to estimate the appropriate step size to minimize the error of the higher order method.
(Regarding the coefficients, see some references.) Therefore, in this method, we can use
p=5yi+1 as for the next step value. Note that the overall accuracy is still order p = 4.

4 Simultaneous 1st order ODEs

So far we have discussed how to solve the ODE y′ = f(x, y). Practically many of the
systems of interest are often described by simultaneous ODEs expressed as

y′1 = f1(x, y1, y2, · · · , yn)
y′2 = f2(x, y1, y2, · · · , yn)

...
yn

′ = fn(x, y1, y2, · · · , yn), (59)

where we consider n variables. Or even if the system is described by one equation but
with higher order derivatives as Eq. 1, the system is equivalent to n equations with first
order difference as explained in Sec. 1.1, which ultimately takes the form of Eq. 59.
The numerical method for solving Eq. 59 is essentially the same with the method for
solving one ODE as discussed so far. For instance, the RK4 becomes

k′
1 = f (xi,yi)

k′
2 = f

(
xi +

1

2
h,yi +

1

2
hk′

1

)
k′
3 = f

(
xi +

1

2
h,yi +

1

2
hk′

2

)
k′
4 = f (xi + h,yi + hk′

3) . (60)

It’s quite straightforward.

	What are ODEs?
	Equivalence to first order differential equations

	Numerical methods for ODEs
	Numerical differentiation: Forward/backward/central finite differences
	Stiffness and stability
	Euler method
	Explicit method
	Implicit method

	Runge-Kutta method
	Stability function of Runge-Kutta methods
	Accuracy of Runge-Kutta methods
	Second-order methods with two stages (s=2)
	RK4: Runge-Kutta with four stages (s=4)

	Adaptive step
	Estimation of local error: Multi-step method
	Estimation of local error: Embedded RK
	Embedded RK: Midpoint(Heun)-Euler
	Embedded RK: Runge-Kutta-Fehlberg method[RK4(5)]
	Embedded RK: Dormand-Prince method(RKDP)

	Simultaneous 1st order ODEs

