
IMPRS GW Astronomy – Computational Physics 2025

Problem Set 1

Due May 26, 2025 by email to harald.pfeiffer@aei.mpg.de and takami.kuroda@aei.mpg.de

Harald Pfeiffer, Takami Kuroda

1 Floating Point Operations

As discussed in the lecture, round-off errors and other problems due to floating point
operations can cause a lot of headache. Hence, it is of special importance to be careful.
Please look at the python code below.

1 Del ta =[]
2 t =0.
3 dt=0.1
4 for i in range (1 ,700000) :
5 t=t+dt
6 Del ta . append (t−i * dt)
7 Del ta=np . ar ray (Del ta)
8
9 f i g , ax=p l t . subp lo t s (1 ,3 , f i g s i z e =(12 ,4))

10 ax [0] . p l o t (Del ta [:5000])
11 ax [1] . p l o t (Del ta [:70000])
12 ax [2] . p l o t (Del ta) ;
13 f i g . s u p t i t l e (’ Del ta (three d i f f e r e n t zooms) ’) ;

Task FP-1: Execute the code yourself, and explain the features in the output. In
particular, explain the magnitude of the peaks and their spacing.

Task FP-2: Please change the timestep to 0.099853515625. Execute the code
agian and explain your findings. What caused the issue in task Task FP-1?

Another potential problem occurs when you have equalities and inequalities. Please have
a look at the following C-code.

1 #include<s t d i o . h>
2 #include <s t d l i b . h>
3 #include <math . h>
4
5 in t main(in t argc , char * argv [])
6 {

7 double a , b ;
8
9 [. . .]

10
11
12 i f (a==b)
13 p r i n t f (” a i s equal b \n”) ;
14 else
15 p r i n t f (” a i s not equal b \n”) ;
16
17 i f ((1 . / a)==(1./b))
18 p r i n t f (” 1/a i s equal 1/b \n”) ;
19 else
20 p r i n t f (” 1/a i s not equal 1/b \n”) ;
21
22 return 0;
23 }

Task FP-3: Please fill the part [...] in such a way that we obtain the output: ’a
is equal b’ and ’1/a is not equal 1/b’. To compile the code you have to install a
C-compiler, e.g., gcc, and compile this code.

Another problem discussed in the lecture, was the summation or subtraction of two
numbers of very different size. For the purpose of investigating this problem, please have
a look at the following code, which is written in yet another programming languange:
Fortan.

1 program addNumbers
2
3 ! This s imple program adds two numbers
4 i m p l i c i t none
5
6 ! Type d e c l a r a t i o n s
7 r e a l (kind=4) : : a1 , b1 , x1 , y1 , z1
8 r e a l (kind=8) : : a2 , b2 , x2 , y2 , z2
9 r e a l (kind=16) : : a3 , b3 , x3 , y3 , z3

10
11
12 ! Computation with s i n g l e p r e c i s i o n
13 a1 = 1.0
14 b1 = 1.E−13
15 x1 = a1 − s q r t (a1−b1)
16 y1 = b1/(a1+s q r t (a1−b1))
17 z1 = b1/(a1+s q r t (a1+b1))
18 p r i n t * , ’ With s i n g l e p rec i s i on , we obta in ’ , x1 , y1 , z1
19
20 ! Computation with double p r e c i s i o n
21 a2 = 1.0
22 b2 = 1.D−13
23 x2 = a2 − s q r t (a2−b2)
24 y2 = b2/(a2+s q r t (a2−b2))
25 z2 = b2/(a2+s q r t (a2+b2))
26 p r i n t * , ’ With double p rec i s i on , we obta in ’ , x2 , y2 , z2
27
28 ! Computation with quad p r e c i s i o n
29 a3 = 1.0
30 b3 = 1.Q−13

31 x3 = a3 − s q r t (a3−b3)
32 y3 = b3/(a3+s q r t (a3−b3))
33 z3 = b3/(a3+s q r t (a3+b3))
34 p r i n t * , ’ With quad prec i s i on , we obta in ’ , x3 , y3 , z3
35
36 end program addNumbers

To compile this code, you have to install a fortran compiler on your machine, e.g.,
gfortran.

Task FP-4: Please run the code and explain the output. What do you see and
how could you explain this. Is it surprising to you that for double and quadrupole
precision even a wrong equation (z1/2/3) provides a more precise answer to the
real result than the original equation (x1/2/3)?

Task FP-5: Please change line 22 to b2 = 1.E-13, and run the code again. How
does the output change, and why?

2 Ordinary Differential Equations

2.1 Local and global error

Choose one of RK methods and explain its local and global error due only to the trunca-
tion. When we discuss the total error, which is defined by a summation of round-off and
(global) truncation error, there appears a point where the total error is minimized when
varying the step size. Using that the round-off error is roughly expressed as ∼ ϵ/h, with
ϵ and h being the machine precision and step size, derive hmin, which minimizes the total
error. How does it depend on the order of truncated terms?

2.2 Convergence test

Let us consider the following system, which mimicks a chirp signal

A = a sinωt. (1)

Here a(= t) and ω(= t2/100) are the increasing amplitude and frequency, respectively.

• Make your own codes for solving the ODE Ȧ with the forward Euler (FE), Heun’s
method (Heun), and the Runge-Kutta with four stages (RK4).

• Solve the system with these three different methods and estimate the amplitude
(Aest) evolution from tini = 0 to tend = 25 with a time step of ∆t = (tend − tini)/N .
Here N is a parameter denoting the number of total steps. Compare the overall
trend with the exact solution Aexact (Eq. 1). Here you can use N = 103.

• Evaluate the following accumulated error

error =
1

tend − tini

∫
dt|Aest − Aexact| (2)

and plot them for different resolutions, for instance for N = 102, 103, 104. Confirm
that each method (FE, Heun, RK4) actually converges at a consistent convergence
rate with the order of numerical accuracy.

• If your computational resource allows, increase the resolution, e.g., N = 105,6,7,8,
and confirm that at the corresponding resolution hmin the total error is started to be
contaminated by the round-off error that we discussed in the previous task. (Hint,
you might get something like a following plot Fig. 1.)

2.3 Stability region

In lecture we have discussed how we can analyze the (absolute) stability region of each
numerical method using a test function

y′ = λy, (3)

with λ ∈ C. Here we consider the stability region of Heun’s method. Derive its stability
function and also plot its stability region.

Figure 1: Convergence test. Here I plot the accumulated error 1
tend−tini

∫
dt|Aest − Aexact|,

i.e., mean error, on y-axis against different resolutions on x-axis for three ODE solvers.
Note that the root mean square error gives basically the same plot.

	Floating Point Operations
	Ordinary Differential Equations
	Local and global error
	Convergence test
	Stability region

