
LECTURE II: Solving linear Equations

This lecture is about solving linear systems of equations,

Ax = b, (1)

where A is a n× n matrix, and x, b are n-dimensional vectors.

LU-Decomposition

Possibly the first method that one learns for solving Eq. (1) is the Gaussian elimination.
In computer algebra a slightly modified version of this method is the LU-decomposion, in
which one tries to decompose the matrix A according to A = LU with L being a lower-
triangular matrix and U and upper triangular matrix. Knowing the LU decomposition for
a matrix A allows us to solve the linear system very easily:

Ax = b

LUx = b

Ux = L−1b

x = U−1(L−1b),

where L−1b is computed using forward substitution, and U−1(L−1b) by backward substi-
tution. Note that sometimes an additional ‘Pivoting step’, is needed in which either rows
(partial pivoting) or rows and columns (full pivoting) are reordered, e.g., if you would
get zeros on the diagonal.

The question arises of how to obtain the LU decomposition? One way uses the recur-
sive leading-row column LU algorithm, where we separate out the first row/column of
A,U, L: (

a11 a12
a21 A22

)
=

(
1 0
l21 L22

)(
u11 u12

0 U22

)
Here it is worth pointing out, that A22 is a (n − 1) × (n − 1)-matrix and a12, a21 ... are
vectors of length (n − 1), either in column-form (subscript 21) or row-form (subscript
12). The elements a11 and u11 are real numbers.
Multiplying out, this matrix equation can be rewritten as:

a11 = u11

u12 = a12

l21 =
1

a11
a21

L22U22 = A22 −
1

a11
a21 ⊗ a12

The (n − 1) × (n − 1) matrix A22 − 1
a11

a21 ⊗ a12 is the Schur complement and defines a
new system of size (n− 1)× (n− 1) to solve.

Overall, the LU-decomposition has costs proportional to n3. Therefore, this method can
only be used for ‘small’ matrices, n ≲ 10, 000.



Iterative Solvers

This subsection is based on the book ‘Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods’ by Berrett et al.

Iterative methods use successive approximations to obtain more accurate solutions to a
linear system

x(k) = Bx(k−1) + c

at each step. Overall, one can distinguish ‘Stationary methods’ (e.g., Jacobi method,
Gauss-Seidel method or Successive Overrelaxation) in which neither B nor c depend on
the iteration k and ‘Nonstationary methods’ (e.g., Conjugate Gradient, Minimal Residual,
Generalized Minimal Residual, Biconjugate Gradient Stabilized).

Preconditioning: The rate at which an iterative method converges depends greatly on
the spectrum of the coefficient matrix. A ‘preconditioning’ P is employed to transform
the coefficient matrix into one with a more favorable spectrum. A good preconditioner
improves the convergence of the iterative method, but sometimes is even required to
ensure that the iterative method does not fail to converge. One multiples Eq. (1) by P ,

PAx = Px, (2)

to obtain a new linear system with the coefficient matrix being the product (PA). The
trick is now to find a preconditioning matrix, such that (i) it is approximately the inverse
of A and (ii) it is easy to calculate. There is an immense amount of knowledge and tools
around preconditioning, although we don’t have time to go into them.

The Jacobi Method

Considering a linear system consisting of n equations

Ax = b,

the i-th equation can be written as

xi =
1

aii

(
bi −

∑
j ̸=i

ai,jxj

)
.

Then the simplest way to solve for xi and keeping all other equations fixed, i.e., we
consider all equations as being independent from each other:

x
(k)
i =

1

aii

(
bi −

∑
j ̸=i

ai,jx
(k−1)
j

)
.

In matrix terms this can be rewritten as:

x(k) = D−1(−L− U)x(k−1) +D−1b

with D being the diagonal, U the strictly upper, L the strictly lower part of A.

1 #include<s t d i o . h>
2 #include<math . h>
3



4 /* We are s o l v i ng
5 3x + 20y − z = −18
6 2x − 3y + 20z = 25
7 20x + y − 2z = 17
8 */
9 /* Bring system in d iagona l l y dominant form :

10 20x + y − 2z = 17
11 3x + 20y −z = −18
12 2x − 3y + 20z = 25
13 */
14 /* Equat ions :
15 x = (17.−y+2z ) /20.
16 y = (−18.−3x+z ) /20.
17 z = (25.−2x+3y ) /20.
18 */
19 /* Def in ing func t ion */
20 #def ine f1 (x , y , z ) (17.−y+2.*z ) /20.
21 #def ine f2 (x , y , z ) (−18.−3.*x+z ) /20.
22 #def ine f3 (x , y , z ) (25. −2.*x+3.*y ) /20.
23

24 /* Main func t ion */
25 i n t main ()
26 {
27 f l o a t x0=0, y0=0, z0=0, x1 , y1 , z1 , e1 , e2 , e3 ;
28 i n t count=1;
29 f l o a t e = 1e−6;
30

31 p r i n t f ( ”\nCount\ tx \ ty \ t z \n” ) ;
32 do
33 {
34 /* Ca l cu l a t i on */
35 x1 = f1 (x0 , y0 , z0 ) ;
36 y1 = f2 (x0 , y0 , z0 ) ;
37 z1 = f3 (x0 , y0 , z0 ) ;
38 p r i n t f ( ”%d\ t %0.7 f \ t %0.7 f \ t %0.7 f \n” , count , x1 , y1 , z1 ) ;
39

40 /* Error */
41 e1 = fabs (x0−x1) ;
42 e2 = fabs (y0−y1 ) ;
43 e3 = fabs (z0−z1 ) ;
44

45 count++;
46

47 /* Set value fo r next i t e r a t i o n */
48 x0 = x1 ;
49 y0 = y1 ;
50 z0 = z1 ;
51 }while (e1>e && e2>e && e3>e ) ;
52

53 p r i n t f ( ”\nSolut ion : x=%7.6f , y=%7.6 f and z = %7.6 f \n” , x1 , y1 , z1 ) ;
54

55

56 re turn 0;
57 }



Gauss-Seidel Method

A simple extension of the Jacobi method is the Gauss-Seidel method. Now we assume
that the equations are examined one at a time in sequence and we will use previously
computed results. This results in

x
(k)
i =

1

aii

(
bi −

∑
j<i

ai,jx
(k)
j −

∑
j>i

ai,jx
(k−1)
j

)
,

or in matrix form:
x(k) = (D + L)−1(−Ux(k−1) + b).

Successive Overrelaxation (SOR)

The Successive Overrelaxation Method, or SOR, is devised by applying extrapolation
to the Gauss-Seidel method. This extrapolation takes the form of a weighted average
between the previous iterate x(k) and the Gauss-Seidel iterate x̃

(k−1)
i , successively for

each component:
x
(k)
i = ωx̃

(k)
i + (1− ω)x

(k−1)
i , i = 1, . . . , n.

In matrix-form, this gives

x(k) = (D + ωL)−1(−ωU + (1− ω)D)x(k−1) + ω(D + ωL)−1b.

Usually, we have to pick ω ∈]0, 2[. For ω = 1 we obtain the normal Gauss-Seidel method,
for ω < 1 we are using an underrelaxation and for ω > 1 this method gives overrelax-
ation.

Conjugate Gradient Method (CG)

Nonstationary methods differ from stationary methods in that the computations involve
information that changes at each iteration.
The Conjugate Gradient method can be used for symmetric positive definite systems.
(Note: positive definite: An n×n symmetric real matrix M is positive-definite if xTMx >
0 for all non-zero x in Rn.)
CG generates vector sequences of iterates (i.e., successive approximations to the solu-
tion), residuals corresponding to the iterates, and searches for directions used in updat-
ing the iterates and residuals.
The fundamental idea is to rewrite our system of equations as a minimization problem,
i.e., Eq. (1) is rewritten as

E(x) :=
1

2
xTAx− bTx → min

The gradient of E(x) is gradE = Ax − b, so that the minimum of E corresponds to the
solution of Eq. (1).
We denote the residual of the k-th step as r(k) := b − Ax(k), and in CG, one determines
the next step along a search direction p(k), i.e.

x(k) = x(k−1) + αkp
(k),



with αk chosen to yield the minimum of E(x(k)) along this line, which is given by

αk =
r(k−1)T r(k−1)

p(k)
T
Ap(k)

.

This αk also minimizes r(k)TA(−1)r(k).
The trick in Conjugate Gradients is the choice of p(k). Just going as steeply downhill as
possible (i.e. p(k) = −gradE(x(k−1)) = r(k−1)) is not optimal. This “gradient method” is
prone to going ’zig-zag’, needing many steps.

Figure 1: Sketch of the gradient and conjugate gradient methods (plot from ‘A gradient-
based algorithm competitive with variational Bayesian EM for mixture of Gaussians’ by
Kuusela et al.)

Instead one chooses the search direction by

p(k) = r(k) + β(k)p
(k−1)

with

β(k) =
r(k)

T
r(k)

r(k−1)T r(k−1)
.

This choice of β ensures that r(k) and r(k−1) are orthogonal (and also orthogonal to all pre-
vious choices). This orthogonality, in turn prevents the ’zig-zag’ of the gradient method,
and leads to faster convergence.

In summary, the iteration procedure can be summarized by:

1. Compute r

2. Compute β

3. Compute p

4. Compute α

5. Update x

6. Go back to (1)

In infinite precision, CG will arrive at the exact solution in at most n steps. In practical
application, CG typically needs Nits ≪ n. The number of iterations needed to reduce the



residual by a certain factor depends on the conditioning number of the matrix A.

Nits ∝
√

λmax

λmin

, (3)

where λmax/min is the largest and smallest eigenvalue of A. (Preconditioning precisely
aims to bring the preconditioned eigenvalues close to unity)
In the following, we want to consider one example, to get a better understanding of the
method. Consider

Ax =

(
4 1
1 3

)(
x1

x2

)
=

(
1
2

)
We start with the initial guess

x0 =

(
2
1

)
.

We start by computing the residual vector:

r0 =

(
1
2

)
−

(
4 1
1 3

)(
2
1

)
=

(
−8
−3

)
= p0

Now, we have to compute α:

α0 =
r(0)

T
r(0)

p(0)
T
Ap(0)

=

(−8, 3) ·
(
−8
−3

)
(−8, 3)

(
4 1
1 3

)(
−8
−3

) =
73

331

This gives us our next solution:

x1 = x0 + α0p0 =

(
2
1

)
+

73

331

(
−8
−3

)
=

(
0.2356
0.3384

)
.

We now need to move to the second iteration:

r1 = r0 − α0Ap0 =

(
−8
−3

)
− 73

331

(
4 1
1 3

)(
−8
−3

)
=

(
−0.2810
0.7492

)
Then, we get for β:

β(1) =
r(1)

T
r(1)

r(0)
T
r(0)

=
(−0.2810, 0.7492) · (−0.2810, 0.7492)T

(−8,−3) · (−8,−3)T
= 0.0088.

With β we can compute

p1 = r1 + β1p0 =

(
−0.3511
0.7229

)
,

plugging this into the equation for α leads to

α1 =
r(1)

T
r(1)

p(1)
T
Ap(1)

= 0.4122



This leads to the final solution:

x2 = x1 + α1p1 =

(
0.0909
0.6346

)
This solution is up to round up errors exact. In fact, it is possible to show that for
exact arithmetic, the method converges to the correct solution within m steps where m
determines the size of the m×m matrix A.
Below you also find a python code, that actually uses the CG and also Gradient method
to solve our problem from above:

1 import numpy as np
2 import ma tp lo t l i b . pyp lo t as p l t
3

4 ##setup p lo t
5 f i g , ( ax1 , ax2 )=p l t . subp lo t s (1 ,2 , f i g s i z e =(10 ,5) )
6

7 ##def ine the problem
8 A = np . array ( [ [ 4 . , 1 . ] , [ 1 . , 3 . ] ] ) # change 3−>23 fo r bad ’ g rad ien t ’

convergence
9 b = np . array ( [ 1 . , 2 . ] )

10

11 #crea te gr id f o r contour p lo t
12 xp = np . arange ( −.6 , 2 .4 , 0.01)
13 yp = np . arange(−1, 2 , 0.01)
14

15

16 X , Y = np . meshgrid (xp , yp )
17 ##Setup quadra t i c E f o r minimizat ion
18 R = 0.5*(A[0][0]*X+A[0][1]*Y) *X+ 0.5*(A[1][0]*X+A[1][1]*Y) *Y − b[0]*X − b

[1]*Y
19 ax1 . contour (X , Y , R,25)
20

21

22 #i n i t i a l guess
23 x = np . array ( [ 2 . , 1 . ] )
24 beta = 0
25 p = np . array ([0 , 0])
26 r = np . ar ray ([1 , 1])
27

28 #plo t i n i t i a l guess
29 ax1 . s c a t t e r ( x [0] , x [1] , co lo r= ’ red ’ )
30

31

32 ### CG
33 #perform 2 steps , s i n ce we know tha t we are then at the f i n a l l o c a t i o n
34 CGres iduals =[]
35 f o r i in range (1 ,3) :
36 r0 = r
37 r = b − np . dot (A , x )
38 i f i >1:
39 beta = np . dot ( r . T , r ) /np . dot ( r0 . T , r0 )
40 p = r + beta *p
41 a = np . dot ( r . T , r ) /np . dot (np . dot (p . T , A) ,p)
42 #s t o r i n g i t s h o r t l y in xnew f o r p l o t t i n g
43 xnew = x + a*p
44 ax1 . s c a t t e r (xnew[0] , xnew[1] , co lo r= ’ red ’ )
45 ax1 . arrow ( x [0] , x [1] , xnew[0]−x [0] , xnew[1]−x [1] , co lo r= ’ red ’ )
46 x = xnew



47 CGres iduals . append (np . dot ( r . T , r ) **0.5)
48

49 # append l a s t r e s i d u a l
50 r = b − np . dot (A , x )
51 CGres iduals . append (np . dot ( r . T , r ) **0.5)
52

53 ### Gradient method
54 #r e s e t i n i t i a l guess
55 x = np . array ( [ 2 . , 1 . ] )
56

57 Grad ientRes idua l s =[]
58 f o r i in range (1 ,20) :
59 r = b − np . dot (A , x )
60 a = np . dot ( r . T , r ) /np . dot (np . dot ( r . T , A) , r )
61 xnew = x + a* r # step in d i r e c t i o n of ’ r ’
62

63 ax1 . s c a t t e r (xnew[0] , xnew[1] , co lo r= ’ blue ’ , alpha =0.5)
64 ax1 . arrow ( x [0] , x [1] , xnew[0]−x [0] , xnew[1]−x [1] , co lo r= ’ blue ’ , alpha =0.5)
65 x = xnew
66 Grad ientRes idua l s . append (np . dot ( r . T , r ) **0.5)
67

68 ax2 . p l o t ( CGresiduals , ’−o ’ , l a b e l= ’CG ’ )
69 ax2 . p l o t ( GradientRes iduals , ’−+ ’ , l a b e l= ’ g rad ien t ’ )
70 ax2 . s e t y s c a l e ( ’ log ’ ) ;
71 ax2 . legend () ;

Generalized Minimal Residuals (GMRES)

GMRES is important, because this iterative method also works for non-symmetric A
and/or for A without positivity properties. This generality comes at a higher cost (both
computations and storage) than for conjugate gradients. In the following, we will only
sketch the ideas behind this method.
At iteration K, define the Krylov-subspace

Kk := span
(
r(0), Ar(0), A2r(0), . . . Ak−1r(0)

)
(4)

At each iteration k, GMRES will determine x(k) = x(0) + c(k), with c(k) ∈ Kk, such that the
residal ||b− Ax(k)|| is minimized over all possible c(k).
To do this, GMRES needs to build and store a orthonormal basis {v(k)} of Kk, and needs
to evaluate x(k) = x(0) + y1v

(1) + y2v
(2) + . . . ykv

(k) for suitable coefficients y1, . . . yk.
It turns out the residual rk can be computed from known data without forming x(k)

explicitly, and therefore, the method can be summarized as follows:

• calculate the new orthonormal basis-vector vk using the Arnoldi method

• find yk that minimizes ||r(k)||

• Calculate residual r(k)

• repeat until residual is small enough

• compute final x(k)

The storage space for the orthonormal basis and the sums over the orthogonal basis,
entails a cost that grows linearly with k. To mitigate this growing cost, it is typical to per-
form ’m’ iterations, and then to re-start the entire algorithm with the then best solution.



This is called ’GMRES(m)’.

GMRES and Conjugate Gradients are actually simular in that they construct their approx-
imate solutions using the Krylov subspace Kk, and in that residuals obey orthogonality
conditions.
Conjugate Gradients takes advantage of the extra knowledge that A must be symmetric
and positive-definite to express the scheme without the need to retain information from
all previous iterations.


