
Gravitational-Wave Course Solutions Homework Sheet 3

Instructor: Alessandra Buonanno (alessandra.buonanno@hu-berlin.de)
Tutor: (corresponding for this sheet): Marcus Haberland (marcus.haberland@aei.mpg.de)
Tutor: Aldo Gamboa (aldo.gamboa@aei.mpg.de)

1. Gravitational waves from pulsars:

(a) Power emitted in GWs:

A set of coordinates x′ rotating with the object is related to an inertial coordinate system x with
common origin at the star’s center of mass by a rotation matrix

x′
i = Rijx

j , Rij =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 , (1)

where ϕ = Ωt and Ω is the constant rotation frequency. The components of the inertia tensor in the
inertial coordinates are therefore obtained by the transformation

Iij = RikI
′
klRjl, (2)

where I ′ = diag(I1, I2, I3). Explicitly,

Ixx = I1(cosϕ)
2 + I2 sin(ϕ)

2 =
1

2
(I1 − I2) cos(2ϕ) + const, (3)

Iyy = I1(sinϕ)
2 + I2 cos(ϕ)

2 =
1

2
(I1 − I2) cos(2ϕ) + const, (4)

Ixy = Iyx = (I1 − I2) sinϕ cosϕ =
1

2
(I1 − I2) sin(2ϕ) (5)

Izz = const, Ixz = Iyz = 0. (6)

Since TrI ′ = TrI = I1 + I2 + I3 = const we can use (6) directly in place of the quadrupole moment
in the quadrupole formula for the energy loss:

dEGW

dt
= −1

5

G

c5
⟨
...
I

2
xx +

...
I

2
yy + 2

...
I

2
xy⟩ (7)

= −1

5

G

c5
1

4
(2Ω)6(I1 − I2)

2⟨(cos 2ϕ)2 + (cos 2ϕ)2 + 2(sin 2ϕ)2⟩ (8)

= −32

5

G

c5
(I1 − I2)

2Ω6 (9)

Defining the ellipticity ϵ = (I1 − I2)/I3 we obtain

dE

dt
= −32

5

G

c5
ϵ2I23Ω

6. (10)

(b) Spindown due to GW emission

We use the energy balance equation Ėrot = −ĖGW with Erot = IΩ2/2 for a uniform sphere to
obtain

Ω̇ =
32

5

G

c5
ϵ2IΩ5 (11)

Substituting the values for the Crab pulsar we find that

Ω̇

Ω
≈ 2× 10−19 1

s
. (12)
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Over an observation time of ∼ 3yr∼ 108s the change in the frequency due to GW losses is very small
and the signal remains nearly monochromatic.

(c) Upper limit on the ellipticity

Solving Eq. (11) and Ω̇/Ω = −Ṗ /P for ϵ, using Ω = 2π/(0.033s) and assuming that the pulsar
has M = 1.4M⊙, R = 10km we find that

ϵ <∼ 7.4× 10−4. (13)

In reality, the mass, radius, and moment of inertia of the Crab pulsar are uncertain and could differ
from the fiducial values given above, which changes the upper limit on ϵ.
The braking index for GW emission is n = 5 which is much higher than the observed values for the

Crab and Vela pulsars. Pulsars also spin-down due to electromagnetic emission through magnetic
dipole radiation, for example, the Crab pulsar radiates a huge amount of power ∼ 105L⊙ that is
absorbed by and powers the Crab nebula. The small braking index of the Vela pulsar cannot be
attributed entirely to radiation from a constant magnetic dipole but might be due to a changing,
magnetic moment or effective moment of inertia.

2. Central-force problem at 1PN order

A detailed discussion of this problem can be found in §106 of L. D. Landau, E. M. Lifshitz, The
Classical Theory of Fields: Volume 2. We want to recall the 1PN-Lagrangian (or Einstein-Infeld-
Hoffman Lagrangian):

L = LN + L1PN +O(c−4), (14a)

LN =
m1

2
v⃗21 +

m2

2
v⃗22 +

Gm1m2

r
, (14b)

L1PN =
1

8c2
m1v⃗

4
1 +

1

8c2
m2v⃗

4
2 −

G2m1m2(m1 +m2)

2c2r2

+
Gm1m2

c2r

(
3

2
v⃗21 +

3

2
v⃗22 −

7

2
v⃗1 · v⃗2 −

1

2
v⃗1 · n⃗ v⃗2 · n⃗

)
,

(14c)

in the coordinates r⃗1 ≡ x⃗1, r⃗2 ≡ x⃗2 and velocities v⃗1, v⃗2, where r = |r⃗1 − r⃗2|, n⃗ = (r⃗1 − r⃗2)/r.

(a) Canonical momenta

p⃗1 =
∂L
∂v⃗1

= m1v⃗1 +
1

c2

{
m1

2
(v⃗1)

2
v⃗1 +

Gm1m2

r
[6v⃗1 − 7v⃗2 − n⃗ (v⃗2 · n⃗)]

}
+O

(
1

c3

)
p⃗2 = p⃗1(1 ↔ 2)

(15)

Let r⃗1 = 1
2 (R⃗− r⃗) and r⃗2 = 1

2 (R⃗+ r⃗) where R⃗ = (r⃗1 + r⃗2), as well as p⃗1 = (P⃗ − p⃗) and p⃗2 = (P⃗ + p⃗)

where p⃗ = (p⃗2−p⃗1)
2 and P = (p⃗1 + p⃗2).

Now, using the Euler-Lagrange equations

dP⃗

dt
=

d

dt
(p⃗1 + p⃗2) =

∂L
∂r⃗1

+
∂L
∂r⃗2

=

(
∂L
∂R⃗

∂R⃗

∂r⃗1
+

∂L
∂r⃗

∂r⃗

∂r⃗1

)
+ (1 ↔ 2)

=

(
∂L
∂R⃗

+
∂L
∂r⃗

)
+

(
L
∂R⃗

− ∂L
∂r⃗

)
= 2

∂L
∂R⃗

= 0

(16)
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Hence P⃗ is conserved.

(b) Relative-motion Hamiltonian at 1PN

Inverting the above equations for p⃗1 and p⃗2 to get v⃗1 (p⃗1, p⃗2) and v⃗2 (p⃗1, p⃗2), we can use the trick
that v⃗1 = p⃗1/m1 +O(1/c2) to replace v2 in p1 and v1 in p2. We find

v⃗1 =
p⃗1
m

+
1

c2

{
−
(
p⃗21
)

2m3
1

p⃗1 +
G

2r

[
−6

m2

m1
p⃗1 + 7p⃗2 + (p⃗2 · n⃗) n⃗

]}
+O

(
1

c3

)
v⃗2 = v⃗1(1 ⇔ 2)

(17)

Substituting the above in L, and computing the Hamiltonian using the Legendre transform

H = p⃗1 · v⃗1 + p⃗2 · v⃗2 − L (18)

Also going to center of mass coordinates p⃗1 = −p⃗2 = −p⃗ and using variables, ν = m1m2

M2 where
M = (m1 +m2), we find

H = H0 +
1

c2
H2 +O

(
1

c3

)
H0 =

p⃗2

2Mν
− GM2ν

r

H2 =

(
3ν − 1

8M3ν3

)
p⃗4 − G

2rν

[
(3 + ν)p⃗2 + ν(p⃗ · n⃗)2

]
+

G2M3ν

2r2

(19)

(c) Binding energy E and angular momentum L

For circular orbits we have ṙ = 0, (p⃗ · n⃗) = 0. Assuming the motion in equatorial plane in (r, ϕ, θ)

coordinates ⇒ p⃗ = L
r ϕ̂, where the angular momentum is L⃗ = L(n⃗× ϕ̂). Then,

E = H
∣∣∣
circ

=
L2

2r2Mν
− GM2ν

r
+

1

c2

{
(3ν − 1)L4

8r4M3ν3
− (3 + ν)GL2

2r3ν
+

G2M2ν

2r2

}
(20)

Using Hamiltons equations, we find ṙ = ∂H
∂pr

= 0, and ṗr = −∂H
∂r = 0, as we are studying stable

circular orbits. Furthermore

Ω ≡ ϕ̇ =
∂H

∂L
, L̇ = −∂H

∂ϕ
= 0, (21)

and the angular momentum is indeed conserved.

We obtain a relation between L and r using ∂H(L,r)
∂r = 0 given by,

L(r) = Mν
√
GMr

[
1 +

1

c2
2GM

r

]
, (22)

so we now have H(r) and eliminated L.
Now we obtain a relation between Ω and r using ∂H

∂L = Ω

Ω =

√
GM

r3

[
1 +

1

c2
GM(ν − 3)

2r

]
(23)
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Now inverting the above equation and substituting in H(r),

E(Ω) ≡ H(Ω) = −Mν

2
v2
[
1−

(v
c

)2(ν + 9

12

)]
where v ≡ (MΩ)1/3 (24)

(d) Periastron advance

We start afresh from L = L0 +
1
c2L2 with

L0 =
1

2
µv⃗2 +

GµM

r

L2 =
1

8
µ(1− 3ν)v⃗4 +

GµM

2r

[
(3 + ν)v⃗2 + ν(v⃗ · n⃗)2 − GM

r

] (25)

but writing above in terms of velocities using

p⃗ =
∂L
∂v⃗

= µv⃗ +
1

c2

{
1

2
µ(1− 3ν)v⃗2v⃗ +

GµM

r
[(3 + ν)v⃗ + νn⃗(v⃗ · n⃗)]

}
(26)

give us,

E = p⃗ · v⃗ − L

=
1

2
µv⃗2 − GµM

r
+

1

c2

{
3

8
µ(1− 3ν)v⃗4 +

GµM

2r

[
(3 + ν)v⃗2 + ν(n⃗ · v⃗)2 + GM

r

]}
(27)

Now we use v⃗ = ṙn⃗+ rϕ̇ϕ̂ ⇒ v⃗2 = ṙ2 + r2ϕ̇2 where we use L = ∂L
∂ϕ̇

to obtain a relation between ϕ̇

and L as,

ϕ̇ =
L

µr2
+

1

c2

{
−1

µr2

[
(1− 3v)

2

(
ṙ2 +

L2

µ2r2

)
L+

GM(3 + ν)L

r

]}
(28)

Substituting above in E,

E

µ
=

ṙ2

2
− GM

r
+

L2

2M2r2ν2
+

1

c2

{
(3− 9ν)

8
ṙ4 +

[
3GM

2r
+

L2(1− 3r)

4M2r2ν2
+

GMν

r

]
ṙ2

+
G2M2

2r2
− GL2(3 + ν)

2Mr3ν2
+

L4(3ν − 1)

8M4r4ν4

} (29)

Now Ignoring ṙ4 terms as ṙ is expected to be small. Solving for ṙ2,

ṙ2 =2

[
E

µ
+

GM

r
− L2

2M2r2ν2

]
+

1

c2

{
−2GM

r

E

µ
(3 + 2ν) +

GL2

Mν3r3
(5 + 6ν)

+
3L4

4M4ν4r4
(1− 3ν) +

1

r2

[
L2

M2ν2
E

µ
(3ν − 1)−G2M2(7 + 4ν)

]} (30)

The above has the structure 1
2 ṙ

2 +V (r) = constant, where Ω2
r = ∂2V

∂r2

∣∣∣
circ

, which is just the radial

frequency. Here we evolve all derivatives in the circular orbit limit hence,
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E

µ
= −v2

2

[
1− v2

c2

(
9 + ν

12

)]
r =

GM

v2

[
1 +

v2

c2

(ν
3
− 1
)]

L =
νM2G

v

[
1 +

v2

c2
(9 + ν)

6

]
⇒ Ω2

r =
v6

G2M2

[
1− 6v2

c2

]
= Ω2

[
1− 6v2

c2

] (31)

Now fractional advance of periastron is given by,

∆Φ

2π
= k(Ω)− 1 =

1√
1− 6v2

c2

− 1 =
3v2

c2
(32)

(e) The stability of circular orbits

In polar coordinates (with G = 1 and µ = 1 for simplicity),

H

µ
=

p⃗2

2
− M

R
+

1

c2

{
(3ν − 1)

8
p⃗4 − M

R

[
(3 + ν)

2
p⃗2 +

νp⃗2r
2

]
+

M2

2R2

}
. (33)

We can now use Hamilton’s eqs of motion:

Ṙ =
∂H

∂R
, ṖR = −∂H

∂R

Ω =
∂H

∂ϕ
, Ṗϕ = −∂H

∂ϕ
= 0

(34)

For circular orbit R = R0, Pr = 0, Ṗr = 0. And we let

R = R0 + δR, PR = δPR

Ω = Ω0 + δΩ, Pϕ = Pϕ0 + δPϕ
(35)

at linear order.

Ṙ+ δṘ =
∂

∂Pr
[H (R0 + δR, δPR, Pϕ0 + δPϕ)]

=
∂

∂PR
[H (R0, 0, Pϕ0

)]︸ ︷︷ ︸
=Ṙ

+
∂2

∂PR∂R
[H (R0, 0, Pϕ0

)]︸ ︷︷ ︸
∂H
∂R

∣∣
R=R0,PR=0

=0

δR

+
∂2

∂P 2
R

[H (R, 0, Pϕ0
)]︸ ︷︷ ︸

≡C0

δPR +
∂2

∂PR∂Pϕ
[H (R, 0, Pϕ0)]︸ ︷︷ ︸

∂H
∂PR

∣∣
R=R0,PR=0

=0

δPϕ

(36)

Which implies

δṘ = C0 δPR (37)
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As Ṗϕ = 0, one finds with a similar procedure δṖϕ = 0 and

δṖR = −A0δR−B0δPϕ, δΩ = B0δR+D0δPϕ (38)

where

A0 =

[
3P 2

ϕ0

R4
0

− 2M

R3
+

1

c2

{
3M2

R4
0

− 6M(3 + ν)
P 2
ϕ0

R5
0

+
5

2
(3ν − 1)

P 4
ϕ0

R6
0

}]

B0 =

[
−2Pϕ0

R3
0

+
1

c2

{
3M(3 + ν)

Pϕ0

R4
0

− 2(3ν − 1)
P 3
ϕ0

R5
0

}]

C0 =

[
1 +

1

c2

{
(3ν − 1)

2

(
Pϕ0

R0

)2

− (3 + 2ν)
M

R0

}]

D0 =

[
1

R2
0

+
1

c2

{
−M

R3
0

(3 + ν) +
3

2
(3v − 1)

P 2
ϕ0

R4
0

}]
(39)

Now we look for solution of the form ∼ eiσt

δPR =
δṘ

C0
⇒ δṖR =

δR̈

C0
= −A0δR−B0δPϕ (40)

Now δṖϕ = 0 ⇒ δPϕ = constant (which we set to zero) and

δR̈ = −A0C0δR ⇒ σ = ±
√
A0C0 (41)

Now to have a stable (oscillatory) solution, if Σ ≡ A0C0 > 0. If we compute the above within the
circular limit we find

R0 =
M

v2

[
1 +

v2

c2

(v
3
− 1
)]

, Pϕ =
M

v

[
1 +

v2

c2
ν + 9

6

]
(42)

which implies

Σ = Ω2

(
1− 6

v2

c2

)
(43)

Notice that the ISCO is reached when Σ = 0 ⇒ v2

c2 = 1
6 ⇒ r = 6GM . This is however an accident,

which does not hold at high PN orders!

Now recall, Ω2
r = Ω2

[
1− 6v2

c2

]
, hence Ωr = 0 coincides with Σ = 0, which means that perturba-

tions of ISCO have ∞ orbital period i.e. ISCO is an unstable orbit.
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