
Gravitational-Wave Course Homework Sheet 6

Instructor: Alessandra Buonanno (alessandra.buonanno@hu-berlin.de)
Tutor: (corresponding for this sheet): Aldo Gamboa (aldo.gamboa@aei.mpg.de)
Tutor: Marcus Haberland (marcus.haberland@aei.mpg.de)

Course webpage: https://imprs-gw-lectures.aei.mpg.de/2024-gravitational-waves/

Homework due date: Homework must be emailed by Monday, December 2, 2024 to the corresponding
Tutor for this homework.
Homework rules: Homeworks must be neat, and must either be typed or written in pen (not pencil!).
Please do not turn in homework that is messy or that has anything that’s been erased and written over (or
written over without erasing), making it harder to read.

Grading system: The homework sheet will be graded with a maximum possible score of 30 points. Each
sub-exercise yields a maximum amount of points as indicated [in brackets].

RECOMMENDED READINGS:

1. E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502 (2008) [arXiv:0709.1915]

2. M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008)

3. B. F. Schutz and C. M. Will, Astrophys.J.Lett. 291 (1985), L33-L36

4. V. Ferrari and B.Mashhoon, Phys. Rev. D30 (1984), 295

5. E. Berti (2004), https://arxiv.org/abs/gr-qc/0411025

6. E. W. Leaver, Proc. R. Soc. Lond. A 402, 285-298 (1985), https://www.edleaver.com/Misc/
EdLeaver/Publications/AnalyticRepresentationForQuasinormalModesOfKerrBlackHoles.pdf

EXERCISES:

1. Newtonian quadrupolar tidal imprint in the GW phasing [15 points]

Consider a neutron star-black hole binary system of total mass M and reduced mass µ whose orbital
motion is described by Newtonian gravity. The Lagrangian is

L =
1

2
µṙ2 +

1

2
µr2ϕ̇2 +

µM

r
− 1

2
QijEij + Lint, (1)

where Lint describes the internal dynamics of the quadrupole and the Newtonian tidal field is

Eij = −mBH∂i∂j(1/r) = −mBH(3n
inj − δij)/r3, (2)

where ni = xi/r is a unit vector. Note that nini = 1 and δijδij = 3. Assume that the quadrupole is
adiabatically induced and given by

Qad
ij = −λEij , (3)

where λ is the tidal deformability parameter. The internal Lagrangian then describes only the elastic
potential energy Lad

int = −QijQ
ij/(4λ). Throughout this exercise, assume that tidal effects are small

and can be treated as linear perturbations.

(a) [3 points] Obtain the equations of motion for r and ϕ from the Euler-Lagrange equations.
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(b) [3 points] Assume that the orbit is circular (r̈ = 0 and ϕ̇ = Ω). Starting from the radial equation of
motion, express the radius as r(Ω) =M1/3Ω−2/3(1+ δr) and compute the linear tidal corrections
δr.

(c) [3 points] Calculate the energy of the system from (1). Specialize to adiabatic quadrupoles and
circular orbits, and express the energy in terms of Ω.

(d) [3 points] The leading order gravitational radiation is generated by the total quadrupole of the
system QT

ij = Qorbit
ij +Qij . Compute the tidal contribution to the energy flux from the quadrupole

formula.

(e) [3 points] In the stationary phase approximation (SPA) for the gravitational wave signal, the
phasing can be computed from the formula

d2ΨSPA

dΩ2
= 2

dE/dΩ

ĖGW

. (4)

Compute the tidal contribution to ΨSPA, to linear order in the tidal effects. Express your result
in terms of the post-Newtonian parameter x = (MΩ)2/3 = (πMfGW)2/3 and show that the tidal
phase correction scales as x5 relative to the leading order phasing.

2. Black-hole quasi-normal modes [10 points]

In the lectures it was shown that the quasinormal modes (QNMs) of a Schwarzschild black hole are
characterized by complex frequencies ω = ωR + iωI , with ωR and ωI the real and the imaginary parts,
respectively.

(a) [5 points] Use Table I from arXiv:gr-qc/0411025 to plot ωR and ωI of the quadrupolar mode
(l = 2) versus n, where n is the overtone number that identifies the number of nodes in the radial
wavefunction (plus 1 in the reference’s conventions). Use n = 1–12, 20, 30, 40. [Note that the
values in Table I correspond to (ωR,−ωI) in our conventions, given the time-dependence of the
QNMs as eiωt.]

Your plot should exhibit some features which could be considered strange according to certain intuition,
interpreting ωR as an oscillation frequency and ωI as a decay rate. For typical systems with a set of
vibrational modes, like a string or an elastic body, both the oscillation frequency and the decay rate
increase with increasing overtone number, i.e. with an increasing number of nodes in the wavefunction.
The QNM plot, however, shows that ωR is first decreasing with n, then has a zero, and then increases
to an asymptotically constant value. This behavior can be seen as somewhat less mysterious by
reinterpreting ωR and ωI as follows.

(b) [5 points] Consider a simple damped oscillator with amplitude ψ(t) obeying

ψ̈ + γ0ψ̇ + ω2
0ψ = 0. (5)

Writing the two linearly independent solutions as exp((±iωR − ωI)t), find the relationship between
ωR, ωI and ω0, γ0. Invert this relation, make plots of ω0 and γ0 versus n for the Schwarzschild
QNMs and comment how this interpretation alleviates the above discussion.

3. Analytic representation for the quasi-normal modes [5 points]

In this exercise we want to calculate the gravitational quasi-normal frequencies of Schwarzschild black
holes by constructing exact eigensolutions to the radiative boundary-value problem of Chandrasekhar
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and Detweiler. The method is that employed by Jaffe in his determination of the electronic spectra of
hydrogen molecule ion in 1934 as applied to black holes in Leaver’s paper from 1985.

For this, we choose Schwarzschild coordinates and let ψ(t, r, θ, ϕ) denote a component of a perturbation
to a massless spin s field. After Fourier transforming and expanding in spherical harmonics

ψ(t, r, θ, ϕ) =
1

2π

∫ ∞

−∞
e−iωt

(∑
l

1

r
ψl(r, ω)Ylm(θ, ϕ)

)
, (6)

it suffices to write the resulting ordinary differential equation satisfied by ψl(r, ω) in the form, where
t and r are scaled such that c = G = 2M = 1. We will additionally introduce ρ = −iω to make the
computation simpler to find

r(r − 1)ψl,rr + ψl,r −
[
ρ2r3

r − 1
+ l(l + 1)− s2 − 1

r

]
ψl = 0. (7)

This differential equation belongs to the class of generalized spheroidal wave equations.

(a) [5 points] We want to study the differential equation Eq. (7). What are the singular values
of this equation? We want to solve the ODE in between those values. Show therefore, that
ψl → exp[−ρ(r + ln r)] solves the differential equation in the limit r → ∞. Equivalently, show
that ψl → (r − 1)ρ is a solution as r → 1.

Hint: You may assume that ρ = Re(ρ) + i Im(ρ) has real part larger than zero and that therefore
exp[−ρ(r + ln r)] → 0 for r → ∞.

As we are only interested in in-going radiation at the horizon (r = 1) and outgoing radiation to infinity,
we find the boundary conditions

ψl
r→1−−−→ (r − 1)ρ and ψl

r→∞−−−→ r−ρe−ρr. (8)

An ansatz for the solution of Eq. (7) is then

ψl = (r − 1)ρr−2ρe−ρ(r−1)
∞∑

n=0

an

(
r − 1

r

)n

. (9)

The sequence of expansion coefficients {an : n = 1, 2...} is determined by a three-term recurrence
relation with the recurrence coefficients

αn = n2 + (2ρ+ 2)n+ 2ρ+ 1 (10)

βn = −[2n2 + (8ρ+ 2)n+ 8ρ2 + 4ρ+ l(l + 1)− s2 + 1] (11)

γn = n2 + 4ρn+ 4ρ2 − s2 (12)

where it can be shown (see Leaver’s paper) that the quasi-normal modes ρ = −iω are precisely the
solutions to the implicit characteristic equation

0 = β0 −
α0γ1

β1 − α1γ2

β2− α2γ3
β3−...

(13)

as only these ρ values lead to absolute convergence of Eq. (9).
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(b) [Optional!, 5 points] Using either Mathematica or Python, code up a function of the form

def continued_fraction(omega,N):
rho = -1j*omega
CF = beta(rho,N)
for n in range(N)[::-1]:

CF = beta(rho,n) - (alpha(rho,n)*gamma(rho,n+1)/CF)
return CF

which computes the continued fraction of Eq. (13). The Schwarzschild quasi-normal modes are
precisely the values of ω for which

continued_fraction(omega,N) = 0.

Solve this for the fundamental mode with the help of findroot from the mpmath package in
python or FindRoot in Mathematica.

A good starting estimate for the fundamental mode is ω0 = 0.8− 0.2i. Check your result against
the tabulated value from the previous exercise. How many recursive steps N do you need for a
stable solution?

(c) [Optional!, 5 points] Try to replicate the plot from Exercise I. with this method.
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