
Gravitational-Wave Course Homework Sheet 4

Instructor: Alessandra Buonanno (alessandra.buonanno@hu-berlin.de)
Tutor: (corresponding for this sheet): Aldo Gamboa (aldo.gamboa@aei.mpg.de)
Tutor: Marcus Haberland (marcus.haberland@aei.mpg.de)

Course webpage: https://imprs-gw-lectures.aei.mpg.de/2024-gravitational-waves/

Homework due date: Homework must be emailed by Monday, November 11, 2024 to the corresponding
Tutor for this homework.
Homework rules: Homeworks must be neat, and must either be typed or written in pen (not pencil!).
Please do not turn in homework that is messy or that has anything that’s been erased and written over (or
written over without erasing), making it harder to read.

Grading system: The homework sheet will be graded with a maximum possible score of 30 points. Each
sub-exercise yields a maximum amount of points as indicated [in brackets].

RECOMMENDED READINGS:

1. A. Buonanno and T. Damour, Phys. Rev. D59 (1999) 084006.

2. A. Buonanno and T. Damour, Phys. Rev. D62 (2000) 064015.

3. M. Khalil, A. Buonanno, J. Steinhoff, and J. Vines, Phys. Rev. D104 (2021), 024046.

EXERCISES:

1. On the effective-one-body Hamiltonian and dynamics [15 points]

We have derived in class the mapping between the real PN Hamiltonian and the effective Hamilto-
nian using the Hamilton-Jacobi formalism. Here we want to construct the effective-one-body (EOB)
Hamiltonian using a canonical transformation.

Using reduced (or dimensionless) variables Q,P and Ĥeff , the effective Hamiltonian reads

Ĥeff(Q,P ) = c2

√
A(Q)

[
1 +

1

c2
P2 +

(
A(Q)

D(Q)
− 1

)
1

c2
(N ·P)2

]
, (1)

where N = Q/Q and

A(Q) = 1 +
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c2Q

+
a2

c4Q2
+

a3
c6Q3

+ · · · , (2)

D(Q) = 1 +
d1
c2Q

+
d2

c4Q2
+ · · · , (3)

where ai, di are unknown coefficients that will be determined by the mapping to the (reduced) PN
Hamiltonian

Ĥreal(q, p) = ĤNewt(q, p) +
1

c2
Ĥ1PN(q, p) + · · · , (4)

ĤNewt(q, p) =
1

2
p2 − 1

q
, (5)

Ĥ1PN(q, p) = −1

8
(1− 3ν)p4 − 1

2q
[(3 + ν)p2 + ν(n · p)2] + 1

2q2
, (6)
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where q and p are reduced variables, n = q/q and ν = m1m2/(m1 + m2)
2, being m1 and m2 the

black-hole masses. At 1PN order the real and effective Hamiltonians are related as

1 +
Ĥreal(q, p)

c2

(
1 + α1

Ĥreal(q, p)

c2

)
=
Ĥeff(Q(q, p), P (q, p))

c2
, (7)

where α1 is an unknown coefficient that will be determined by the mapping. The canonical transfor-
mation at 1PN order is

Qi = qi +
1

c2
∂G1PN

∂pi
, (8)

Pi = pi −
1

c2
∂G1PN

∂qi
, (9)

with

G1PN(q,p) = (q · p)
[
c1p

2 +
c2
q

]
, (10)

where c1, c2 are unknown coefficients that will be determined by the mapping.

The goal of this exercise is to determine α1, c1, c2 as a function of ν.
Insert the canonical transformation given in Eqs. (8) and (9) in Eq. (7) and expand the latter in PN
orders through 1PN order. By equating terms with the same structures in q, p, derive the equations
for the unknown coefficients a1, α1, c1, c2 and set a2 = a3 = ... = an = d1 = d2 = ... = dn = 0. In this
case you should find that: α1 = ν/2, c1 = −ν/2 and c2 = 1 + ν/2. [Hint: introduce the parameter
ϵ2 ≡ 1/c2, work with the square of Eq. (7) to get rid of the square root in Eq. (1), and neglect the terms

with order higher than O(ϵ4). Note that it is sufficient to derive Q ≡ |Q| =
√
QiQi, P ≡ |P| =

√
P i Pi

and N · P = N i Pi as function of q ≡ |q|, p ≡ |p| and n · p through 1PN order using the canonical
transformation given in Eqs. (8) and (9).]

2. Incorporating the emission of gravitational waves in the two-body dynamics [15 points]

The Hamiltonian of the gravitational two-body problem allows us to determine the conservative (no loss
of energy) two-body dynamics through Hamilton equations of motion (EOMs). However, gravitational
waves (GWs) carry away energy and angular momentum from the binary system, so Hamilton EOMs
must be extended to account for these dissipative effects. We can achieve this through the use of
balance equations, which relate the GW fluxes of energy ΦE and angular momentum ΦL, to the losses
of energy dE/dt and angular momentum dL/dt of the system, respectively.

More specifically, if we choose a coordinate system in the effective one-body frame such that the z-
axis is aligned with the orbital angular momentum of the system L = pϕ (and hence the z-axis is
perpendicular to the orbital plane of the binary system), we can write the extended Hamilton EOMs
for a Hamiltonian H as

ṙ =
∂H

∂pr
, (11a)

ϕ̇ =
∂H

∂pϕ
, (11b)

ṗr = −∂H
∂r

+ Fr, (11c)

ṗϕ = −∂H
∂ϕ

+ Fϕ, (11d)

where r is the separation of the binary, ϕ is the azimuthal angle, pr is the radial momentum, and pϕ
is the angular momentum. In these equations, we have added a radiation-reaction (RR) force F (with
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radial and azimuthal components Fr and Fϕ, respectively) acting on the binary whose purpose is to
account for the energy and angular momentum losses due to the emission of GWs. For the rest of the
exercise, we assume azimuthal symmetry so the term ∂H/∂ϕ can be ignored.

The goal of this exercise is to understand how Fr and Fϕ are related to the fluxes of energy and
angular momentum. In this way, we will be able to model the dynamics of two bodies (e.g., two black
holes) which inspiral and, eventually, merge. Here, we will cover only the inspiral part (see, e.g., this
YouTube video https://www.youtube.com/watch?v=KwbXxzgAObU)

NOTE: For all the calculations in this exercise, you can employ Mathematica or similar software to ease
the calculations. If this is the case, please share with the corresponding tutor the notebook employed
for your calculations.

a) [1 point] Show that the system of equations (11) satisfies the balance laws:

ṙFr + ϕ̇Fϕ = −ΦE , (12a)

Fϕ = −ΦL. (12b)

This equation is correct for binaries moving on circular orbits, but it is incomplete for binaries
moving on eccentric orbits, as we will see in item d).

b) [8 points] [Based on Secs. 4.1.2 and 4.1.3 of Maggiore’s book, Vol. 1]

We introduce the Keplerian parametrization of the orbit

r =
R

1 + e cosψ
, (13)

where R is the latus-rectum, e is the eccentricity of the orbit, and ψ is the angular position of
the effective one-body particle with reduced mass µ = m1m2/(m1 + m2) (at Newtonian order,
and thus throughout this exercise, we have ψ = ϕ). Employing this parametrization of the orbit,
obtain the quadrupole moments Qij of the source (two point particles moving in a generic, planar
orbit), and show that the orbit-averaged (i.e., averaged over one orbit) fluxes of energy and angular
momentum are given by:

⟨ΦE⟩ =
32

5

G4µ2M3

c5a5
1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
, (14a)

⟨ΦL⟩ =
32

5

G7/2µ2M5/2

c5a7/2
1

(1− e2)2

(
1 +

7

8
e2
)
. (14b)

where M = m1 +m2 and a = R/(1− e2).

Hint: To obtain the orbit-averaged fluxes, employ the quadrupole approximation:

⟨ΦE⟩ =
G

5c5
〈 ...
Q ij

...
Q ij

〉
, (15a)

⟨ΦL⟩ =
2G

5c5
ϵ3ij

〈
Q̈ik

...
Q jk

〉
, (15b)

where ϵ3ij is the Levi-Civita symbol with the first index equal to 3 (this is because Eq. (15b) is
giving the angular momentum flux in the z-direction).

c) [2 points] For the rest of the exercise, we will employ geometric units in which G = c = 1 and use
reduced variables to simplify the notation in the expressions. The reduced variables are obtained
with the following transformations

t

M
→ t,

r

M
→ r,

pr
µ

→ pr,
pϕ
Mµ

→ pϕ,
E

µ
→ E,

ΦE

ν
→ ΦE ,

ΦL

Mν
→ ΦL, (16)
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where ν = µ/M is the symmetric mass ratio of the binary. By employing the Newtonian Hamil-
tonian (in reduced variables)

H =
p2

2
− 1

r
, with p2 = p2r +

p2ϕ
r2
, (17)

and the Keplerian parametrization of the orbit (13), obtain expressions for the variables pr and
pϕ in terms of e, a, and ψ. For this purpose, assume that there is no dissipation, i.e., neglect the
RR force.

Hint: Since there is no dissipation, the energy and angular momentum of the binary are conserved
along any point of the orbit. In particular, consider the points ψ = 0 and ψ = π.

d) [4 points] The balance laws shown in Eq. (12) are incomplete for eccentric systems. The numerical
value of the fluxes on the right-hand-side (RHS) of Eq. (12) is independent of the system of
coordinates (these are the fluxes measured by an observer at infinity). However, the RR force
components in the left-hand-side (LHS) of Eq. (12) depend on the system of coordinates. This is
because eccentricity is a concept associated with the deformation of the orbit, and this deformation
depends on the system of reference, according to Einstein’s Theory of General Relativity.

To solve this inconsistency between the LHS and the RHS in Eq. (12), one needs to add extra
contributions to the balance laws, known as Schott terms [1]. These contributions enter as total
time derivatives which vanish when they are averaged over one orbit. Therefore, for eccentric
orbits, Eq. (12) is correct only when it is orbit-averaged:

⟨ṙFr + ϕ̇Fϕ⟩ = −⟨ΦE⟩, (18a)

⟨Fϕ⟩ = −⟨ΦL⟩. (18b)

It can be shown that the coordinate-dependent nature of the RR force can be absorbed in two
constants α and β such that the RR force components, at leading Newtonian order and in reduced
variables, are given by

Fr =
8ν

15 r3
pr

[
(−3α+ 9β + 3) p2 + (9α− 15β + 9) p2r +

9α− 9β + 17

r

]
, (19a)

Fϕ =
8ν

15 r3
pϕ

[
9(α+ 1) p2r − 3(2 + α) p2 +

3(α− 2)

r

]
. (19b)

Show that the RR force components in Eq. (19) satisfy Eq. (18) for any value of α and β.

e) [Optional, 5 points] Substitute the Hamiltonian (17) and the RR force (19) into the EOMs (11),
and solve numerically this system of ordinary differential equations (ODEs) with e.g. Mathematica,
Python, etc.

Note that this is an ODE system for the four variables (r, ϕ, pr, pϕ). Therefore, we need four initial
conditions in order to solve this system. The initial value of ϕ can be set to zero, ϕ0 = 0. The
rest of the initial values (r0, pr0, pϕ0) can be determined with Eq. (13) and the relations found in
item c). These equations will give us the initial values (r0, pr0, pϕ0) in terms of the initial values
of the eccentricity e and latus-rectum R (set ψ0 = ϕ0 = 0).

For definiteness, consider an equal-mass binary (which value of ν corresponds to an equal-mass
binary?), with starting values of e = 0.3, R = 20, ψ = 0, and set α = −16/3, β = −13/2.

Plot the trajectory of the effective particle in the xy-plane, with x = r cosϕ and y = r sinϕ.

[1] The details about these Schott terms fall outside the scope of this homework. The interested reader can find some
useful information in [M. Khalil, A. Buonanno, J. Steinhoff, and J. Vines, Phys. Rev. D104 (2021), 024046].
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