
Gravitational-Wave Course Homework Sheet 3

Instructor: Alessandra Buonanno (alessandra.buonanno@hu-berlin.de)
Tutor: (corresponding for this sheet): Marcus Haberland (marcus.haberland@aei.mpg.de)
Tutor: Aldo Gamboa (aldo.gamboa@aei.mpg.de)

Course webpage: https://imprs-gw-lectures.aei.mpg.de/2024-gravitational-waves/

Homework due date: Homeworks must be emailed by Monday, November 4, 2024 to the corresponding
Tutor for this homework.

Homework rules: Homeworks must be neat, and must either be typed or written in pen (not pencil!).
Please do not turn in homework that is messy or that has anything that’s been erased and written over (or
written over without erasing), making it harder to read.

Grading system: The homework sheet will be graded with a maximum possible score of 30 points. Each
sub-exercise yields a maximum amount of points as indicated [in brackets].

RECOMMENDED READINGS:

1. Secs. 1 & 5 in R. Abbott et al. https://iopscience.iop.org/article/10.3847/2041-8213/
abb655/pdf.

2. There will be a few lectures on post-Newtonian (PN) theory toward the end of the course. For the
central-force problem below, it is not needed to know how such Lagrangian was derived. For inter-
ested people, a straightforward derivation of the 1PN Lagrangian, originally computed by Einstein-
Infeld-Hoffmann in 1938, can be found here: https://fiteoweb.unige.ch/~maggiore/GWVol1/
EIHLagrangian.pdf (Dr. Justin Vines corrected the derivation given in Sec. 1.5.5 of Maggiore’s
book.).

EXERCISES:

I. GRAVITATIONAL WAVES FROM PULSARS [12 POINTS]

Neutron stars possess a rigid crust that is 10 billion times stronger than steel and can support a “mountain”
of up to ∼few cm height. Consider a neutron star rotating with angular frequency Ω around a principal
body axis e3 and with constant principal moments of inertia I1, I2, I3. Assume that the neutron star has a
deformation such that I1 ̸= I2.

a) [4 points] Consider the inertia tensor Iij =
∫
d3xρ

(
r2δij − xixj

)
that is given by Iij = diag(I1, I2, I3)

in the body frame whose axes rotate with the neutron stars. Compute the components of the inertia
tensor in an inertial frame. Use the analogy between Iij and the Newtonian quadrupole moment to
obtain the power radiated in gravitational waves. Express your result in terms of the ellipticity ϵ and
I3, where

ϵ =
I1 − I2

I3
(1)

b) [4 points] Consider a neutron star that is approximated as a uniform density sphere with mass ∼ 1.4M⊙
and R ∼ 10km so that I3 ∼ 2

5MR2 ∼ 1045g cm2. Its rotational energy is E = I3Ω
2/2. For the Crab

pulsar, the rotational period is P = 33ms. Use the balance between the energy radiated in gravitational
waves and the change in E to obtain its spin-down rate Ω̇. Show that for a fiducial ellipticity of ϵ = 10−7
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the rate of change in the frequency is small and thus the GWs are approximately monochromatic over
∼few years observation time.

c) [4 points] The observed spindown rate of the Crab pulsar is Ṗ = 4.2× 10−13s/s. Assuming that this
is caused solely by GW emission, what would the ellipticity of the Crab pulsar need to be to explain
this value?

In several pulsars, the spindown rate has been measured with pulsar timing observations and is generally
quantified by a braking index n defined by Ω̇ ∝ Ωn. For the Crab pulsar, n ≈ 2.5 (n ∼ 3 is expected
for magnetic dipole radiation), while for the Vela pulsar n ≈ 1.5. Read off the braking index from your
result (b). Is GW emission the dominant mechanism for the spindown of the Crab pulsar?

II. CENTRAL-FORCE PROBLEM AT 1PN ORDER [18 POINTS]

Starting from the 1PN-Lagrangian (also known as the Einstein-Infeld-Hoffman Lagrangian)

L = LN + L1PN +O(c−4), (2a)

LN =
m1

2
v2
1 +

m2

2
v2
2 +

Gm1m2

r
, (2b)

L1PN =
1

8c2
m1v

4
1 +

1

8c2
m2v

4
2 −

G2m1m2(m1 +m2)

2c2r2

+
Gm1m2

c2r

(
3

2
v2
1 +

3

2
v2
2 −

7

2
v1 · v2 −

1

2
v1 · nv2 · n

)
,

(2c)

in the coordinates r1 ≡ x1, r2 ≡ x2 and velocities v1, v2, where r = |r1 − r2|, n = (r1 − r2)/r:

a) [6 points] Derive the canonical momenta p1 and p2. [Recall from classical mechanics that pa =
∂L/∂va.] Then, introduce the variables R = r1+r2, r = r2−r1, P = (p1+p2)/2, and p = (p2−p1)/2,
and show that P is conserved.

b) [6 points] Obtain the relative-motion Hamiltonian H = p1 · v1 + p2 · v2 − L at 1PN order in the
variables r, p, M = m1 + m2 and ν = m1 m2/M

2. [Hint: in carrying out the calculation here and
below keep only terms at 1PN order! It is also strongly suggested to use Mathematica to manipulate
long algebraic expressions.]

c) [6 points] Compute the binding energy E = H and orbital angular momentum L at 1PN order for
circular orbits. Express the final result for E and L in terms of the velocity v ≡ (MΩ)1/3, where Ω
is the orbital frequency. [Hint: Impose the circular orbit condition and derive the relation between r
and Ω. You will find a few new terms at 1PN order beyond the usual Newtonian relation M/r3 = Ω2.
You might find it convenient to work with Hamilton’s equations in spherical coordinates and choose
the motion to be in the equatorial plane.]

d) Compute the periastron advance at 1PN order for nearly circular orbits. [Hint: It is more convenient
to employ the relative-motion Lagrangian. Use the conservation of energy and angular momentum to
derive the equation for the radial perturbation around a circular orbit and compute the radial frequency
Ωr as function of Ω. The fractional advance of the periastron per radial period is ∆Φ/(2π) = K(Ω)−1,
where K(Ω) = Ω/Ωr.] [optional!]

e) Study the stability of circular orbits using the 1PN Hamiltonian. [optional!]

Consider the polar coordinates (r, ϕ, pr, pϕ) and a perturbation of the circular orbit defined by

pr = δpr ,

pϕ = p0ϕ + δpϕ ,

r = r0 + δr ,

Ω = Ω0 + δΩ ,
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where r0, Ω0 and p0ϕ refer to the unperturbed circular orbit. Write down the Hamilton equations and
linearize them around the circular orbit solution. You should find

δṗr = −A0 δr −B0 δpϕ ,

δṗϕ = 0 ,

δṙ = C0 δpr ,

δΩ = B0 δr +D0 δpϕ , (3)

where A0, B0, C0 and D0 depend on the unperturbed orbit. Determine explicitly A0, B0, C0 and D0.

Look at solutions of Eqs. (3) proportional to eiσt and find the criterion of stability. [Hint: you should
find that there exists a combination Σ0 of A0, B0, C0 and D0 such that when Σ0 > 0 the orbits are
stable. The innermost stable circular orbit (ISCO) corresponds to Σ0 = 0].

Express Σ0 as function of v = (MΩ)1/3 and show that for any value of the binary mass ratio the ISCO
at 1PN order coincides with the Schwarzschild ISCO. [This is an accident, which does not hold at high
PN orders!]

Finally, show that Σ0 = 0 coincides with Ωr = 0. What is the physical meaning of this result?
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