
Max Planck Institute for Gravitational Physics
IMPRS Lecture Series

Making sense of data: introduction to statistics for gravitational
wave astronomy

Problem Sheet 2: Bayesian Statistics

IMPRS students taking this course should complete the questions in the first part of this
sheet and hand them in to be marked. The questions in the second part of the sheet,
labelled “Additional questions’, are for personal study and do not need to be handed in.

1. A motorist travels regularly from Berlin to Golm. On each occasion he chooses a
route at random from four possible routes. From experience, the probabilities of
completing the journey in under 1 hour via these routes labelled 1 to 4 are 0.2, 0.5,
0.8 and 0.9 respectively. Given that on a certain occasion they complete the journey
in under 1 hour, calculate the probability that they travelled on each of the possible
routes.

2. (a) Consider the general hypothesis testing problem

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1,

such that the union of Θ0 and Θ1 is the whole of the parameter space Θ.
Letting p0 and p1 denote the prior probabilities for the null hypothesis and the
alternative hypothesis respectively, show that the posterior probability of H0

is given by

P(H0|x) = P(θ ∈ Θ0|x) =
p0

p0 + p1/B01

,

where B01 denotes the Bayes factor of H0 to H1.

(b) Now suppose that we observe data x = {x1, . . . , xn}, such that

Xi ∼iid N(µ, σ2),

where σ2 is known. We wish to test

H0 : µ = µ0 vs H1 : µ = µ1.

Show that the Bayes factor is given by

B01 = exp

(
−n(µ0 − µ1)(µ0 + µ1 − 2x̄)

2σ2

)
.

Calculate the Bayes factor for H0 against H1 when µ0 = 0, µ1 = 1, σ2 = 1,
n = 9 and x̄ = 0.645. What is your conclusion? What happens as we increase
n, with all other values fixed?

(c) Finally, suppose that we observe data x = {x1, . . . , xn}, such that

Xi ∼iid N(µ, σ2),



as before. Now we want to test the hypotheses:

H0 : µ = µ0 vs H1 : µ ̸= µ0.

We specify p(µ|H1) ∼ N(0, τ 2). Calculate the Bayes factor for H0 against
H1. Comment on the limiting case were we make the prior on µ under H1

increasingly vague, i.e., τ 2 → ∞.

3. We observe data x = {x1, . . . , xm} from a multinomial distribution, X ∼MN(N,p),
and wish to make inference on the parameters p = {p1, . . . , pm} (note that

∑
i pi =

1). We set a prior on the unknown parameters p of the form

p ∼ Dir(α1, . . . , αm).

(a) Determine the corresponding posterior distribution for the parameters p.

(b) Calculate the Bayes estimate for the parameters, assuming a quadratic loss
function. [Hint: the Bayes estimate with quadratic loss function is the posterior
mean.]

(c) We throw a 6-sided die 60 times and record the number of times that we ob-
served the number i = 1, . . . , 6, which we denote by xi. Let pi denote the asso-
ciated probability of throwing the number i = 1, . . . , 6 and set p = {p1, . . . , p6}.
We observe the data x = {10, 12, 12, 8, 7, 11} and specify a Uniform prior on
p, which is Dir(α1, . . . , α6) for αi = 1 for i = 1, . . . , 6. Determine the posterior
mean for each pi.

4. Suppose that we wish to simulate observations from the Pareto distribution with
pdf

p(θ) =

{
axa

o

θa+1 for θ ≥ x0;
0 otherwise,

.

Derive the cumulative distribution function for θ and hence describe an algorithmic
procedure for sampling random variables from p(θ) using the method of inversion.

5. A biologist is interested in estimating the annual survival probability of a given
species of deer, denoted by ϕ. Data are collected via a radio-tagging experiment
which initially places radio-tags on a total of N animals in year 0. Let pt denote the
probability an individual dies within the interval (t− 1, t] for t = 1, . . . , T and pT+1

the probability that they survive until the end of the study. Assuming survivability
in each year is independent, and animals are independent of each other, we have

pt =


(1− ϕ) t = 1
(1− ϕ)ϕt−1 t = 2, . . . , T
ϕT t = T + 1

.

Let Xt denote the number of individuals that die in the interval (t − 1, t] for t =
1, . . . , T and XT+1 the number of individuals that survive until the end of the study.
The corresponding likelihood is

p(x|ϕ) = N !∏T+1
t=1 xt!

T+1∏
t=1

pxt
t .

Finally we specify the prior ϕ ∼Beta(α, β).



(a) Show that the posterior distribution for the survival probability is of the form

p(ϕ|x) ∼ Beta

(
α +

T+1∑
t=1

(t− 1)xt, β +
T∑
t=1

xt

)
.

(b) To obtain a set of sampled realisations from the Beta distribution of interest
the biologist intends to implement a rejection sampling algorithm. However,
due to their limited computational skills they are only able to simulate random
deviates from a U [a, b] distribution. Describe a rejection sampling algorithm
that the biologist can implement using their limited computational skills.

(c) We specify the prior ϕ ∼Beta(1, 1) and observe data such that the posterior
p(ϕ|x) ∼Beta(91, 9). We obtain the following posterior summary statistics for
ϕ: posterior mean E(ϕ) = 0.910, posterior standard deviation 0.028, posterior
median 0.913, 95% symmetric credible interval of (0.847, 0.958) and a 95%
highest posterior density interval of (0.832, 0.949). Without conducting an
analysis state why at least one of these summary statistics must be incorrect.

6. Suppose that we wish to use the Metropolis-Hastings algorithm to generate a sample
from N(0, σ2), and that we use the proposal q(x, y) = N(ax, τ 2) for −1 < a < 1.

(a) What is the corresponding acceptance probability α(x, y)?

(b) For what value of τ 2 would this particular sampler never reject the candidate
value?

(c) What happens if a = 0?

7. Consider a simplified model of PSD estimation. We assume that we have made
N observations of noise, ni, drawn from a zero mean Gaussian with common, but
unknown, standard deviation σ. The N + 1’th observation comprises noise, drawn
from the same distribution, and a signal, represented by a non-zero value of the
mean, A. Write down the combined posterior distribution for σ and A, using flat
priors. Marginalise over σ to obtain the posterior on A and comment on the result.

8. The Laser Interferometer Ground Observatory (LIGO) detected gravitational waves
for the first time in September 2015. LIGO has now completed three observing runs.
The first run (O1) lasted 3 months, during which time 3 signals from binary black
hole mergers were observed. The second observing run (O2) lasted 6 months. In
the first 5 months, one additional merger was observed, and then in the last months
5 further signals were detected. We may assume that the events are distributed
according to a homogeneous Poisson distribution with parameter λ with units of
yr−1. We are interested in inferring the value of λ. Prior to O1 the value of λ was
poorly constrained, with estimated values ranging from 0.01 to 1000.

(a) Consider the information available prior to the first observing run and con-
struct a conjugate prior for the rate parameter. Briefly justify your reasons for
constructing a prior in this way.

(b) Derive the posterior distribution for λ using the O1 observations. Report the
posterior mean, standard deviation, a 95% symmetric confidence interval and
plot the posterior distribution.

(c) What is the posterior probability that the rate is > 15?



(d) Re-analyse the O1 data using a Jeffreys prior; how do your results in (b) and
(c) change?

(e) Based on the posterior from the O1 data, what is the posterior predictive prob-
ability that we would see 6 or more events in O2? What is the posterior pre-
dictive probability that we would see 1 or fewer events in the first 5 months of
O2? What is the posterior predictive probability that we would see 5 or more
events in the last month of O2/during at least one month of O2? How are these
results affected by the choice of prior? Some authors have claimed that the
LIGO results provide evidence that the rate is not homogeneous in time. Based
on these results, do you agree?

(f) The third observing run, O3, started in April 2019 and lasted for one year.
Prior to the start of O3, you update the posterior distribution to use all of the
events from O1 and O2 (using one of the previous prior choices). Obtain the
corresponding posterior predictive distribution for the difference, |n2 − n1|, in
the number of events that will be observed in the first 6 months, n1, and the
last 6 months, n2, of O3. How large would the observed difference have to be
to provide evidence that the rate is changing with time? The actual observed
difference is 4. What do you conclude? Discuss other possible ways to address
the question ‘is the rate changing with time?’ within a Bayesian framework.

9. We have data on the winning men’s long jump distances (m) from 1900 through
2008, as follows

Year = {1900, 1904, 1906, 1908, 1912, 1920, 1924, 1928, 1932, 1936, 1948, 1952, 1956,
1960, 1964, 1968, 1972, 1976, 1980, 1984, 1988, 1992, 1996, 2000, 2004, 2008},

Jump = {7.185, 7.340, 7.200, 7.480, 7.600, 7.150, 7.445, 7.730, 7.640, 8.060, 7.825, 7.570,
7.830, 8.120, 8.070, 8.900, 8.240, 8.350, 8.540, 8.540, 8.720, 8.670, 8.500, 8.550,

8.590, 8.370}.

Fit a linear regression of the distances as a function of Olympic year:

Jump = β0 + β1Year + ϵ

assuming ϵ ∼ N(0, σ2 = 1/τ 2). Use the following priors for the three parameters:

β0, β1 ∼ Normal (µ0 = 0, τ0 = 0.001)

τ ∼ Gamma (a = 0.1, b = 0.1)

(a) Fit the model using pymc. Generate trace plots, posterior distributions and
summary statistics. Compute also the autocorrelation function, the effective
sample size and the Gelman-Rubin statistic.

(b) Try centring the “Year” covariate, i.e., subtract its average value and use the
centred covariate as the explanatory variable for sampling.

(c) Now repeat the analysis using “robust regression” by replacing the Normal
distribution with a Student-t distribution. Try fixing the degrees of freedom
to ν = 3 and allowing this to be a model parameter with a suitable Gamma
prior. How do your results change?



Additional questions

10. Let X1, . . . , Xn be independent and identically distributed random variables such
that Xi ∼ N(µ, σ2) for i = 1, . . . , n, where σ2 is known.

(a) Show that Jeffreys’ prior for µ is of the form p(µ) ∝ 1 for −∞ < µ < ∞.

(b) Hence show that the posterior distribution for µ is also normal, with mean and
variance to be specified.

(c) Suppose that we observe data x1, . . . , x10 such that x̄ = 10.1. Assuming
that σ2 = 1, show that a 95% highest posterior density interval for µ is
(9.480, 10.720).

11. A chemist is interested in the maximum possible yield produced by a certain process.
Due to the large variability in the data, they assume that, given a scalar θ, each yield
xi, i = 1, . . . , n, is independent of the other yields and follows a uniform distribution
U [0, θ], so that

p(xi|θ) =
1

θ
, for 0 < xi < θ.

Before the chemist sees any data, they assume a Pareto prior distribution for θ, so
that

p(θ) =

{
axa

o

θa+1 for θ ≥ x0;
0 otherwise,

where a > 0 and xo > 0 are known parameters for the prior Pareto distribution,
specified by the chemist. Note that the mean of a Pareto distribution is given by
ax0/(a− 1), for a > 1, whilst the median if x02

1/a.

(a) Calculate the posterior distribution of θ.

(b) Suppose that the chemist specifies a Pareto prior distribution with a = 2,
x0 = 0.1. Consider observed data x = {x1, x2, x3} = {3, 10, 17}. Obtain the
posterior distribution and indicate how the expert’s beliefs have changed after
observing the data, using point summary statistics.

(c) Suppose instead that the chemist specified the alternative prior θ ∼ U(0, 15).
What are the implications for the given observed data?

12. Suppose that X1, . . . , Xn ∼iid N(µ, σ2) where both µ and σ2 are unknown. We
specify the priors

µ ∼ N(0, s2), and σ ∼ U [0, T ],

where T is “large”.

(a) Using a transformation of variables, calculate the corresponding prior on σ2.

(b) Calculate the posterior conditional distribution of µ and σ2 (i.e., the posterior
distribution for µ, treating σ2 as fixed, and the posterior distribution of σ2,
treating µ as fixed).

13. Radio-tagging data involves placing a radio-tag on a number of individuals and
(assuming no radio failures) recording the number of deaths that occur at a series of
successive “capture” times. We assume that only a single radio-tagging event occurs
where a total of n lambs are “tagged”. We let xt denote the number of sheep that are
subsequently recorded as having died within the interval (t−1, t] (assuming tagging



occurs at time 0), for t = 1, . . . , T . We let xT+1 denote the number of individuals
that survive until time T (i.e. the end of the study). The corresponding likelihood
function is a function of the survival probabilities of the sheep. We assume two
distinct survival probabilities: ϕ1 corresponding to first-year survival probability
and ϕa the “adult” survival probability (i.e. older than first-years). The likelihood
is given by

p(x|ϕ1, ϕa) ∝
T∏
i=1

pxi
i

where

pi =


1− ϕ1 i = 1
ϕ1(1− ϕa) i = 2
ϕ1ϕ

i−2
a (1− ϕa) i = 3, . . . , T

ϕ1ϕ
T−1
a i = T + 1

.

Without any prior information on ϕ1 or ϕa we set priors ϕ1 ∼ U [0, 1] and ϕa ∼ U [0, 1]
independently. Describe a Gibbs sampling algorithm for obtaining a sample from
the posterior distribution. Comment on the result.

14. Show that the Metropolis-Hastings algorithm for target distribution π(x) generates
a reversible Markov chain, such that for x ̸= y

π(x)KH(x, y) = π(y)KH(y, x),

where KH(x, y) = q(y|x)α(x, y) and α(x, y) is the acceptance probability.

Hence show that ∫
π(x)KH(x, y) dx = π(y).

15. A study is conducted to measure the log-concentration of a particular chemical in
soil. It can be assumed that the log-concentration follows a Normal distribution
with mean µ and variance σ2. A set, {yi}, of n = 10 measurements are made of the
log-concentration in soils in a certain region of the UK with the following results

−0.566, 3.74, 5.55,−1.90,−3.54, 5.16,−1.76, 4.08, 4.62, 0.732.

The primary parameter of interest is µ, the unknown mean of the distribution. We
assume initially that σ2 = 30 is known.

(a) We consult a panel of 10 UK experts and they believe that µ ≈ 1, but could
take values in the range [0, 2]. Construct a suitable conjugate prior based on
this information and obtain the posterior distribution from the experimental
data. Include a brief justification of your choice of prior.

(b) Suppose now that we had also consulted a panel of 5 US experts, and their
opinion was that µ ≈ 5 but could be between 3 and 7. Derive a suitable
mixture prior that combines the opinions of both sets of experts and obtain the
posterior distribution for this new prior.

(c) Now suppose that σ2 is also unknown. Using a suitable prior on the precision,
τ = 1/σ2, and the same mixture prior on µ, obtain samples from the posterior
distribution numerically. You may wish to use the various convergence diag-
nostics that were discussed in lectures to verify the accuracy of your posterior
distribution, but you do not need to report the results of such checks in your
solution. Obtain estimates of the posterior mean, median, and the lower and
upper quartiles from your samples.



(d) Based on your results, what is the posterior probability that µ < 1? If we take
5 additional measurements, what is the probability that at least one of them
will return a negative log-concentration?

(e) In building the mixture prior in part (b) you would have used some weighting
between the two groups of experts, p(µ) = wp1(µ) + (1 − w)p2(µ). We will
now include the weight w as an additional model parameter. In the case that
σ2 = 30 is known, obtain the combined posterior distribution on (µ,w), using a
flat prior for w ∈ [0, 1]. Obtain also the marginal distributions on µ and w and
comment on the result.

16. Analysis of binomial data: drug. Consider the example from the lectures where
a new drug is being considered for relief of chronic pain, with the success rate θ
being the proportion of patients experiencing pain relief. In the past, drugs of this
type have shown variable pain relief rates, with a mean of 40% and a standard
deviation of 10%. We have seen that these could be translated into a Beta(9.2, 13.8)
distribution. This drug had 15 successes out of 20 patients.

(a) Calculate the posterior distribution of the success rate θ.

(b) What is the posterior mean and 95% highest posterior density (HPD) interval
for the response rate?

(c) Compute a symmetric 95% credible interval. Compare this to the 95% HPD
interval.

(d) What is the probability that the true success rate is greater than 0.6?

(e) How is this value affected if a uniform prior is adopted? And how is it affected
in the case that Jeffreys’ prior is adopted?

(f) Using the original Beta(9.2, 13.8) prior, suppose 40 more patients were entered
into the study. What is the chance that at least 25 of them experience pain
relief?

(g) We might ask whether the observed data is ‘compatible’ with the expressed
prior distribution. One method is to calculate the predictive probability of
observing such an extreme number of successes under this prior: this is a
standard p-value but where the null hypothesis is a distribution. Use the
predictive distribution for 20 future patients to find the probability of getting
at least 15 successes (i.e., at least 15 patients experiencing pain relief). Do you
think this suggests the data are incompatible with the prior?

(h) Suppose that most drugs (95%) are assumed to come from the stated Beta(9.2, 13.8)
prior, but there is a small chance that the drug might be a ‘winner’. ‘Winners’
are assumed to have a prior distribution with mean 0.8 and standard deviation
0.1.

(i) What Beta distribution might represent the ‘winners’ prior? Remember
that a Beta(a, b) distribution has mean a/(a + b) and variance ab/{(a +
b)2(a+ b+ 1)}.

(ii) Plot the mixture prior.

(iii) What is now the chance that the response rate is greater than 0.6?
Hint : You might start by showing that if

θ ∼ πBeta(a1, b1) + (1− π)Beta(a2, b2),



then

θ | y ∼ ω1Beta(a1 + y, b1 + n− y) + (1− ω1)Beta(a2 + y, b2 + n− y),

where

ω1 = π
B(a1 + y, b1 + n− y)

B(a1, b1)

(
π
B(a1 + y, b1 + n− y)

B(a1, b1)
+ (1− π)

B(a2 + y, b2 + n− y)

B(a2, b2)

)−1

.

Here y denotes the number of successes.

(iv) For this mixture prior, repeat the prior/data compatibility test performed
previously. Are the data more compatible with this mixture prior?

(i) Repeat the above analysis numerically using pymc.

(i) Compute the posterior mean, standard deviation and a 95% credible in-
terval. Compare with the exact results.

(ii) What is the probability that the true success rate is greater than 0.6.
Compare with the exact result.

(iii) Suppose 40 more patients were entered into the study. What is the chance
that at least 25 of them experience pain relief? Compare with the exact
result.

(iv) Conduct the ‘prior/data compatibility check’, i.e., calculate the predictive
probability of observing at least 15 successes under this prior. Compare
with the exact result.

(v) For the mixture prior, what is now the chance that the response rate is
greater than 0.6? Compare with the exact result.

(vi) Under this mixture prior, what is the posterior predictive probability that
at least 25 out of 40 new patients experience pain relief?

(vii) For this mixture prior, repeat the prior/data compatibility test performed
previously. Are the data more compatible with this mixture prior? Com-
pare with the exact result.


