
Lecture Recording

❖ Note: These lectures will be recorded and posted onto the IMPRS website 

❖ Dear participants, 

❖ We will record all lectures on “Making sense of data: introduction to statistics for 
gravitational wave astronomy”, including possible Q&A after the presentation, 
and we will make the recordings publicly available on the IMPRS lecture 
website at: 

- https://imprs-gw-lectures.aei.mpg.de/2023-making-sense-of-data/

❖ By participating in this Zoom meeting, you are giving your explicit consent to 
the recording of the lecture and the publication of the recording on the course 
website. 
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Parameter Estimation in 
the LVK



LIGO Parameter Estimation
❖ LIGO parameter estimation uses Bayesian methods. Results are quoted as posterior distributions, or 

posterior median values and credible intervals. 
❖ Mix samples from IMRPhenomXHM and SEOBNRv4HM. See arXiv:2309.14473 for an analysis with 

NRSur7dq4. It will be included in O4 when possible.
❖ Results are presented in the public catalogues released by the LVK. So far GWTC-1 (arxiv:1811.12907), 

GWTC-2 (arxiv:2010.14527) and GWTC-3 (arxiv:2111.03606). O4 is ongoig. Also independent catalogues 
(Nitz et al., APJ 2023, Olsen et al., PRD 2022, Mehta et al., arXiv:2311.0606).

❖ Individual event results can be found on GWOSC.  Other LVK analyses (tests of GR, population, 
cosmology ...) are provided on Zenodo. 

LVK,  PRX 2019



LVK PE codes

❖ In O1 and O2, LVK parameter estimation used the LALInference code. This includes 
two separate algorithms:

● LALInferenceMCMC: A Markov Chain Monte Carlo code based on the Metropolis-
Hastings algorithm. Proposal distributions are tuned to features of the likelihood 
expected for CBC inspirals.

● LALInferenceNest: A bespoke nested sampling algorithm. New live points are 
drawn by evolving mini-MCMC chains until an independent point is obtained.

❖ During O3 a new software package, Bilby, was introduced (also with a parallel 
implementation, parallel bilby). The sampling algorithms in Bilby are not bespoke. 
Instead it uses freely available packages such as dynesty. LALInference was also used 
in O3, alongside Bilby. 

❖ For O4, Bilby should be the primary inference package. DINGO is currently under 
review.



LVK PE results: examples

LVK,  PRL 2016



LVK PE results: examples

LVK,  2111.03606

❖ Several NSBH candidates

❖ Evidence for spinning BHs 



LVK PE results: examples

LVK,  2111.03606



LVK PE results: examples

LVK,  2111.03606

❖ Little difference between prior and posterior

❖ GW200129_065458  has                      

❖ High SNR (~27) and the results changes 
significantly between IMRPhenomXHM and 
SEOBNRv4HM.                              
NRSur7dq4 in better agreement with 
IMRPhenomXHM. 

Islam et al.,  2309.14473



LVK PE results: examples

LVK,  PRX 2019



Tests of GR



❖ So far very few theoretically motivated non-GR waveforms are available

❖ We have to resort to parametrised tests, in the inspiral and/or merger-ringdown: 

Parametrised tests

Yunes et al., PRD 2016



❖ Assume modified dispersion relation:

❖ Leads to deviation in the phase: 

Inspiral tests: propagation

LVK, 2112.06861



❖ Add deviations to the different PN orders to account for mechanisms that modify the 
generation of GWs

❖ Combine hierarchically or assuming unique value for each

Inspiral tests: generation

LVK, 2112.06861



❖ Split the signal in two and estimate final mass and final spin from each portion

IMR consistency test



❖ pSEOBNR: fit the whole IMR signal and allow for deviations in the quasi-normal 
modes (QNMs):  

Ringdown

LVK, 2112.06861

❖ pSEOBNR has been extended to account for GR deviations in the merger part 
(Maggio et al., PRD 2023)  



❖ Bias goes as                     and standard deviation as               , so we might favour non-
GR because of our particular realisation of the Universe…

❖ Bootstrapping can be used to alleviate this  

Cosmic variance

Pacilio et al., :2310.0381



❖ Test the Kerr nature of the remnant. LVK uses PyRing

❖ Analysis done in time domain

❖ Need to choose a starting time.  

Ringdown: spectroscopy

LVK, 2112.06861



Spectroscopy of GW150914
Isi et al., PRL 2019 

Isi et al., 2202.02941

❖ Fit from the peak, based on the results of Giesler et 
al., PRX 2019

❖ Suggest to add higher modes as long as their 
posterior favour non-zero values 



Spectroscopy of GW150914

Carullo et al., 2310.20625

❖ Disagreement whether there is support for an overtone or not. 



❖ Spectroscopy is typically performed in time-domain because the signal is too short 
and we cannot properly window it before doing Fourier transform

❖ An alternative is to extend the signal before the ringdown using an agnostic model, 
e.g. wavelets:  

Spectroscopy of GW150914

Finch, PRD 2021

❖ Allows to marginalise over sky location and starting time instead of fixing them.



Spectroscopy of GW150914

Finch, PRD 2021



Spectroscopy of GW150914

Finch, PRD 2021

❖ Also finds evidence for an overtone, 
although less strong than Isi et al.. 

❖ Similar conclusio in  Wang et al., 
2310.19645

❖ Also claims of detection of beyond 
dominant QNM in GW190521, possibly 
(2,1,0), but not sure. 



Source reconstruction



❖ The BayesWave pipeline uses a Bayesian non-parametric approach to 
reconstruct noise and signal components from the data.

❖ The smooth noise PSD component is modelled using a cubic spline.

❖ Lines in the instrumental noise are modelled using Lorentzian functions.

❖ The remaining components of the data are modelled using wavelets, 
which resolve time series at particular times and frequencies. BayesWave 
uses the Morley-Gabor basis. 

❖ There is a coherent wavelet component for sources and incoherent 
components to represent glitches.

❖ Also used to look for additional features in data, e.g. echoes

BayesWave



❖ The BayesWave pipeline

❖ Decomposition of power - Lorentzian’s for lines, cubic spline for smooth 
component. Wavelets (Morlet-Gabor basis) for glitches and signals.

morphological params.
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BayesWave



BayesWave



Population Inference



Population Inference

❖ Goal: Understand which astrophysical/cosmological model describes better 
GW observations as a whole



Formation channels for stellar-
mass black hole binaries (sBHBs) 

❖ Isolation: 
 Mass gap between

 Aligned spins
 Quasi-circular

❖ Dynamical:
 Dense stellar clusters
 Second generation 

mergers can be more 
massive

 Isotropic spins
 Larger eccentricities

❖ AGN:
 Potentially more massive 

(second generation)
 Spins tend to align with 

central BH
 Larger eccentricities

Mapelli, Frontiers in Astronomy and 
Space Sciences 2020

Tagawa et al. APJ 2020 



Astrophysical inference

❖ Assume a form for

❖ Can be:
 astrophysical
 parametric
 non-parametric

❖ Obtain                         accounting for selection effects and measurement uncertainty 
performing a hierarchical Bayesian analysis 



Astrophysical model

❖                     .

❖ Results on GWTC-2 from Wong et al., PRD 2021                          .

❖ See Zevin et al., APJ 2021 for more formation channels et  Mould et al., PRD 2022 for results on 
GWTC-3

❖ Cons:
 Huge uncertainty on astro models. We might not include all 

channels (see Cheng et al., 2307.03129, Raikman et al.,  2310.10736)
 Requires some way to evaluate pdf from samples and to 

interpolate (see Toubiana et al., PRD 2021 for systematic errors)       
               .

❖ Pros:
 Gives direct information on 

astrophysical processes



Parametric model

❖ GWTC-3 shows evidence for a peak at                  , a 
bit low for the pair-instability gap

❖ Some evidence for for rate evolution, with the rate 
higher in the past. 

LVK, PRX 2021



Parametric model

❖ Moderate spins are favoured

❖ Small preference for aligned spins 

LVK, PRX 2021



❖ Probe correlations between parameters by fitting joint distributions, or allowing model parameters to 
depend on other parameters. In the analysis of GWTC-3, the LVK explored the variation of the spin 
distribution with mass ratio.

Parametric model, multi-
dimensional

❖ Also hints of correlation between effetctive spin and redshift (Biscoveanu et al., APJL 2022), mass and 
redshift (Fishbach et al., APJ 2021), mass and spins (Hoy et al., APJ 2022, non-parametric: Godfrey et 
al., 2304.01288, Rinaldi et al., 2310.03074)

❖ Probe correlations between parameters by fitting joint distributions, or allowing model parameters to 
depend on other parameters. In the analysis of GWTC-3, the LVK explored the variation of the spin 
distribution with mass ratio.

❖ Pros:
 Analytic pdfs, easy to evaluate
 Some astrophysical meaning 

❖ Cons:
 Little flexibility
 Not so much astrophysical meaning                     .



Non-parametric model

❖ BGP: Binned Gaussian process

❖ FM: Flexible mixture, total pdf is the sum of elementary functions, here Gaussian for 
the primary mass, the spins and power-laws for mass ratio 

❖ PS: power-law spline, pdf is power-law times a spline which value at fixed knots is 
inferred, presence of peak is not imposed 

LVK, PRX 2021



Non-parametric model

❖ Model the pdf as a piece-wise power-law, vary the position and the number of knots 
using RJMCMC.  

❖ Performing (simplified) posterior predictive checks we find a 5% probability of peak 
at                    to be spurious.    

Toubiana et al., MNRAS 2023



Non-parametric model

Callister et al.,  2302.07289

Ruhe et al., 2211.09008v3 Ruhe et al., 2211.09008v3 

❖ Note: here selection effects are not included
❖ Pros:

 Very flexible
 Requires less a prior knowledge

❖ Cons:
 Parameters have no astrophysical meaning
 Complexity is a priori arbitrary (might be alleviated using 

RJMCMC)



Rate estimation: GWTC-3
❖ .

LVK, PRX 2021



Fitting all the mass spctrum

LVK, PRX 2021



Future challenges

❖ Computational cost scales (naively) with the number of events:

❖ Selection function computation might become inaccurate (see Essick et al.,  
2204.00461)

❖ “Systematics” in the population model might significantly bias the results

❖ Make the link with EM observations (see Fisbach et al., APJL 2022, Belczynski et al., 
2111.0940, Liotine et al., APJ 2023)  



Cosmological Inference



Cosmological inference

❖ Several possibilities to infer cosmology with Gws.

❖ Bright sirens:

 If EM counterpart, combine with redshift measurement.

❖ Dark sirens

 Correlate observations with galaxy catalogues to get a statistical measurement of 
the redshift of the source 

 Include the impact of cosmology on the observed distribution of events



Cosmological inference

LVK, APJ 2023



Rapid localisation



Bayestar

❖ Bayesian techniques are also used to obtain 
rapid sky localisation of GW transients to 
send triggers to astronomers for EM 
follow-up.

❖ Bayestar employs the autocorrelation 
likelihood (likelihood evaluated at MLE 
parameter values)

❖ Rapid marginalisation over parameters 
other than sky location achieved via 
integral approximation and look-up tables.

❖ Result is a sky map probability density.
Singer & Price (2015)



Bayestar

Singer & Price (2015)
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