
Lecture Recording

❖ Note: These lectures will be recorded and posted onto the IMPRS website 

❖ Dear participants, 

❖ We will record all lectures on “Making sense of data: introduction to statistics for 
gravitational wave astronomy”, including possible Q&A after the presentation, 
and we will make the recordings publicly available on the IMPRS lecture 
website at: 

- https://imprs-gw-lectures.aei.mpg.de/2023-making-sense-of-data/

❖ By participating in this Zoom meeting, you are giving your explicit consent to 
the recording of the lecture and the publication of the recording on the course 
website. 



AEI IMPRS Lecture Course

Making sense of data: introduction to 
statistics for gravitational wave astronomy
Part II: Bayesian statistics
Lecture 3: Bayesian inference part II

Alexandre Toubiana atoubiana@aei.mpg.de



Bayesian hypothesis testing
❖ The denominator in Bayes’ Theorem

❖ is the Bayesian evidence

❖ Here we have explicitly introduced the model M to emphasise that the result 
depends on the model assumed. The evidence is the probability that the observed 
data would have been produced under the given model and so can be used for 
model selection.

❖ Models are compared using the posterior odds ratio

❖ The first term is the Bayes Factor. The second is the prior odds ratio.



❖ The interpretation of the posterior odds ratio is somewhat arbitrary, but Kass and 
Rafferty (1995) suggested the following scale:

❖ Interpreting the Bayes factor as a ratio of probabilities, these thresholds correspond 
to “p-values” of 0.25, 0.05, 0.007, but the interpretation is different. 

❖ In practice, posterior odds ratios can also be used as a test statistic, with significance 
and power computed via simulation in the usual (frequentist) way. 

Bayesian hypothesis testing



❖ Computing Bayesian evidences is challenging. These can be estimated using the 
harmonic mean of the likelihood of samples from the posterior

❖ Necessarily, there are more posterior samples where the likelihood and hence 
posterior are higher.

❖ Regions where the likelihood is small are less well sampled and subject to more 
Monte Carlo error. This makes the above expression very unstable and potentially 
inaccurate. 

❖ Other techniques, such as thermodynamic integration and nested sampling, have 
been developed to overcome these problems and produce robust evidence estimates.

Bayesian hypothesis testing



❖ Example: Normal models. Suppose we have a 2-dimensional likelihood 

❖ and set priors of the form

❖ and we want to test the models 

❖ The evidence ratio assuming                    can be found to be (see lecture notes)

❖ This can be interpreted as automatically implementing Occam’s Razor.

Bayesian hypothesis testing

❖ size of extra 
dimension

❖ improvement to fit



Hierarchical Models

❖ Often the prior for a single data set represents a model for a population of events, 
e.g., compact binary coalescences.

❖ The parameters of that prior encode the details of the population and are also of 
interest. This leads to the notion of a hierarchical model.

❖ In a hierarchical model, the parameters of the prior (termed hyperparameters) are 
regarded as random variables, on which a hyperprior is defined. This can be 
continued ad infinitum - using another hyperprior on the hyperparameters of the 
first hyperprior etc.



Graphical Model

Example: 
p(p, q, r, s, t, u, v, w, x, y, z) =                
             p(x|y, z) p(y|u, w) p(z|r) p(w|v) p(r|p, q) p(v) p(u) p(p) p(q) 



Selection Effects
❖ No instrument is arbitrarily sensitive and therefore some types of source are easier to 

see than others. This is important to remember in hierarchical models for 
populations when we are combining only detected events.

❖ There are two ways to think about selection effects.

❖ One way is to acknowledge that we only include “detected” events in the analysis 
and then write down a likelihood for detected events. This must integrate to 1 over 
all “detected” or “above threshold” data sets.

❖ This framework assumes a priori that the number of detected events contains no 
information about the parameters of interest.

❖ Obs: selection effects do not impact the parameter estimation of single events.



Selection Effects

❖ Alternatively we write down the likelihood for all events, both detected events 
(indexed by i) and undetected events (indexed by j)

❖ Marginalising over the unobserved data we obtain

❖ Marginalising over the unknown number of unobserved events then gives



Selection Effects
❖ Writing

❖ and introducing a scale-invariant prior on the overall rate

❖ and noting

❖ After marginalising over        , we recover the previous result.



Hierarchical Bayesian analysis

❖ Including rates:

❖ Marginalising over the rate:

❖ We often note                    the population prior



 Example: measuring deviations

❖ Example: Constraining GR with GWs GR deviations might be too weak to be measured 
in single events with current detectors, combining information from different observations 
would increase our measurement power. Different approaches have been proposed, see e.g. 
arXiv:2204.10742.     

❖ We consider one deviation parameter    , and assume that the marginalised 
likelihood on     is Gaussian:

❖ When doing single event parameter estimation we assume a flat prior on    :

 

❖ Goal: test if GR is right, i.e.

❖ Here we do not account for selection effects (i.e we do inference on the observed 
population)    



Example: measuring deviations

❖ 1st possibility: combine Bayes’ factors:

❖ Taking                   : 

❖ We might erroneously build confidence that GR is right !   

 



Example: measuring deviations

❖ We can re-interpret this result within a hierarchical framework. We treat 

                                     as           independent hyperparamers. Then:  

❖ GR coresponds to                                                 , the Bayes’ factor for it is:  



Example: measuring deviations

❖ Now, we assume                       . GR coresponds to                     .  

❖ We estimate             using a hierrachical bayesian analysis (taking a flat prior):

❖ It is maximum for                                                               .   

❖ In the limit of large         , Gaussian approximation:

❖ The Bayes’ factor is then:                                      ❖ smaller dimensionality penalty



Example: measuring deviations
❖ Alternatively, we can compute a generalised quantile to quantify agreement 

with GR:

❖ The closer it is to 1, the better the agreement with GR.

❖ Exploiting the fact that for a                                Gaussian distribution           , 

                                                             :

 Taking                                  as           independent hyperparamers:

 Taking                         :

                     

 

For small deviation, and large 



Example: measuring deviations



Example: measuring deviations

❖ Priors (in the broad sense) matter a lot!

 The difference is not only          vs             (see arXiv:2204.10742)

 Gaussian model reduces dimensionality at the cost of a strong assumption. 

❖ The generalised quantile approach is valid only for “nested models”. 

❖ Dimensionality penalty is incorporated in reversible-jump MCMC via the 
acceptance ratio: 



Predictive checking
❖ It is natural to want to test if the assumed model is a good fit to the data. In a 

Bayesian context this is achieved through predictive checking.

❖ The prior predictive distribution is defined by

❖ This is the distribution of observed data sets within the model assumed in the prior. 
If the observed data is not very consistent with this distribution, the prior 
parameters might need to be adjusted.

❖ The posterior predictive distribution is defined similarly 

❖ This is the distribution of new datasets based on the model fitted to the data. The 
observed data should lie within the body of this distribution if the model is good.



Example: gaussian fit
❖ The predictive distribution can be used to compute the distribution of summary 

quantities. The value of those summary quantities in the observed data can then be 
compared to these distributions.

❖ It is better to choose quantities that are somewhat “orthogonal” to what is adjusted 
to fit the data.

❖ Example: we try to fit a Gaussian to the following distribution:

❖ We assume a Gaussian measurement error of 2 



Example: gaussian fit

❖  



Example: gaussian fit

❖  



Predictive checking

❖ Posterior predictive checks are “good practice”. 

❖ Can help build intuition how to improve models.

❖ But are often computationally expensive...
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