
Lecture Recording
❖ Note: These lectures will be recorded and posted onto the IMPRS website 

❖ Dear participants, 

❖ We will record all lectures on “Making sense of data: introduction to statistics for 
gravitational wave astronomy”, including possible Q&A after the presentation, 
and we will make the recordings publicly available on the IMPRS lecture 
website at: 

- https://imprs-gw-lectures.aei.mpg.de/2023-making-sense-of-data/

❖ By participating in this Zoom meeting, you are giving your explicit consent to 
the recording of the lecture and the publication of the recording on the course 
website. 
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Working with Bayesian Posteriors

❖ The posterior distribution encodes all information about the parameters of interest 
after data has been observed. Sometimes these are analytic, but usually not.

❖ When they are not analytic, they can be approximated by the Bayesian Central 
Limit Theorem. We suppose that                                               and the prior          and 
likelihood                   are twice differentiable near            , the mode of the posterior 
distribution. Then, for large n, 

❖ where

p(x | ✓)
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Working with Bayesian Posteriors
❖ As discussed in Lecture 5, the primary application of probability distributions is to 

compute expectation values of quantities of interest via integration.

❖ In low numbers of dimensions, such integrals can be computed by direct evaluation 
(numerical integration) on a grid of points.

❖ In larger numbers of dimensions it is better to use stochastic (Monte Carlo) 
sampling. We draw a set of samples                          and then approximate

❖ Monte Carlo integration converges to the true integral asymptotically as the number 
of samples M tends to infinity, which can always be achieved with sufficient 
computational power, whereas the Central Limit Theorem relies on the number of 
observations to tend to infinity, which is much harder to ensure in practice.

❖ Samples can be obtained through direct sampling or Markov Chain Monte Carlo.
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4.4.2 Credible intervals

To move beyond point estimates, it is natural to want to describe ranges in which parameter
values are estimated to lie. The Bayesian equivalent of a frequentist confidence interval is a
credible interval. This is defined as

Definition: An interval (a, b) is a 100(1� ↵)% posterior credible interval for ✓1 if

Z
b

a

pmarg(✓1|x)d✓1 = (1� ↵), 0  ↵  1.

A credible region can be defined in a similar way. This is any partition of parameter
space that contains 100(1�↵)% of the total posterior probability. Clearly credible intervals
and regions are not unique, but there are two types of credible interval that are commonly
used.

Definition: An interval (a, b) is a symmetric 100(1 � ↵)% posterior credible interval
for ✓1 if Z

a

�1
pmarg(✓1|x)d✓1 =

↵

2
=

Z 1

b

pmarg(✓1|x)d✓1.

Definition: An interval (a, b) is a 100(1 � ↵)% highest posterior density (HPD)
interval for ✓1 if

1. [a, b] is a 100(1� ↵)% credible interval for ✓1;

2. for all ✓ 2 [a, b] and ✓0 /2 [a, b] we have pmarg(✓|x) � pmarg(✓0|x).

Credible intervals are more intuitive than confidence intervals as they make an explicit
statement about the probability that the parameter takes values in the range, rather than
referencing an ensemble of similar experiments.

4.4.3 Posterior samples

Summary statistics provide a useful way to summarise and compare distributions, but they
inevitably discard information. To retain full information about the parameters we need the
full posterior. Often this cannot be written down in a simple analytic form, but it can be
summarised by drawing a set of samples {~✓1, . . . , ~✓M} randomly from the posterior. Such
samples can then be used to compute integrals over the posterior

Z
f(~✓)p(~✓|x)d~✓ ⇡ 1

M

MX

i=1

f(~✓i).

Most quantities that one might wish to compute from a posterior distribution can be ex-
pressed as integrals of this form, and so generation of such samples is the most complete way
to represent posterior distributions. E�cient production of samples is non-trivial and will
be the topic of the next chapter of these notes.
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Direct sampling: Method of Inversion
❖ If the posterior distribution has a 

cumulative density function (CDF) 
with a known inverse, samples can 
be generated by drawing samples 
from U[0,1].

❖ If the CDF is denoted by F

❖ We simulate

❖ The xi are samples from f.
Example: exponential with parameter r. 
p(t|r) = r exp(-rt), F(T) = 1-exp(-rT), 
F-1(u) = ln(1/(1-u))/r.

F (⇥|x) = P(✓  ⇥|x)
<latexit sha1_base64="XpmT1VqfoKR2By0kpgSAreIZSbI="></latexit>

ui ⇠ U [0, 1]

✓i = F�1(ui|x)
<latexit sha1_base64="U0ghmzWtKkKaHU/10mlo1sIm7KE="></latexit>



Direct sampling: Rejection Sampling
❖ Rejection sampling uses samples 

drawn from another distribution that 
“contains” the distribution of interest. 
The algorithm is

❖ We require 

❖ The “best” rejection method uses

✓i ⇠ g(✓)

yi ⇠ U [0,Mg(✓)]

If yi  p(✓i|x), accept ✓i
as a sample from p(✓|x)

<latexit sha1_base64="gHqZF4XBor4xMFoB5eaQ5fezaSo="></latexit>

Mg(✓) � p(✓|x) 8 ✓
<latexit sha1_base64="U8y6AHaOE52Ife9GYwDzYq+5xAw="></latexit>

M = sup
✓

✓
p(✓|x
g(✓)

◆

<latexit sha1_base64="ftBoGs5HQ7LXRnKeHig29ueNlKM="></latexit>

Example: half-Normal distribution. We
want to sample from N(0,1) I(x > 0). We
draw samples from Exp(1), for which we
need M = 1.3155.



Direct sampling: Importance Sampling
❖ Importance sampling also draws 

samples from another, easy-to-sample 
distribution, but now samples are not 
rejected but given weights

❖ Integrals over the posterior are 
approximated by weighted sums

❖ One advantage is that the 
normalisation of the posterior does not 
need to be known. But, the algorithm 
suffers from high sampling variance.

wi =
p(✓i|x)
g(✓i)

<latexit sha1_base64="M04IBSOyqmjVCYfrq95sk+2MtHU="></latexit>

Z
f(✓)p(✓|x) d✓ ⇡ 1

N

NX

i=1

wif(✓i)
<latexit sha1_base64="gRhq6i73vxH+yML66YLeJC0OR/g="></latexit>

Example: Cauchy distribution. We want 
samples from                                          . We
draw samples from                         and use
importance sampling to estimate                  .

p(✓) = 1/(⇡(1 + ✓2))
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g(✓) = 2/✓2
<latexit sha1_base64="NeI0I7z3gWip/AQH2+T3cf3ibFI=">AAAB/XicdZDJSgNBEIZ74hbjNi43L41BiJdxZhxMDgoBLx4jmAWSGHo6PUmTnoXuGiGG4Kt48aCIV9/Dm29jZxFU9IeGj7+qqOrfTwRXYNsfRmZhcWl5JbuaW1vf2Nwyt3dqKk4lZVUai1g2fKKY4BGrAgfBGolkJPQFq/uDi0m9fsuk4nF0DcOEtUPSi3jAKQFtdcy9XqEFfQbk6Nw9ntGN2zHztuW6ru15eApOqTgBp3Tq2dix7KnyaK5Kx3xvdWOahiwCKohSTcdOoD0iEjgVbJxrpYolhA5IjzU1RiRkqj2aXj/Gh9rp4iCW+kWAp+73iREJlRqGvu4MCfTV79rE/KvWTCEotUc8SlJgEZ0tClKBIcaTKHCXS0ZBDDUQKrm+FdM+kYSCDiynQ/j6Kf4faq7lnFjulZcvn83jyKJ9dIAKyEFFVEaXqIKqiKI79ICe0LNxbzwaL8brrDVjzGd20Q8Zb59EHJR0</latexit>

P(✓ > 2)
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Direct sampling: Sampling importance Resampling
❖ Sampling importance resampling is a 

variant of importance sampling. 

❖ Importance samples are first drawn 
using the algorithm on the previous slide 
and the weights renormalised

❖ New samples are then drawn at random, 
with replacement, from the first set, with 
relative probabilities given by wi.

❖ This is a form of particle filtering. It can 
suffer from particle depletion, when a 
small number of samples carry the 
majority of the weight.

wi =
wiPn
j=1 wj

<latexit sha1_base64="ZKEJMxfOv7EiYRq+k17ML0CcAtA="></latexit>

Example: histogram of resampled points
from first 1000 importance samples from 
previous slide.



Markov Chain Monte Carlo
❖ Often direct sampling methods cannot be devised, because the target distribution is 

too complicated. In those cases, stochastic methods can be used based on Markov 
Chain Monte Carlo methods.

❖ The idea is to generate a reversible Markov chain (i.e., a sequence such that each 
element depends only on the previous one and not longer past history), with a 
stationary distribution that equals the target distribution.

❖ Such a Markov chain must satisfy detailed balance

❖ In which 

❖ and            denotes the target distribution, in our case                       . 

p(~✓) p(~✓, ~✓0) = p(~✓0) p(~✓0, ~✓)

p(~✓, ~✓0) = p(~✓i = ~✓0|~✓i�1 = ~✓)

p(~✓) p(~✓|d,M)



Gibbs Sampling
❖ Gibbs sampling draws consecutive samples from the full conditional distributions. 

It relies on the conditionals taking known forms. The algorithm is as follows

❖ Initialise the parameters at some starting values

❖ For s = 1, …, S:

❖ Draw 

❖ Draw

❖ ….

❖ Draw

❖ For sufficiently large s 

✓(0) = (✓(0)1 , . . . , ✓(0)p )
<latexit sha1_base64="HzXa2mCJrk5DIAmNTjz1Y2+GmBo="></latexit>

✓(s)1 ⇠ p(✓1 | ✓(s�1)
2 , ✓(s�1)

3 , . . . , ✓(s�1)
p ,x)
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✓(s)2 ⇠ p(✓2 | ✓(s)1 , ✓(s�1)
3 , . . . , ✓(s�1)

p ,x)
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✓(s)p ⇠ p(✓p | ✓(s)1 , ✓(s)2 , . . . , ✓(s)p�1,x)
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(✓(s)1 , . . . , ✓(s)p )
approx.⇠ p(✓1, . . . , ✓p | x)
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Metropolis Hastings Algorithm
❖ Gibbs sampling relies on being able to define the full conditional distributions. 

When this is not possible, the Metropolis-Hastings algorithm provides another way 
to compute a suitable Markov chain.

❖ We initialise by choosing a (random) starting point. Then, at step i: 

- propose a new point,    ,  by drawing from a proposal distribution,                .

- evaluate the target distribution at the new point. Compute the Metropolis-
Hastings ratio

- and draw a random sample,    , from a U[0,1] distribution. If                then   
set                  , otherwise set                   . NB if              the proposed move is 
definitely accepted.

q(~✓0, ~✓i)~✓0

~✓i+1 = ~✓0 ~✓i+1 = ~✓i

↵ ↵ < H

H > 1

H =
p(~✓0)q(~✓i, ~✓0)

p(~✓i)q(~✓0, ~✓i)



Proposal Distributions
❖ Sampling efficiency is strongly 

influenced by the choice of proposal 
distribution.

❖ Uniform proposal (random sampling) 
very inefficient - better to use a grid.

❖ Ideally want a proposal tuned to the 
distribution you are sampling.

❖ A Gaussian is often a good choice, but 
need to tune width.
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Proposal Distributions
❖ Sampling efficiency is strongly 

influenced by the choice of proposal 
distribution.

❖ Uniform proposal (random sampling) 
very inefficient - better to use a grid.

❖ Ideally want a proposal tuned to the 
distribution you are sampling.

❖ A Gaussian is often a good choice, but 
need to tune width.

❖ too wide: low acceptance rate;

❖ too narrow: high acceptance rate; 
low effective samples.
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Annealing
❖ One way to accelerate convergence is to 

use simulated annealing. 

❖ “Heat up” posterior by making the 
replacement

❖ where

❖ Choosing a high temperature smoothes 
out the posterior which can then be 
more easily sampled.

❖ Allows identification of interesting parts 
of parameter space.
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kT = 1
kT = 2
kT = 5

kT = 10

� =
1

kT

p(~✓|d,M) !
h
p(~✓|d,M)

i�



Annealing

❖ It is common to use parallel tempering. A sequence of M MCMC chains are run 
simultaneously at different temperatures, {T1, …, TM}.

❖ The chains can exchange information, which is achieved by proposing a swap of the 
states of two chains with different temperatures. The swap is accepted with 
probability

❖ where i, j label the two temperature chains,      denotes the current state of the k’th 
chain and             denotes the target (annealed) distribution for the k’th chain.

min

 
1,

pi(~✓j) pj(~✓i)

pi(~✓i) pj(~✓j)

!

pk(~✓)

~✓k



Burn-in

❖ The MCMC chain does not sample from 
the target distribution immediately.

❖ There is a residual “memory” of the 
initial state. Need to discard the first few 
samples.

❖ This is called the burn-in.

❖ Can identify number of samples to 
discard by looking at trace plots.

❖ Usually a few hundred to a thousand 
samples is sufficient for burn-in. 0 200 400 600 800 1000

−5
−4

−3
−2

−1
0

Chain values of m

True value = red line

m



Autocorrelation and Effective sample size
❖ Consecutive samples in the MCMC chain are not independent samples from the target 

distribution.

❖ Can use all samples for posterior inference but do need to know how many independent 
samples the chain contains in order to assess the precision of inferences.

❖ Compute the (lag-k) autocorrelation

❖ where x now denotes one of the components of    . Choose k=K large enough that the 
autocorrelation                  . The effective sample size is                and formally defined 

❖ Can “thin” chain by keeping only every K’th sample without affecting accuracy of 
posterior inference.

⇢k =

PN�k
i=1 (xi � x̄)(xi+k � x̄)

PN
i=1(xi � x̄)2

~✓
⇢k << 1 ⇠ N/K

ESS =
N

1 + 2
P1

i=1 ⇢k
<latexit sha1_base64="KeZ0644YYDMknddsxmXdCAQ1nG4="></latexit>



Diagnostics

❖ There are various techniques to diagnose the quality of results from a given MCMC 
run.

• compute acceptance rate, i.e., fraction of proposed points that are accepted. 
Acceptance rate ~25% is optimal.

• look at one and two dimensional posterior distributions — do they look 
smooth and well sampled?

• look at trace plots — is the chain moving back and forth or unidirectionally?

• run multiple MCMC chains starting at different points. Do they give consistent 
results?
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Diagnostics

❖ There are various techniques to diagnose the quality of results from a given MCMC 
run.

• compute acceptance rate, i.e., fraction of proposed points that are accepted. 
Acceptance rate ~25% is optimal.

• look at one and two dimensional posterior distributions — do they look 
smooth and well sampled?

• look at trace plots — is the chain moving back and forth or unidirectionally?

• run multiple MCMC chains starting at different points. Do they give consistent 
results?

• use Gelman-Rubin convergence diagnostic.



❖ Run m (at least 2) chains and discard first half of samples from each.

❖ Calculate the within-chain variance

❖ Calculate the between-chain variance

❖ Calculate the estimated variance of a given parameter

❖ Calculate the potential scale-reduction factor

❖ If R is greater than ~1.1 or 1.2, need to run chains for longer.

Gelman-Rubin convergence diagnostic

W =
1

m

mX

j=1

1

N � 1

NX

i=1

(xij � x̄j)
2

Var(x) =

✓
1� 1

N

◆
W +

1

N
B

B =
N

m� 1

mX

j=1

(x̄j � ¯̄x)2, ¯̄x =
1

m

mX

j=1

x̄j

R̂ =

s
V̂ar(x)

W



Convergence diagnostics: GW150914



Examples of Parameter Posteriors
two. The inferred component masses are shown in Fig. 2.
The formof the two-dimensional distribution is guidedby the
combination of constraints on M and M. The binary was
composed of two black holeswithmassesm1 ¼ 31.2þ8.4

−6.0M⊙
and m2 ¼ 19.4þ5.3

−5.9M⊙; these merged into a final black hole
of mass 48.7þ5.7

−4.6M⊙. This binary ranks second, behind
GW150914’s source [5,37], as themost massive stellar-mass
binary black hole system observed to date.
The black hole spins play a subdominant role in the

orbital evolution of the binary, and are more difficult to
determine. The orientations of the spins evolve due to
precession [62,63], and we report results at a point in the
inspiral corresponding to a gravitational-wave frequency of
20 Hz [37]. The effective inspiral spin parameter χeff ¼
ðm1a1 cos θLS1 þm2a2 cos θLS2Þ=M is the most important
spin combination for setting the properties of the inspiral
[64–66] and remains important through to merger [67–71];
it is approximately constant throughout the orbital evolu-
tion [72,73]. Here θLSi ¼ cos−1ðL̂ · ŜiÞ is the tilt angle
between the spin Si and the orbital angular momentum L,
which ranges from 0° (spin aligned with orbital angular
momentum) to 180° (spin antialigned); ai ¼ jcSi=Gm2

i j is
the (dimensionless) spin magnitude, which ranges from 0 to
1, and i ¼ 1 for the primary black hole and i ¼ 2 for the
secondary. We use the Newtonian angular momentum for
L, such that it is normal to the orbital plane; the total orbital
angular momentum differs from this because of post-
Newtonian corrections. We infer that χeff ¼ −0.12þ0.21

−0.30 .
Similarly to GW150914 [5,37,44], χeff is close to zero with
a preference towards being negative: the probability that
χeff < 0 is 0.82. Our measurements therefore disfavor a
large total spin positively aligned with the orbital angular
momentum, but do not exclude zero spins.
The in-plane components of the spin control the amount

of precession of the orbit [62]. This may be quantified by
the effective precession spin parameter χp which ranges
from 0 (no precession) to 1 (maximal precession) [39].
Figure 3 (top) shows the posterior probability density for
χeff and χp [39]. We gain some information on χeff ,
excluding large positive values, but, as for previous events
[3,5,37], the χp posterior is dominated by the prior (see
Sec. III of the Supplemental Material [11]). No meaningful
constraints can be placed on the magnitudes of the in-plane
spin components and hence precession.
The inferred component spin magnitudes and orienta-

tions are shown in Fig. 3 (bottom). The lack of constraints
on the in-plane spin components means that we learn
almost nothing about the spin magnitudes. The secondary’s
spin is less well constrained as the less massive component
has a smaller impact on the signal. The probability that the
tilt θLSi is less than 45° is 0.04 for the primary black hole
and 0.08 for the secondary, whereas the prior probability is
0.15 for each. Considering the two spins together, the
probability that both tilt angles are less than 90° is 0.05.

FIG. 3. Top: Posterior probability density for the effective
inspiral and precession spin parameters, χeff and χp. The
one-dimensional distributions show the posteriors for the two
waveform models, their average (black), and the prior distribu-
tions (green). The dashed lines mark the 90% credible interval for
the average posterior. The two-dimensional plot shows the 50%
and 90% credible regions plotted over the posterior density
function. Bottom: Posterior probabilities for the dimensionless
component spins, cS1=ðGm2

1Þ and cS2=ðGm2
2Þ, relative to the

normal of the orbital plane L̂. The tilt angles are 0° for spins
aligned with the orbital angular momentum and 180° for spins
antialigned. The probabilities are marginalized over the azimuthal
angles. The pixels have equal prior probability (1.6 × 10−3);
they are spaced linearly in spin magnitudes and the cosine
of the tilt angles. Results are given at a gravitational-wave
frequency of 20 Hz.

PRL 118, 221101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
2 JUNE 2017

221101-4

LVC, Phys. Rev. Lett. 116, 061102 (2016)



Reversible Jump MCMC
❖ Often the number of sources in the data set is also unknown. 

❖ Reversible Jump Markov Chain Monte Carlo is a technique applied in such 
situations, by periodically proposing jumps between models. In GW applications 
these normally correspond to different numbers of events.

❖ Represent a proposed move by tuples (x, u) and (x’, u’). Here x and x’ denote the 
parameters of the current and proposed state (which may have different numbers of 
dimensions) and u, u’ are sets of random numbers that lead to a proposed move 
from x to x’ and back.

❖ Generalisation of acceptance ratio is

❖ Commonly used when number of sources in data unknown. Then it is usual to draw 
proposed sources for the prior, simplifying the acceptance ratio to

↵ = min

✓
1,

p(x0)q(u0)

p(x)q(u)

����
@(x0,u0)

@(x,u)

����

◆
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It is easy to verify that this transformation has a unit Jacobian. The target densities take
the form

p(✓0
|x) =

1

Z
p(x|✓0)⇡N+1

N+1Y

i=1

⇡(✓0
i)

p(✓|x) =
1

Z
p(x|✓)⇡N

NY

i=1

⇡(✓i)

Z =
1X

N=0

⇡N

Z
p(x|✓)

"
NY

i=1

⇡(✓i)

#
d✓1d✓2 . . . d✓N .

Here ⇡N denotes the prior probability for the N source model, and the last line just defines
the total evidence for the family of models {MN}. We deduce that in this form of RJMCMC
model, the prior terms cancel out of the acceptance probability, which becomes

↵ = min

✓
1,

p(x|✓0)⇡N+1

p(x|✓)⇡N

◆
,

i.e., we take the ratio of the likelihoods multiplied by the prior odds ratio of the di↵erent
dimension models.

6.6 A unified view of sampling*

The standard Metropolis-Hastings algorithm, a�ne invariant sampling and RJMCMC can
be thought of as special cases of a general sampling framework. As a reminder, the criterion
that a chain of samples has to satisfy in order that the stationary distribution coincides with
the target distribution, ⇡(✓), is detailed balance

⇡(✓)K(✓0
|✓) = ⇡(✓0)K(✓|✓0) 8✓,✓0.

If we now fix two subsets in the parameter space, A and A0, it follows that when detailed
balance is satisfied

Z

A

Z

A0
⇡(✓)K(✓0

|✓)d✓0d✓ =

Z

A

Z

A0
⇡(✓0)K(✓|✓0)d✓0d✓

or
Z

A

⇡(✓)P (✓, A0)d✓ =

Z

A0
⇡(✓0)P (✓0, A)d✓0 (115)

where P (✓, B) =

Z

B

p(✓,�)d�.

It is possible for this equality to hold for certain subsets A and A0 even when detailed balance
does not hold overall. However, if Eq. (115) holds for all subsets A, A0, then detailed balance
is satisfied. This is called the integrated detailed balance condition and P (✓, B) is
referred to as a transition kernel.

In the standard MH approach to sampling we first propose a point from q(✓0
|✓) and then

accept the proposal with probability ↵(✓0
|✓). In such a framework

P (✓, A0) =

Z

A0
q(✓0

|✓)↵(✓0
|✓)d✓0 +

Z
q(✓0

|✓){1 � ↵(✓0
|✓)}d✓0

�
1✓2A0 .



Integrated detailed balance
❖ Almost all MCMC algorithms can be expressed in the form of RJMCMC. This 

follows from imposing the integrated detailed balance condition

❖ Representing a proposed move in terms of a draw of random variables w and a 
reversible mapping

❖ the integrated detailed balance condition is satisfied when

❖ After a change of variable in the integrand we see this will be satisfied when

❖ See lecture notes for various examples.
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It is easy to verify that this transformation has a unit Jacobian. The target densities take
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Here ⇡N denotes the prior probability for the N source model, and the last line just defines
the total evidence for the family of models {MN}. We deduce that in this form of RJMCMC
model, the prior terms cancel out of the acceptance probability, which becomes

↵ = min
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i.e., we take the ratio of the likelihoods multiplied by the prior odds ratio of the di↵erent
dimension models.

7.6 A unified view of sampling*

The standard Metropolis-Hastings algorithm, a�ne invariant sampling and RJMCMC can
be thought of as special cases of a general sampling framework. As a reminder, the criterion
that a chain of samples has to satisfy in order that the stationary distribution coincides with
the target distribution, ⇡(✓), is detailed balance

⇡(✓)K(✓0
|✓) = ⇡(✓0)K(✓|✓0) 8✓,✓0.

If we now fix two subsets in the parameter space, A and A0, it follows that when detailed
balance is satisfied
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where P (✓, B) =

Z

B

p(✓,�)d�.

It is possible for this equality to hold for certain subsets A and A0 even when detailed balance
does not hold overall. However, if Eq. (125) holds for all subsets A, A0, then detailed balance
is satisfied. This is called the integrated detailed balance condition and P (✓, B) is
referred to as a transition kernel.

In the standard MH approach to sampling we first propose a point from q(✓0
|✓) and then

accept the proposal with probability ↵(✓0
|✓). In such a framework

P (✓, A0) =

Z
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q(✓0
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The second term corresponds to the chain remaining at x and only contributes if x 2 A0.
Using this it is straightforward to show (exercise!) that the integrated detailed balance
condition can be written

Z

A

Z

A0
⇡(✓)q(✓0

|✓)↵(✓0
|✓)d✓0d✓ =

Z

A

Z

A0
⇡(✓0)q(✓|✓0)↵(✓|✓0)d✓0d✓.

A draw from the random proposal q(✓0
|✓) can always be written in terms of a draw of

a random variable w from a probability distribution g(w) combined with the definition
of a mapping ✓0 = h✓(✓,w). The backward step q(✓|✓0) can similarly be defined by a
random variable w0 drawn from a (possibly di↵erent) distribution g0(w0) and a mapping
✓ = h0

✓(✓
0,w0). We can then define functions hw and h0

w via

✓ = h0
✓(h✓(✓,w), hw(✓,w))

✓0 = h✓(h
0
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0,w0), h0
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0,w0))

so that overall

(✓0,w0) = (h✓(✓,w), hw(✓,w)) ⌘ h(✓,w)

(✓,w) = (h0
✓(✓

0,w0), h0
w(✓

0,w0)) ⌘ h0(✓0,w0).

The purpose of these definitions is to allow us to re-express the probabilistic proposal density
as a deterministic mapping between two points in a larger parameter space. After defining
q(x0

|x) in this way we can see the integrated detailed balance equation becomes
Z

A

Z

B0(✓)

⇡(✓)g(w)↵(✓0
|✓)dwd✓ =

Z
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B(✓0)

⇡(✓0)g0(w0)↵(✓|✓0)dw0d✓0, (126)

where B0(✓) = {w : h✓(✓,w) 2 A0
} and B(✓0) = {w0 : h0

✓(✓
0,w0) 2 A}. We can now change

variable using

d✓0dw0 =

����
@(✓0,w0)

@(✓,w)

���� d✓dw

where |@(✓0,w0)/@(✓,w)| is the Jacobian of the transformation that maps between (✓,w)
and (✓0,w0). We conclude that the integrated detailed balance condition will be satisfied for
all sets A and A0 if we set

↵(✓0
|✓) = min

✓
1,

⇡(✓0)g0(w0)

⇡(✓)g(w)

����
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◆
. (127)

This takes the same form as the RJMCMC acceptance probability that we wrote down earlier.
This is how the RJMCMC expression is derived, and illustrates that standard Metropolis-
Hastings, RJMCMC and many other sampling methods can be thought of as variants of the
same algorithm. We will show this for a few special cases now.

7.6.1 Metropolis-Hastings algorithm

Expression (127) can be reduced to the standard Metropolis-Hastings acceptance ratio given
in Eq. (108). A simple way to see this is to define w = ✓0

� ✓ and w0 = ✓ � ✓0, and then
write g(w) = q(✓0

|✓) and g(w0) = q(✓|✓0). The Jacobian is 1 and so Eq. (127) reduces
immediately to Eq. (108).
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Nested Sampling
❖ Nested Sampling (Skilling 04) provides an efficient way to compute evidences, using a 

1D integral over the prior

❖ Use N ‘live points’, initially chosen at random from the prior. At step i, the point of 
lowest likelihood,     , is replaced by a new point with likelihood              . The prior 
volume is reduced by a factor t, drawn from                           , at each step. We climb 
through nested contours of increasing likelihood as the algorithm proceeds.

Z =
�
L(�)⇥(�)dN� =

� 1

0
L(X)dX, where X(�) =

�

L(�)>�
⇥(�)dN�

Li L > Li

p(t) = NtN�1



❖ The trick is to sample efficiently from the prior within the hard constraint that               . 
MultiNest achieves this using an ellipsoidal rejection sampling scheme. The live point set 
is partitioned into a number of (possibly overlapping) ellipsoids.

❖ The algorithm is well suited to exploring likelihoods with multiple modes. Other 
algorithms (e.g., cpnest) update live points using short MCMC explorations. 

❖ Although designed to compute evidences, nested sampling algorithms also return the 
posterior probability distribution.

MultiNest
L > Li



MultiNest


