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Principles of signal analysis
❖ Gravitational wave detectors are intrinsically noisy. The output s(t) will consist of a 

(possible) signal h(t) plus noise fluctuations n(t).

❖ The noise is a random process.

❖ Future values are not uniquely determined by initial data, but evolves according to 
some probabilistic model.

❖ We suppose the random process is drawn from an ensemble of random processes 
characterised by probability distributions

s(t) = h(t) + n(t)
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Principles of signal analysis
❖ We typically make various useful assumptions about the properties of a random 

process

- Stationarity: A stationary process is one for which the probability distributions 
depend only on time differences, not absolute time.

- Gaussianity: A process is Gaussian if and only if all of its (absolute) probability 
distributions are Gaussian.

- Ergodicity: An ensemble of stationary random processes is ergodic if for any 
process n(t) drawn from the ensemble, the new ensemble {n(t+KT): K an 
integer} has the same probability distributions.

pN (nN , tN + ⌧ ; . . . ;n2, t2 + ⌧ ;n1; t1 + ⌧) = pN (nN , tN ; . . . ;n2, t2;n1; t1) 8 ⌧
<latexit sha1_base64="dGmPVHYnT3V1xEvGVNiBXyXjUnc="></latexit>
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6 Stochastic processes and sensitivity curves

In both frequentist and Bayesian approaches to statistical analysis, the likelihood plays a
key role. This is the probability distribution from which the observed data has been drawn.
In a gravitational wave context, we are typically concerned with analysing data from a noisy
detector. The output from the detector, or detectors, is one or more real time series of
measurements, si(t). These measurements are a combination (usually assumed to be linear)
of a signal part, hi(t), and a noise part, ni(t). The signal part is deterministic, depending only
on the (unknown) parameters of the system, while the noise part is random. The likelihood
is therefore a statement about the probability distribution from which the noise is drawn.
The usual assumption is that the noise is generated by a stationary, Gaussian random
process. In this section we will first define what this means, and discuss various approaches
that are commonly used to summarise the noise properties and represent sensitivities to
sources of di↵erent types.

6.1 Properties of random processes

A random process is a random sequence (often infinite in length) of values. Future values
are not uniquely determined by current values, but by probability distributions that may be
conditional on past values of the sequence. The observed random sequence is assumed to be
drawn from an ensemble of random processes characterised by probability distributions

pN(nN , tN ;nN�1, tN�1; . . . ;n2, t2;n1; t1)dnNdnN�1 . . . dn2dn1.

The probability distribution could be anything, but it is usual to make some simplifying
assumptions, which are well motivated by observed random processes, to make computa-
tions plausible. The most commonly made assumptions are that the random process is
stationary, Gaussian and ergodic.

A stationary random process is one for which the joint probability distributions for
finite sets of samples depend only on time di↵erences, not absolute time. In other words

pN(nN , tN + ⌧ ; . . . ;n2, t2 + ⌧ ;n1; t1 + ⌧) = pN(nN , tN ; . . . ;n2, t2;n1; t1) 8 ⌧.

A random process is Gaussian if and only if all of its absolute probability distributions
are Gaussian. In other words, for any set of N times, {t1, . . . , tN}, we have

pN(nN , tN ; . . . n1; t1) = A exp
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Principles of signal analysis
❖ We are interested in how large the random fluctuations are about the mean value. 

We’ll assume this is zero here, which can be arranged by a subtracting a constant.

❖ The fluctuations can be characterised by the power in a certain time interval -T/2 < t 
< T/2

❖ For stationary random processes this increases linearly with time. So, we instead use 
the mean power (or mean square fluctuations)

Pn = lim
T!1

1

T
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�T/2
|n(t)|2dt
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Principles of signal analysis
❖ Defining                                                          and using Parseval’s theorem we have

❖ This motivates defining the spectral density, Sn(f), via

❖ This is the one-sided spectral density which assumes the time series is real and we 
only consider positive frequencies. The two-sided spectral density is half this.

nT (t) = n(t)I[|t| < T/2]
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Principles of signal analysis
❖ The spectral density represents the power in the process at a particular frequency

❖ If we consider the evolution of the process over a time interval       , with 
corresponding bandwidth                            , the mean square fluctuations in n at that 
frequency are

❖ The root mean square fluctuations at frequency f and measured over a time        are just

Pn =

Z 1

0
Sn(f)df
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Principles of signal analysis
❖ The auto-correlation function of a (zero mean) time series is defined by

❖ For an ergodic (and hence stationary) random process this is equivalent to the 
expectation value over the ensemble

❖ The auto-correlation function is the Fourier transform of the spectral density (the 
Wiener-Khinchin theorem).
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6.1 Principles of signal analysis

pN(nN , tN ;nN�1, tN�1; . . . ;n2, t2;n1; t1)dnNdnN�1 . . . dn2dn1

pN(nN , tN + ⌧ ; . . . ;n2, t2 + ⌧ ;n1; t1 + ⌧) = pN(nN , tN ; . . . ;n2, t2;n1; t1) 8 ⌧

Pn = lim
T!1

1

T

Z
T/2

�T/2

|n(t)|2dt

Z
T/2

�T/2

[n(t)]2dt =

Z 1

�1
[nT (t)]

2 =

Z 1

�1
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Principles of signal analysis

❖ For stationary processes a consequence of the Wiener-Khinchin theorem is that

❖ where ~ denotes the Fourier transform, and * denotes complex conjugation.

❖ Examples of spectral densities include
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Principles of signal analysis
❖ Can also define a cross-spectral density between two separate random process n(t) 

and m(t)

❖ Similarly we can define the cross-correlation between two time series   

❖ As in the case of a single process, these are related to each other via a Fourier 
transform.

98 Introduction to Statistics for GWs

6 Stochastic processes and sensitivity curves

6.1 Principles of signal analysis

pN(nN , tN ;nN�1, tN�1; . . . ;n2, t2;n1; t1)dnNdnN�1 . . . dn2dn1

pN(nN , tN + ⌧ ; . . . ;n2, t2 + ⌧ ;n1; t1 + ⌧) = pN(nN , tN ; . . . ;n2, t2;n1; t1) 8 ⌧

Pn = lim
T!1

1

T

Z
T/2

�T/2

|n(t)|2dt

Z
T/2

�T/2

[n(t)]2dt =

Z 1

�1
[nT (t)]

2 =

Z 1

�1
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/ ḣ2

+
+ ḣ2
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Principles of signal analysis

❖ For a Gaussian, stationary random process the spectral density conveys all the 
information about the statistical properties of the process.

❖ For gravitational wave detectors, it is natural therefore to plot the spectral density to 
characterise the detector sensitivity. But - how then do we represent sources on the 
same diagram?

❖ There is no unique way to do this. Different types of source are best represented in 
different ways.



Signal sensitivity: Bursts
❖ A transient burst of gravitational waves can be characterised by its frequency, f, its 

duration,       , its bandwidth,       , and its mean square amplitude, a proxy for signal 
power

❖ The square root of this defines the characteristic amplitude of the burst, hc.

❖ The power in the noise in the same bandwidth is                

�t
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5.2 Sensitivity curves

For a Gaussian, stationary random process the spectral density conveys all the information
about the statistical properties of the process. For gravitational wave detectors, it is therefore
natural to plot the spectral density to characterise the detector sensitivity. But - how should
sources be presented on the same diagram? There is no unique way to do this. Di↵erent
types of source are best represented in di↵erent ways.

5.2.1 Burst signals

Burst signals are by definition compact in time duration, and usually also in frequency
duration. It is rare that burst signals can be represented by parametric models, and so they
are quite like random processes. We can characterise the burst by its frequency, f , duration,
�t, bandwidth, �f , and its mean square amplitude, a proxy for the signal power

P̄h =
1

�t

Z
�t

0

|h+(t)|
2 + |h⇥(t)|
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c .

The square root of the mean square amplitude, hc, is called the characteristic amplitude
of the burst. The power of the noise in the same bandwidth is �fSn(f). The ratio of the
power in the signal to the power in the noise is a measure of the detectability of the burst,
relative to random fluctuations in the instrument. This ratio is the signal-to-noise ratio
squared of the burst ✓
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If the data is windowed and bandpassed in the vicinity of the burst, then we maximise the
contribution of the burst to the data and the signal-to-noise ratio is the ratio of the root-
mean-square (rms) signal contribution to the rms noise contribution. For a broad-band burst
with �f ⇠ f we have ✓
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. (69)

This motivates representing the sensitivity of a detector to bursts by plotting the quantity
fSh(f) instead of the power spectral density. The detectability of a burst source with
characteristic strain hc can then be assessed by the height of h2

c above the curve. Note
that because GWs have two polarizations, if hc is defined from one polarization only (or by
averaging, then the total SNR squared will be double as it will get a contribution from both
polarization states.

5.2.2 Continuous sources

If instead of a burst we had an (optimally-oriented) monochromatic gravitational wave source

h++(t) = h0cos(2⇡if0t), h⇥(t) = sin(2⇡ft),

then the signal power is constant over time

Ph = lim
T!1

1

T

Z T/2

�T/2

|h+(t)|
2 + |htimes(t)|2dt = h2

0
.



Signal sensitivity: Bursts
❖ The square root of the ratio of the signal power to the noise power is the signal-to-

noise ratio. 

❖ This is a measure of detectability. If we window and bandpass the time series, this is 
the ratio of the root-mean-square signal contribution to the root-mean-square noise 
contribution.

❖ For a broad-band burst with                 , the signal-to-noise ratio is approximately

❖ This motivates plotting f Sn(f) instead of the power spectral density. Height above 
this curve is a measure of burst detectability.

�f ⇠ f
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If the data is windowed and bandpassed in the vicinity of the burst, then we maximise the
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This motivates representing the sensitivity of a detector to bursts by plotting the quantity
fSn(f) instead of the power spectral density. The detectability of a burst source with
characteristic strain hc can then be assessed by the height of h2

c above the curve. Note
that because GWs have two polarizations, if hc is defined from one polarization only (or by
averaging, then the total SNR squared will be double as it will get a contribution from both
polarization states.

5.2.2 Continuous sources

If instead of a burst we had an (optimally-oriented) monochromatic gravitational wave source

h+(t) = h0 cos(2⇡f0t), h⇥(t) = h0 sin(2⇡f0t),

then the signal power is constant over time
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This motivates representing the sensitivity of a detector to bursts by plotting the quantity
fSn(f) instead of the power spectral density. The detectability of a burst source with
characteristic strain hc can then be assessed by the height of h2

c above the curve. Note
that because GWs have two polarizations, if hc is defined from one polarization only (or by
averaging, then the total SNR squared will be double as it will get a contribution from both
polarization states.
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If instead of a burst we had an (optimally-oriented) monochromatic gravitational wave source
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Signal sensitivity: continuous waves
❖ Consider now a monochromatic GW source

❖ The signal power is constant over time and given by

❖ However, this power is concentrated at f0. With a  finite time series of length T we 
can resolve frequency to a precision   

❖ Noise power in this bandwidth is                   . 

�f ⇠ 1/T
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Burst signals are by definition compact in time duration, and usually also in frequency
duration. It is rare that burst signals can be represented by parametric models, and so they
are quite like random processes. We can characterise the burst by its frequency, f , duration,
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If the data is windowed and bandpassed in the vicinity of the burst, then we maximise the
contribution of the burst to the data and the signal-to-noise ratio is the ratio of the root-
mean-square (rms) signal contribution to the rms noise contribution. For a broad-band burst
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This motivates representing the sensitivity of a detector to bursts by plotting the quantity
fSh(f) instead of the power spectral density. The detectability of a burst source with
characteristic strain hc can then be assessed by the height of h2

c above the curve. Note
that because GWs have two polarizations, if hc is defined from one polarization only (or by
averaging, then the total SNR squared will be double as it will get a contribution from both
polarization states.

5.2.2 Continuous sources

If instead of a burst we had an (optimally-oriented) monochromatic gravitational wave source

h+(t) = h0 cos(2⇡f0t), h⇥(t) = sin(2⇡f0t),

then the signal power is constant over time
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Signal sensitivity: continuous waves

❖ This motivates representing sensitivity by plotting 

❖ where               is the estimated threshold S/N needed for detection. This is the strain 
spectral density.

❖ Advantage: for a monochromatic source, height above curve gives expected S/N or, 
with specified threshold, an easy assessment of whether source is detectable or not.

❖ Disadvantage: must specify length of observation. Not appropriate for ongoing 
experiments, e.g., LIGO. But can produce this after each observing run.
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Figure 1.3 The signal levels and frequencies are given for a few known galactic
sources, along with the expected LISA threshold sensitivity and an estimate
of the binary confusion noise level. In addition, the range of levels for 90%
of the expected thousands of resolvable close white dwarf binary signals from
our galaxy is shown.

as 1/
√
T . In a 1-year observation, the frequency resolution is 3×10−8Hz, and there are

(1 Hz)/(3×10−8Hz) = 3×107 resolvable frequencies in the LISA band.

For expected signals due to binaries in our galaxy, the intrinsic wave amplitude h is
essentially constant during a 1-year observation. Such sources are placed in the diagram
to show this h on the vertical scale. But because of LISA’s motion, LISA almost never
responds to this maximum amplitude; rather, the full signal-to-noise ratio SNR over a
year is lower by a factor which depends on the exact position of the source relative to
LISA’s orbit. We can approximate this effect by assuming a reduction by the rms value of
the antenna sensitivity of an interferometer averaged over the entire sky, which is a factor
of 1/

√
5 [4]. This means that, if a source lies above the 1-σ noise level by a certain factor s,

the expected SNR will be typically s/
√

5. To be specific, the threshold sensitivity curve
in Figure 1.3 is drawn to correspond to a SNR of 5 in a 1-year observation. (Accordingly,
it is drawn at a factor of 5

√
5 ≈ 11 above the 1-year, 1-σ noise level.) This SNR of 5 is a

confidence level: for a 1-year observation, the probability that Gaussian noise will fluctuate
to mimic a source at 5 standard deviations in the LISA search for sources over the whole
sky is less than 10−5, so one can be confident that any source above this threshold curve
can be reliably detected. To estimate the expected SNR for any long-lived source in the
diagram, one multiplies the factor by which it exceeds the threshold curve by the threshold
level of 5. The threshold curve is drawn on the assumption that the dominant noise is
the 1-σ instrumental noise level. If any of the random gravitational-wave backgrounds

3-3-1999 9:33 Corrected version 2.08

LISA Pre-Phase A report (1998)
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Signal sensitivity: continuous waves
❖ SNRs also depend on the sky position and orientation of a source. This can be 

folded into the spectral density be using a sky and orientation averaged sensitivity, and 
using the strain of an optimally positioned and oriented source.
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Figure 1.3 The signal levels and frequencies are given for a few known galactic
sources, along with the expected LISA threshold sensitivity and an estimate
of the binary confusion noise level. In addition, the range of levels for 90%
of the expected thousands of resolvable close white dwarf binary signals from
our galaxy is shown.

as 1/
√
T . In a 1-year observation, the frequency resolution is 3×10−8Hz, and there are

(1 Hz)/(3×10−8Hz) = 3×107 resolvable frequencies in the LISA band.

For expected signals due to binaries in our galaxy, the intrinsic wave amplitude h is
essentially constant during a 1-year observation. Such sources are placed in the diagram
to show this h on the vertical scale. But because of LISA’s motion, LISA almost never
responds to this maximum amplitude; rather, the full signal-to-noise ratio SNR over a
year is lower by a factor which depends on the exact position of the source relative to
LISA’s orbit. We can approximate this effect by assuming a reduction by the rms value of
the antenna sensitivity of an interferometer averaged over the entire sky, which is a factor
of 1/

√
5 [4]. This means that, if a source lies above the 1-σ noise level by a certain factor s,

the expected SNR will be typically s/
√

5. To be specific, the threshold sensitivity curve
in Figure 1.3 is drawn to correspond to a SNR of 5 in a 1-year observation. (Accordingly,
it is drawn at a factor of 5

√
5 ≈ 11 above the 1-year, 1-σ noise level.) This SNR of 5 is a

confidence level: for a 1-year observation, the probability that Gaussian noise will fluctuate
to mimic a source at 5 standard deviations in the LISA search for sources over the whole
sky is less than 10−5, so one can be confident that any source above this threshold curve
can be reliably detected. To estimate the expected SNR for any long-lived source in the
diagram, one multiplies the factor by which it exceeds the threshold curve by the threshold
level of 5. The threshold curve is drawn on the assumption that the dominant noise is
the 1-σ instrumental noise level. If any of the random gravitational-wave backgrounds
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Figure 8: Strain spectral density curve for a 1 year observation with LISA and a detection
threshold of S/N = 5. Reproduced from the LISA pre-phase A report.

This power is concentrated at f0. When observing a finite time series of length T , we can
resolve frequencies to a precision �f ⇠ 1/T . The noise power in that bandwidth is Sn(f)/T ,
which motivates representing the detector sensitivity curve by plotting

p
Sn(f)/T or ⇢thresh

p
Sn(f)/T

where ⇢thresh is the threshold signal-to–noise ratio needed for detection. This is called the
strain spectral density. The advantage of rep[resenting sensitivity in this way is that the
detectability of a source can be directly assessed by seeing if the source amplitude h0 lies
above or below the curve. The height above the curve is a direct estimate of the signal to
noise ratio of the source. The disadvantage of this way of representing sensitivity is that it
varies with the length of observation, so this must be specified. In the case of LIGO, this is
not a problem, as the detectors take periodic breaks from observation. After each observing
run, the length of observation is known and so the strain spectral density can be evaluated
for each observing run after the fact, and used to represent the results.

An example of a strain spectral density curve is given in Fig. 8.
Finally, we note that rescaling the sensitivity according to the detection threshold is

not the only type of rescaled spectral density that is encountered in the literature. The
amplitude of a gravitational wave signal in a gravitational wave detector depends on the
orientation of the source relative to the detector plane. The same source placed at di↵erent
sky locations and orientations will have di↵erent signal-to-noise ratios. To avoid having
to specify which particular choices are being made, it is useful to produce a sky-averaged
sensitivity curve. To assess detectability of a source, its amplitude should then be assessed
for optimal orientation and sky location. The height of this optimal source above the sky
averaged sensitivity is the average signal-to-noise ratio squared of a source of this type. For
LIGO the sky averaged sensitivity is

hSn(f)i
LIGO
SA

⇡ 5Sn(f)

68 Introduction to Statistics for GWs

while for LISA we have

hSn(f)i
LISA
SA

⇡
20

3
Sn(f).

The di↵erence arises because of the 60� opening angle of the LISA arms (sin2 60 = 3/4).

5.2.3 Inspiralling sources

Inspiraling sources have to be treated di↵erently to continuous sources. This is because they
emit a finite amount of power in each frequency band and hence the Fourier transform at
each frequency is also finite. Therefore

1
p
T
h̃(f) ) 0 as T ! 1

and so the strain spectral density of an inspiraling source is zero averaged over all time.
Band-passing and windowing the data can recover some signal-to-noise ratio, as in the burst
source case, but we can do better than that using filtering.

A filtered time series is defined from a kernel K(t � t0) via convolution

w(t) =

Z 1

�1
K(t � t0)s(t0)dt0.

In the previous cases we considered signal-to-noise ratio as the ratio of the rms power in the
presence of a signal to the rms power in the noise. We use an analogous definition for filtered
data, but now compare the amplitude of the filter output due to the signal only, to the rms
amplitude of the filtered data in the presence of noise only

✓
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◆
(t) =

R1
�1 K(t � t0)h(t0)dt0

rD���
R1
�1 K(t � t0)n(t0)dt0

���
2 E .

The rms output of the filter is the signal amplitude, S, to within a fractional error of N/S,
which is the reciprocal of the signal-to-noise ratio.

The choice of the kernel is arbitrary, but it makes sense to choose the kernel that is
“best” in some sense. The best kernel is the one that maximises the signal-to-noise ratio.
This is most easily found by working in the Fourier domain. We use the Fourier transform
definition

x̃(f) =

Z 1

�1
x(t) exp [�2⇡ift] dt.

From the convolution theorem, the Fourier transform of the filter output is

w̃(f) = K̃(f)h̃(f)

where K̃(f) and h̃(f) are the Fourier transform of the kernel and waveform respectively. We
have also

w(t) =

Z 1

�1
w̃(f) exp [2⇡ift] df ) w(0) =

Z 1

�1
w̃(f) df.



Signal sensitivity: inspiraling sources

❖ For an inspiraling source, the total energy emitted in each frequency band is finite 
and so is the Fourier transform.

❖ Hence 

❖ and so the spectral density is zero (over all time).

❖ Band passing and windowing can recover some of the power, but can we do better 
than this?

❖ Yes, using filtering.
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/ ḣ2

+
+ ḣ2
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Filtering
❖ A filtered time series is defined using a kernel K(t-t’).

❖ We now apply a slightly modified definition of S/N. We compare the amplitude 
output of the filter due to the signal to the rms output of the filter due to the noise.

❖ The rms output of the filter, S+N, is the signal amplitude to within an rms fractional 
error N/S, which is the reciprocal of the signal to noise ratio.
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Optimal filter
❖ We can ask what choice of filter maximises the value of  S/N at zero-lag, i.e., t=0.

❖ From the convolution theorem for Fourier transforms we have

❖ The expression for S/N can thus be written
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E
dfdf 0

= 4

Z 1

0

Z 1

0

K̃(f)K̃⇤(f 0)(1/2)�(f � f 0)Sn(f)dfdf
0

=

Z 1

�1
|K̃(f 0)|2Sn(f

0)df 0. (70)

We deduce that the signal-to-noise ratio at zero lag is
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df.

This is of the form ê · b, for a unit vector ê to be found. The inner product of two vectors
of fixed length is maximised when they are parallel, i.e., ê / b. We therefore deduce that
the choice which maximises the inner product is

Sn(f)K̃(f) / h̃(f) ) K̃(f) /
h̃(f)

Sn(f)
.

This is the Weiner optimal filter. In the frequency domain the optimal filter is equal to
the signal, weighted by the spectral density of the noise. A search using the optimal filter
amounts to taking the inner product (s|h) of the data stream, s, with a template of the
signal, h. This is matched filtering. In practice we don’t know exactly what the signal is,
but the parameters of the signal must be estimated from the data. In LIGO/Virgo this is
done by computing the output of the optimal filter for a large number of source parameter
choices which define a template bank. This was described in more detail in Chapter 4.

The signal-to-noise ratio of the matched filtering search that uses the optimal filter is

S

N
[h] =

(h|h)p
h(h|n)(h|n)i

= (h|h)1/2

which follows from the fact that

h(h1|n)(h2|n)i = (h1|h2). (71)



❖ This motivates a natural inner product, (h1|h2), on the space of signals of the form

❖ in terms of which we have

❖ which is maximised by the choice

❖ This is the Weiner optimal filter. In the frequency domain the optimal kernel is 
equal to the signal weighted by the spectral density of the noise.

Optimal filter
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This is of the form ê · b, for a unit vector ê to be found. The inner product of two vectors
of fixed length is maximised when they are parallel, i.e., ê / b. We therefore deduce that
the choice which maximises the inner product is
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This is the Weiner optimal filter. In the frequency domain the optimal filter is equal to
the signal, weighted by the spectral density of the noise. A search using the optimal filter
amounts to taking the inner product (s|h) of the data stream, s, with a template of the
signal, h. This is matched filtering. In practice we don’t know exactly what the signal is,
but the parameters of the signal must be estimated from the data. In LIGO/Virgo this is
done by computing the output of the optimal filter for a large number of source parameter
choices which define a template bank. This was described in more detail in Chapter 4.

The signal-to-noise ratio of the matched filtering search that uses the optimal filter is
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which follows from the fact that
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❖ A search using the optimal filter then amounts to taking the inner product (s|h) of 
the data stream, s, with a template of the signal, h. This is matched filtering.

❖ The signal to noise ratio of a matched filtering search is

❖ which follows from the fact that          

❖ For a monochromatic source, the matched filter is just a Fourier transform, so this 
agrees with the previous result. In that case, the signal to noise ratio increases like 
the square root of the observation time.
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❖ The matched filtering (S/N)2 is

❖ which can also be written as 

❖ These expressions aid “integration by eye” in a logarithmic plot.

❖ For a source which has amplitude h0 at frequency f and corresponding frequency 
derivative   , we have

Optimal filter

ḟ
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This result is proved as follows
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(f 0)ñ(f 0)

Sh(f 0)
df 0

E

= 4

Z 1

0

Z 1

0

h̃1(f)h̃⇤
2
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(72)

The terms on the final line vanish because hñ(f)ñ(f 0)i = 0, i.e., the size of fluctuations in
the real and imaginary components of the noise are the same. The terms on the first line
are simplified using hñ⇤(f)ñ(f 0)i = (1/2)Sh(f)�(f � f 0)
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giving the result stated above.
The matched filtering signal-to-noise ratio simplifies to
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Plotting Sh(f) and f |h̃(f)|2 on a logarithmic frequency plot, the integral of the ratio of the
two curves “by eye” gives an estimate of the signal-to-noise ratio squared.

For a source that has amplitude h0 at frequency f , at which point the frequency derivative
is ḟ , then the stationary phase approximation gives us the scaling

h̃(f) ⇠
h0

2
q
ḟ
.

The analogy with the broad-band burst case described above motivates defining a charac-
teristic strain, hc, such that the signal-to-noise ratio squared contributed at each frequency,
by each polarization of the GW, is h2

c/(2fSh(f)). The appropriate definition is

hc = h0

s
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(f 0)hñ⇤(f)ñ(f 0)i + h̃⇤

1
(f)h̃2(f 0)hñ(f)ñ⇤(f 0)i
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ḟ

70 Introduction to Statistics for GWs

This result is proved as follows

h(h1|n)(h2|n)i = 4
DZ 1

0
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Sn(f)Sn(f 0)
dfdf 0.

(72)
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Characteristic Strain
❖ The analogy with a broad-band burst therefore motivates the definition of a 

characteristic strain, hc, for inspiraling sources (e.g., Finn and Thorne 2000).

❖ The characteristic strain is a measure of the SNR accumulated while the frequency 
sweeps through a bandwidth equal to frequency. If we also plot the rms noise in a 
bandwidth equal to frequency,    

❖ Plots of             and             allow us to see directly how the SNR of an evolving 
source builds up over the evolution.
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and this is an equality for monochromatic signals.
The characteristic strain is a measure of the signal-to-noise ratio accumulated while the

frequency sweeps through a bandwidth equal to frequency. If we plot as a sensitivity curve
the rms noise in a bandwidth equal to frequency, which is

hn(f) ⌘

p
fhSn(f)iSAi

then the signal-to-noise ratio squared accumulated as the inspiral proceeds from f to 2f ,
summed over both polarization modes, is

✓
S

N

◆2

f!2f

=


hc(f)

hn(f)

�2

.

Therefore, plotting characteristic strain on the same plot gives a quick way to see how the
signal-to-noise ratio of an inspiraling source builds up over the evolution. Note that plotting
the characteristic strain only makes sense if the detector sensitivity is represented by fSn(f).
If the detector sensitivity is represented by Sn(f) then the quantity hc/

p
f should be used

to represent the signal.

In the definition of characteristic strain, hc = h0

q
2f 2/ḟ , the term inside the square root

is proportional to the number of cycles the inspiral spends in the vicinity of the frequency
f . Papers that discuss matched filtering often include the statement that the signal to noise
ratio is enhanced by the number of cycles spent in the vicinity of a certain frequency. This
is what they are referring to.

In Fig. 9 we give an example of a plot of the characteristic strain, reproduced from Finn
and Thorne (2000). The figure shows the characteristic strain of various extreme-mass-ratio
inspiral sources detectable by LISA.

As a final remark, we note that if we consider a monochromatic source and compute
the SNR from Eq. (74) contributed by a single polarization state, we get Th2

0
/Sn(f), while

treating it as a burst source with �f = 1/T and using Eq. (69) we get Th2

0
/(2Sn(f)) from

each polarization. This di↵erence arises because in matched filtering we assume we not only
know the frequency of the signal but also its phase, while the latter assume that we have
only localized in frequency. In matched filtering, we can thus localize the signal to one of
the two independent quadratures and hence e↵ectively reduce the variance by an additional
factor of 2.

5.2.4 Stochastic backgrounds

Stochastic backgrounds are characterised by a spectral density, so it is natural to compute
the power spectral density and plot it on the same axes as the detector PSD. However,
there are two caveats. Firstly, the “power” we have been talking about so far has not been
a power in a physical sense since we have not specified any units for the time series (and
indeed for GW strain this is dimensionless). When comparing to the noise power spectral
density which is an energy density, it would be preferable to use something that represents a
physical energy density if possible. Secondly, plotting two power spectral densities does not
convey any information about their distinguishability. It would be preferable to represent a
background in a way that conveys the detectability of the background at a glance.

The energy density carried by a gravitational wave is given by

dE

dtdA
/ ḣ2

+
+ ḣ2

⇥.



Characteristic Strain

❖ In the definition of characteristic strain

❖ the term inside the square root is equal to the number of cycles the inspiral spends in 
the vicinity of the frequency f. 

❖ You will read papers in which people talk about S/N being enhanced by the number 
of cycles spent in the vicinity of a certain frequency. This is what they mean.

❖ Note: plotting characteristic strain only makes sense if you are also plotting f Sn(f). If 
you are plotting Sn(f) directly your strain should be a factor of        lower.
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Build up of SNR for EMRIs observed by LISA (Finn & Thorne 2000)

Characteristic Strain



Representing stochastic backgrounds

❖ Stochastic backgrounds are characterised by a spectral density, so it is natural to 
compute the power spectral density and plot it on the same axes as the detector 
PSD.

❖ There are two caveats. 

• Firstly, the “power” we have been talking about so far has not been a power in a 
physical sense since we have not specified any units for the time series (and 
indeed for GW strain this is dimensionless). Better to use something that 
represents a physical energy density if possible.

• Plotting two PSDs does not convey any information about their distinguishability. 
Can we represent backgrounds in a way that allows the reader to assess 
detectability at a glance?



Representing stochastic backgrounds
❖ The energy density carried by a gravitational wave is 

❖ Therefore, we should consider the time derivative of the strain series to get a 
physical energy.

❖ The corresponding spectral density is f2 Sn(f) and fluctuations in a bandwidth equal 
to frequency are f3 Sn(f). 

❖ Energy densities in astrophysical and cosmological backgrounds are often expressed 
as a fraction of the closure density of the Universe
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/ ḣ2

+
+ ḣ2
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Representing stochastic backgrounds

❖ Suppose background is generated by an astrophysical population of sources with 
coming volume density N(z). Then, total energy density in background today is

❖ We deduce (Phinney 2001, astro-ph/0108028)
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Representing stochastic backgrounds
❖ Quick assessment of background detectability can be derived from power-law 

sensitivity curves (Thrane & Romano 2013). Requires assumptions about data 
analysis procedures.
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FIG. 2: Plot showing strengths of predicted gravitational-
wave backgrounds in terms of Ωgw(f) and the corresponding
sensitivity curves for different detectors, taken from [2]. Up-
per limits from various measurements, e.g., S5 LIGO Hanford-
Livingston and pulsar timing, are shown as horizontal lines
in the analysis band of each detector. The upper limits take
into account integration over frequency, but only for a single
spectral index.

spectral index is assumed, making it difficult to compare
published limits with arbitrary models. In other cases,
limits are given as a function of spectral index, but the
constrained quantity depends on an arbitrary reference
frequency; see Eq. 7.
To illustrate the improvement in sensitivity that comes

from integrating over frequency, consider the simple case
of a white gravitational-wave background signal in white
uncorrelated detector noise. In this case, ρ increases by
precisely

√
Nbins compared to the single bin analysis. For

ground-based detectors like LIGO, typical values2 of ∆f
and δf are ∆f ≈ 100 Hz and δf ≈ 0.25 Hz, leading to
Nbins ≈ 400, and a corresponding improvement in ρ of
about 20; see, e.g., [2]. For colored spectra and non-
trivial detector geometry the improvement will be less,
but a factor of ∼5-10 increase in ρ is not unrealistic.
In this paper, we propose a relatively simple way to

graphically represent this improvement in sensitivity for
gravitational-wave backgrounds that have a power-law
frequency dependence in the sensitivity band of the de-
tectors. An example of such a “power-law integrated
sensitivity curve” is given in Fig. 3 for a correlation mea-
surement between the Advanced LIGO detectors in Han-
ford, WA and Livingston, LA. Details of the construction

though this is not always depicted in sensitivity curves.
2 The 0.25Hz bin width typical of LIGO stochastic analyses is
chosen to be sufficiently narrow that one can approximate the
signal and noise as constant across the width of the bin, yet
sufficiently wide that the noise can be approximated as stationary
over the duration of the data segment.
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Ω
(f)

FIG. 3: Ωgw(f) sensitivity curves from different stages in a po-
tential future Advanced LIGO Hanford-LIGO Livingston cor-
relation search for power-law gravitational-wave backgrounds.
The top black curve is the single-detector sensitivity curve, as-
sumed to be the same for both H1 or L1. The red curve shows
the sensitivity of the H1L1 detector pair to a gravitational-
wave background, where the spikes are due to zeros in the
Hanford-Livingston overlap reduction function (see left panel,
Fig. 5). The green curve shows the improvement in sensitivity
that comes from integration over an observation time of 1 year
for a frequency bin size of 0.25 Hz. The set of black lines are
obtained by integrating over frequency for different power law
indices, assuming a signal-to-noise ratio ρ = 1. Finally, the
blue power-law integrated sensitivity curve is the envelope of
the black lines. See Sec. III, Fig. 7 for more details.

and interpretation of these curves will be given in Sec III,
Fig. 7. We show this figure now for readers who might
be anxious to get to the punchline.
In Sec. II, we briefly review the fundamentals of cross-

correlation searches for gravitational-wave backgrounds,
defining an effective strain noise power spectral density
Seff(f) for a network of detectors. For simplicity, we
consider cross-correlation searches for unpolarized and
isotropic stochastic backgrounds using two or more de-
tectors. In Sec. III we present a graphical method for con-
structing sensitivity curves for power-law backgrounds
based on the expected signal-to-noise ratio for the search,
and we apply our method to construct new power-law in-
tegrated sensitivity curves for correlation measurements
involving second-generation ground-based detectors such
as Advanced LIGO, space-based detectors such as the Big
Bang Observer (BBO), and a pulsar timing array. For
completeness, we also construct a power-law integrated
sensitivity curve for an autocorrelation measurement us-
ing LISA. We conclude with a brief discussion in Sec. IV.

II. FORMALISM

In this section, we summarize the fundamental prop-
erties of a stochastic background and the correlated re-



Sensitivity curves: summary

❖ To summarise, there are four different types of sensitivity curve you might see in 
figures.

❖ Power Spectral Density - summarises statistical properties of noise

❖ Strain spectral density

- for monochromatic sources

- for inspirals and bursts

❖ Energy spectral density - for backgrounds
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Example: compact binary inspirals
❖ For Keplerian binaries we have

❖ The period is

❖ The quadrupole moment can be estimated

❖ From which we deduce
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Ė ⇠
...
I
2 ⇠ µ2M

4
3!

10
3

<latexit sha1_base64="eAWby3AHvzbYU1OySZOfhFREWVs="></latexit>



❖ From this we obtain

❖ For an individual source we have

❖ For a background generated by inspiring binaries we have instead

❖ Which yields the alternative scaling

Example: compact binary inspirals
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nḟ(f)
⇠ M

5
6
c f� 7

6

r
g(n, e)

n

EGW =

Z 1

0

⇢cc
2⌦GWd ln f =

Z 1

0

Z 1

0

N(z)
1

(1 + z)

dE

df
f
df

f
dz

⇢cc
2⌦GW =

⇡

4

c2

G
f 2h2

c(f) =

Z 1

0

N(z)

1 + z

✓
fr

dE

dfr

◆

|fr=f(1+z)

dz

f
dE

df
⇠ M

5
3
c f

2
3

⌦GW(f) ⇠ M
5
3
c f

2
3

Z 1

0

N(z)

(1 + z)
1
3

dz

hc(f) ⇠
p
⌦GW(f)/f ⇠ M

5
6
c f� 2

3

Introduction to Statistics for GWs 101
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2Ėn(f)
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Plugging this into Eq. (77) we obtain
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We see that the energy spectral density of the background is
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In this case the characteristic strain scales like f�2/3, while in the case of a single compact
binary coalescence we had a scaling that was f�1/6. This di↵erence arises because the
definition of characteristic strain relates to the signal to noise ratio that can be obtained in
a search for the source of interest. For individual sources, we can perform matched filtering
and enhance the signal to noise ratio coherently by the square root of the number of cycles
(approximately

p
f , which explains the di↵erence between f�2/3 and f�1/6). This is not

possible for incoherent backgrounds where we can only predict the power at each frequency,
not the phase.


