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Frequentist Statistics
❖ Many measurable quantities are random variables. Inference describes 

the process of learning the probability distribution of the random 
variable from observations.

❖ In parametric inference the form of the distribution is assumed and 
inference reduces to making statements about the parameters of the 
distribution.

❖ In frequentist statistics the parameters are assumed to be fixed but 
unknown. Statements, e.g., about significance or confidence, are about 
repetitions of the same experiment with the parameters fixed.

❖ Central to frequentist statistics are the notions of likelihood, statistics, 
and estimators.



Likelihood
❖ The likelihood of an event E governed by some probability distribution determined 

by a set of parameters      is                , regarded as a function of    .

❖ The likelihood, usually denoted               is functionally the same quantity as the pdf, 
but the latter is a function of x for fixed parameters, while the former is considered a 
function of the parameters for fixed (observed) x.

❖ It is often convenient to work with the log-likelihood, denoted 

❖ One interpretation of the likelihood is the relative plausibility of two different values 
of the parameters, given the observed data. This is expressed by
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2 Frequentist statistics

In the last section we discussed the notion of a random variable. When observing phenomena
in nature or performing experiments we would like to deduce the distribution of the random
variable, i.e., the probability distribution from which realisations of that random variable are
drawn. In parametric inference we assume that the distribution of the random variable
takes a particular form, i.e., it belongs to a known family of probability distributions. All
of the distributions that were described in the previous section are characterised by one or
more parameters and so inference about the form of the distribution reduces to inference
about the values of those parameters.

In frequentist statistics we assume that the parameters characterising the distribution are
fixed but unknown. Statements about the parameters, for example significance and confidence
are statements about multiple repetitions of the same observation, with the parameters fixed.
Key frequentist concepts are statistics, estimators and likelihood.

A statistic is a random variable or random vector T = t(X) which is a function of X
but does not depend on the parameters of the distribution, ✓. Its realised value is t = t(x).
In other words a statistic is a function of observed data only, not the unknown parameters.

An estimator is a statistic used to estimate the value of a parameter. Typically the ran-
dom vector would be a set of IID random variables, X1, . . . , Xn with pdf f(x| ✓). A function
b✓(X1, . . . , Xn) of X1, . . . , Xn used to infer the parameter values is called an estimator of ✓;
note that b✓ is a random variable with a sampling distribution in this latter context. The
value of the estimator at the observed data b✓(x1, . . . , xn) is called an estimate of ✓.

A statistic might also be used to provide an upper or lower limit for a confidence interval
on the value of a parameter, or to evaluate the validity of a hypothesis in hypothesis testing.

2.1 Likelihood

Likelihood is central to the theory of frequentist parametric inference.
If an event E has probability which is a specified function of parameters ~✓, then the

likelihood of E is P(E| ~✓), regarded as a function of ~✓.
The likelihood, denoted L(~✓|x), is functionally the same as the pdf of the data generating

process, the di↵erence is that the likelihood is regarded as a function of the parameters ~✓
while the pdf is regarded as a function of the observed data, x. It is often convenient to
work with the log likelihood

l(✓;y) = ln[L(✓;y)] = ln[f(y| ✓)] (✓ 2 ⇥)

Another useful quantity is the score

@l

@✓i

which is a vector that is also regarded as a function of ~✓ with the data fixed at the observed
values.

One interpretation of likelihood is that, given data x, the relative plausibility of or support
for di↵erent values ~✓1, ~✓2 of ~✓ is expressed by

L(~✓1;x)

L(~✓2;x)
or l(~✓1;x)� l(~✓2; |x).
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Likelihood
❖ Typically we will observe more than one random variable and so will be 

interested in the joint likelihood. If the RVs are independent we usually 
have

❖ Example: Poisson distribution. We observe                     , n IID observations 
from a Poisson distribution with parameter    . Writing 

❖ You have to be a little careful with rounding of continuous RVs when the 
rounding error is comparable to the variability in the data (see notes).
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As a result, inferences are unchanged if L(~✓|x) is multiplied by a positive constant (possibly
depending on x).

Typically we will be interested in cases where we observe more than one independent
realisation of the random variable. For discrete random variables the combined likelihood is
then the product of the likelihoods of each observed event.
Example: Poisson distribution

We observe a set {x1, . . . , xn}, of n IID observations from a Poisson distribution with
parameter �. Denoting nx̄ =

P
n

j=1
xj the likelihood is

L(✓;x) =
e�n��nx̄

Q
j
xj!

(� > 0)

l(�;y) = log (L(✓;x)] = �n�+ nx̄ ln�� ln(
Y

j

xj!)

For continuous random variables the joint likelihood can usually be written as

L(✓;x) =
nY

j=1

p(xj| ✓) ) l(✓;x) =
nX

j=1

l(xj| ✓).

or just p(x| ✓) for a vector x of random variables that are not IID. One case where this
does not necessarily hold is when measurements are imperfect. Typically we cannot observe
a quantity with infinite precision, but inevitably round to the nearest measurement unit. Ob-
servations of continuous random variables therefore typically involve grouping measurements
into bins.

Suppose random variables X1, . . . , Xn are IID with cumulative distribution function
P (x| ~✓) and we observe that there are n1, . . . , nk observations in each of the k intervals
(a0, a1], . . . , (ak�1, ak], where �1  a0 < a1 < . . . < ak  1 and P(a0 < Xj  ak) = 1.

The distribution of (N1, . . . Nk) is Multinomial with parameters (n, p1(~✓), . . . pk(~✓)) with

pr(~✓) = P(ar�1 < Xj  ar| ~✓) = P (ar| ~✓)� P (ar�1| ~✓),

and the likelihood is given by (3). For example, with common distribution N(µ, �2) we have

pr(µ, �
2) = �

✓
ar � µ

�

◆
� �

✓
ar�1 � µ

�

◆
.

If observations of the IID random variables are made with a resolution (or maximum
grouping error )of ±1

2
h, then we are e↵ectively in the above situation, and a recorded value

x represents a value in the range x ± 1

2
h. Assuming that the grouping error is small, the

likelihood is

nY

j=1

{P (xj +
1

2
h| ✓)� P (xj �

1

2
h| ✓)}. (45)

If p(x| ✓) does not vary too rapidly in each interval (xj � 1

2
h, xj +

1

2
h) then (45) can be

approximated by
nY

j=1

{hp(xj| ✓)},
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Maximum Likelihood

❖ The score is the derivative of the log-likelihood, also regarded as a function of 
parameters

❖ The point(s) where the score vanishes define the maximum likelihood

❖ This is a function of the observed data only and is an estimator. It has various nice 
properties which we will discuss later.
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2 Frequentist statistics

In the last section we discussed the notion of a random variable. When observing phenomena
in nature or performing experiments we would like to deduce the distribution of the random
variable, i.e., the probability distribution from which realisations of that random variable are
drawn. In parametric inference we assume that the distribution of the random variable
takes a particular form, i.e., it belongs to a known family of probability distributions. All
of the distributions that were described in the previous section are characterised by one or
more parameters and so inference about the form of the distribution reduces to inference
about the values of those parameters.

In frequentist statistics we assume that the parameters characterising the distribution are
fixed but unknown. Statements about the parameters, for example significance and confidence
are statements about multiple repetitions of the same observation, with the parameters fixed.
Key frequentist concepts are statistics, estimators and likelihood.

A statistic is a random variable or random vector T = t(X) which is a function of X
but does not depend on the parameters of the distribution, ✓. Its realised value is t = t(x).
In other words a statistic is a function of observed data only, not the unknown parameters.

An estimator is a statistic used to estimate the value of a parameter. Typically the ran-
dom vector would be a set of IID random variables, X1, . . . , Xn with pdf f(x| ✓). A function
b✓(X1, . . . , Xn) of X1, . . . , Xn used to infer the parameter values is called an estimator of ✓;
note that b✓ is a random variable with a sampling distribution in this latter context. The
value of the estimator at the observed data b✓(x1, . . . , xn) is called an estimate of ✓.

A statistic might also be used to provide an upper or lower limit for a confidence interval
on the value of a parameter, or to evaluate the validity of a hypothesis in hypothesis testing.

2.1 Likelihood

Likelihood is central to the theory of frequentist parametric inference.
If an event E has probability which is a specified function of parameters ~✓, then the

likelihood of E is P(E| ~✓), regarded as a function of ~✓.
The likelihood, denoted L(~✓;x), is functionally the same as the pdf of the data generating

process, the di↵erence is that the likelihood is regarded as a function of the parameters ~✓
while the pdf is regarded as a function of the observed data, x. It is often convenient to
work with the log likelihood

l(✓;x) = ln[L(✓;x)] = ln[p(x| ✓)] (✓ 2 ⇥)

Another useful quantity is the score

@l

@✓i

which is a vector that is also regarded as a function of ~✓ with the data fixed at the observed
values.

One interpretation of likelihood is that, given data x, the relative plausibility of or support
for di↵erent values ~✓1, ~✓2 of ~✓ is expressed by

L(~✓1;x)

L(~✓2;x)
or l(~✓1;x)� l(~✓2; |x).
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Therefore the lower bound should be ✓
2

n2 , but

var


n+ 1

n
X(n)

�
=

✓2

n(n+ 2)
< I�1

✓

The derivation and examples above were all for a one dimensional parameter. The cor-
responding result for the multiple parameter case is

cov(ti, tj) �
@mi

@✓k
[I✓]

�1

kl

@mj

@✓l
, [I✓]ij = E


@l

@✓i

@l

@✓j

�
,

where t is the realised value of some multi-dimensional statistic T and m = E(T).

2.10 Rao-Blackwell Theorem

The Rao-Blackwell theorem gives a method of improving an unbiased estimator, and involves
conditioning on a su�cient statistic.

Theorem 3. (Rao-Blackwell theorem). Let Y1, Y2, . . . , Yn be a random sample of observa-
tions from a distribution with p.d.f. f(y| ✓). Suppose that S is a su�cient statistic for ✓ and
that b✓ is any unbiased estimator for ✓. Define b✓S = E[b✓ | S]. Then

(a) b✓S is a function of S only;

(b) E[b✓S] = ✓;

(c) var b✓S  var b✓.

2.11 Maximum likelihood estimators

Definition 9. The maximum likelihood estimator (MLE) is defined by

b✓ = argmax
✓2⇥

L(✓;x) = argmax
✓2⇥

`(✓;x)

.

If 9@`/@✓j and ⇥ is open, then the MLE b✓ satisfies @`/@✓j(b✓) = 0, j = 1, . . . , K, ✓ 2 ⇥ ⇢
RK .

The MLE can be biased or unbiased but it is asymptotically unbiased and e�cient and
it is also consistent. In fact the following lemma holds.

Lemma 5. Let X1, . . . , Xn ⇠ p(x | ✓) IID, ✓ 2 ⇥ ⇢ RK. Under the regularity conditions of
Cramer-Rao inequality, the MLE asymptotically satisfies

b✓ ⇠ NK(✓, I
�1

✓
) n ! 1,

in particular, E(b✓) ! ✓ and for K = 1, Var(b✓)/I�1

✓
! 1 as n ! 1.

If there exists an unbiased e�cient estimator this has to be the MLE.

Lemma 6. Suppose there exists an unbiased estimator ✓̃ that attains Cramer-Rao lower
bound, and suppose that MLE ✓̂ is the solution of @`

@✓
= 0. Then, ✓̃ = ✓̂.



Statistics and estimators
❖ A statistic is any function, t(Y), of a random variable. It is a function of the observed 

values of the data only, not the (unknown) parameters of the distribution.

❖ An estimator is any statistic used to estimate the value of parameter. Typically the 
observed data would be a set of realisations of IID random variables, X1, …., XN and 
an estimator is some function                            used to infer values of the parameters 
of the underlying pdf.

❖ Examples

- maximum likelihood estimator

- sample mean (used to estimate mean)

- sample variance (used to estimate variance) 
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possibly on a set of measure zero). This follows because if g1(s) and g2(s) are two such
estimators, then E✓ {g1(s)� g2(s)} = ✓ � ✓ = 0, so g1(s) = g2(s) with probability 1.

Example.

If S = (A1(y), A2(y), . . . , Ap(y)) is the vector of natural statistics for a full exponential
family in its natural parameterisation and the domain of the natural parameters, ⇥, contains
an open rectangle in Rp, then S is complete.

2.8 Estimators

Recall that an estimator is a statistic (i.e., a function of data only) that is used to obtain an
estimate of one or more parameters of the underlying distribution. Often we consider point
estimators which are single valued functions b✓(X1, . . . , Xn) of X1, . . . , Xn.

Examples of point estimators:

1. if ✓ = E(X), we can take b✓ to be mean, median, mode of the empirical distribution;

2. moment estimators, including the sample mean

µ̂ =
1

n

nX

i=1

xi

and the sample variance

�̂2 =
1

n� 1

nX

i=1

(xi � µ̂)2 .

3. MLE - maximum likelihood estimator, which minimizes the score.

Typically there will be several possible estimators of a parameter ✓. To choose between
estimators we will define various desirable properties: unbiasedness, consistency and e�-
ciency. Admissibility and su�ciency are also desirable properties but we won’t discuss these
here. Su�ciency of an estimator is closely related to su�ciency of a statistic. Robustness
and ease of computation are not considered in this course, but may be important in practical
applications.

2.8.1 Unbiasedness

Definition 1. b✓ (r.v.) is an unbiased estimator of ✓ i↵

E(b✓) = ✓.

If E(b✓) 6= ✓ then b✓ is a biased estimator and we define the bias function of b✓ as

bias(b✓) = E(b✓)� ✓.

As an example, suppose ✓ is a population mean, then the sample mean X̄ is unbiased. Also,
X1 (first observation in sample) is unbiased, and if the distribution is symmetric so is the
sample median.

There are often several unbiased estimators to choose from, but which is best?
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Sufficient statistics

❖ Any function of the data is a statistic and any statistic could be an estimator, so how 
do we find good statistics?

❖ For some probability distributions there is a lower-dimensional vector that contains 
the same information about the parameters of the distribution as the full data x. 
These are sufficient statistics.

❖ A statistic is sufficient for parameters     if the distribution of X given S does not 
depend on   , i.e.,                          does not depend on    .

❖ The full set of observations X is always sufficient, but often there are sufficient 
statistics of much lower dimensionality.

❖ Sufficient statistics lead to a reduction in the size of the data. Statistics achieving the 
greatest reduction are called minimal sufficient.
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2.2 Su�cient statistics

If a parametric form is assumed for the distribution of X, then there may exist a lower
dimensional function of the vector of observations x that contains the same information on
the value of ~✓ as vector x. Such a function is called a su�cient statistic.

2.3 Definition

Suppose a random vectorX has distribution function in a parametric family {P (y| ✓); ✓ 2 ⇥}
and realized value y. A statistic (recall this just means a function of observed data only)
is said to be su�cient for ~✓ if the distribution of X given S does not depend on ~✓, i.e.
pX|S(X|s, ~✓) does not depend on ~✓. Note that

(i) if S is su�cient for ~✓, so is any one-to-one function of S.

(ii) X is trivially su�cient.

Examples

• Bernoulli trials : X1, . . . , Xn take values 0 or 1 independently with probabilities 1�p
and p; n is fixed.

pX(x| p) =
nY

j=1

pxj(1� p)1�xj = p
P

xj(1� p)n�
P

xj (50)

If S = X1 + · · · +Xn, then S has the Binomial p.d.f.

pS(s| p) =
✓

n
s

◆
ps(1� p)n�s (s = 0, 1, . . . , n)

and the p.d.f. of X given S is

pY|s(x|s) =
P(X1 = x1, . . . , Xn = xn, X1 + · · · +Xn = s| ✓)

P(X1 + · · · +Xn = s)

=

(
pY(x| p)
pS(s| p) (

P
xj = s)

0 (
P

xj 6= s)

=

8
<

:

✓
n
s

◆�1

(
P

xj = s)

0 (
P

xj 6= s)

This does not depend on p, so S is su�cient for p.

For example, in the case when n = 3 the conditional p.d.f of x = (x1, x2, x3) given
s =

P
xi is as follows:
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Sufficient statistics
❖ Sufficient statistics can be recognised by looking at the likelihood. This is formalised 

by the Neyman Factorisation Theorem

❖ Example: Poisson distribution

- The likelihood factorises

- where s = x1 + … xn . We recognise s as a sufficient statistic, which can be verified 
using
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Sample s =
P

xi

(y1, y2, y3) 0 1 2 3
(0 0 0) 1 0 0 0
(1 0 0) 0 1

3
0 0

(0 1 0) 0 1

3
0 0

(0 0 1) 0 1

3
0 0

(1 1 0) 0 0 1

3
0

(1 0 1) 0 0 1

3
0

(0 1 1) 0 0 1

3
0

(1 1 1) 0 0 0 1

• Pois(�) , S = X1 + · · · +Xn has distribution Pois(n�) and p.d.f.

pS(s|�) =
e�n�(n�)s

s!
,

so the distribution of X given s has p.d.f.

pX|s(X|s) =

8
<

:

pX(x|�)
fS(s|�) =

e
�n�

�

P
xj (

Q
j xj !)

�1

e�n�(n�)s

s!

= n
�s

s!Q
j xj !

(
P

yj = s)

0 (
P

xj 6= s)
,

which does not depend on � (it is a multinomial distribution), so S is su�cient for �.

Interpretation of su�ciency: If S is su�cient for ~✓, we can argue that x contains no
information on ~✓ beyond what is contained in the value s of S, i.e. all the information in X

about ~✓ is contained in s. This suggests that inferences about the value of ~✓ should be based
on the value of s. The rest of the information in y is still relevant to testing the correctness
of the assumed parametric family, e.g., by a residual analysis. Su�ciency leads to replacing
x by s and hence to a reduction in the data, so there is an advantage in using statistical
models and designs which lead to su�cient statistics of low dimensionality.

2.4 Recognizing su�cient statistics: Neyman Factorization The-

orem

Theorem 1. (Neyman Factorization Theorem). Let X = (X1, . . . , Xn) ⇠ p(x| ~✓). Then,
statistic s = s(X1, . . . , Xn) is su�cient for ✓ i↵ there exist functions h of x and g of (s, ~✓)
such that

p(x | ~✓) = L(~✓;x) = g(s(x), ~✓)h(x) 8~✓ 2 ⇥, x 2 X
Proof. Proof (discrete case only).

If s is su�cient, then the conditional p.d.f. pX|S(x|s) does not depend on ~✓ and we can
take h(x) to be pX|S(x|s) and g(s; ✓) to be fS(s| ✓). Then

L(~✓;x) = pX(x| ~✓) = P(X = x| ~✓)
= P(X = x&S = s(x) | ~✓)
= P(X = x|S = s(x), ~✓)P(S = s(x)| ~✓)
= P(X = x|S = s(x))P(S = s(x)| ~✓) [since S is su�cient]

= h(x)g(s(x), ~✓).

p(x|�) =
nY

i=1

�xie��

xi!
= e�n��s ⇥ 1Qn

i=1 xi!
<latexit sha1_base64="1O3vHg11aDS/86GydlH3+hhECQA="></latexit>

18 Introduction to Statistics for GWs

Sample s =
P

xi

(y1, y2, y3) 0 1 2 3
(0 0 0) 1 0 0 0
(1 0 0) 0 1

3
0 0

(0 1 0) 0 1

3
0 0

(0 0 1) 0 1

3
0 0

(1 1 0) 0 0 1

3
0

(1 0 1) 0 0 1

3
0

(0 1 1) 0 0 1

3
0

(1 1 1) 0 0 0 1

• Pois(�) , S = X1 + · · · +Xn has distribution Pois(n�) and p.d.f.

pS(s|�) =
e�n�(n�)s

s!
,

so the distribution of X given s has p.d.f.

pX|s(X|s) =

8
<

:

pX(x|�)
pS(s|�) =

e
�n�

�

P
xj (

Q
j xj !)

�1

e�n�(n�)s

s!

= n
�s

s!Q
j xj !

(
P

xj = s)

0 (
P

xj 6= s)
,

which does not depend on � (it is a multinomial distribution), so S is su�cient for �.

Interpretation of su�ciency: If S is su�cient for ~✓, we can argue that x contains no
information on ~✓ beyond what is contained in the value s of S, i.e. all the information in X
about ~✓ is contained in s. This suggests that inferences about the value of ~✓ should be based
on the value of s. The rest of the information in y is still relevant to testing the correctness
of the assumed parametric family, e.g., by a residual analysis. Su�ciency leads to replacing
x by s and hence to a reduction in the data, so there is an advantage in using statistical
models and designs which lead to su�cient statistics of low dimensionality.

2.4 Recognizing su�cient statistics: Neyman Factorization The-
orem

Theorem 1. (Neyman Factorization Theorem). Let X = (X1, . . . , Xn) ⇠ p(x| ~✓). Then,
statistic s = s(X1, . . . , Xn) is su�cient for ✓ i↵ there exist functions h of x and g of (s, ~✓)
such that

p(x | ~✓) = L(~✓;x) = g(s(x), ~✓)h(x) 8~✓ 2 ⇥, x 2 X (51)

Proof. Proof (discrete case only).
If s is su�cient, then the conditional p.d.f. pX|S(x|s) does not depend on ~✓ and we can
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Sufficient statistics
❖ Example: gravitational wave data analysis

- The usual likelihood for observed gravitational wave data takes the form

- where

- For many waveform families it is possible to find a reduced basis that can be used 
to reconstruct all the waveforms in the family

- The overlaps of the basis waveforms with the data,                        , are sufficient 
statistics for inferring the waveform parameters.

h(t; ~✓) =
MX

i=1

ai(~✓)hi(t)
<latexit sha1_base64="dpqjYFtPjaRzO6Z2X9vnb7DcG10="></latexit>

Si = (hi|b)
<latexit sha1_base64="QcQBEbQkOXKvtEmG4/WjFTBoFcY="></latexit>

(a|b) =
Z 1

�1

ã⇤(f)b̃(f) + ã(f)b̃⇤(f)

Sn(f)
df
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p(d|~✓) / exp
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d� h(~✓)|d� h(~✓)
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Exponential families
❖ Distributions taking particular forms have nice properties. In particular those that 

belong to an exponential family.

❖ An exponential family is any family of distributions of the form

❖ where                                                               are real-valued functions.

❖ Given a set of IID observations {x1, …, xn} from this distribution, the set

❖ of statistics are sufficient for     and are called the natural statistics of the family.

❖ Any distribution that depends on a K-dimensional parameter and has a K-
dimensional minimal sufficient statistic is a member of the exponential family.
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Example

• Weibull distribution: {X1, . . . , Xn} IID from Weibull with pdf

p(y|↵,�) = ↵�↵x↵�1 exp[�(�x)↵] (x > 0;↵,� > 0)

Then

L(↵,�;x) = ↵n�n↵(
nY

j=1

xj)
↵�1 exp(��↵

X
x↵

j
)

For L(↵,�; z)/L(↵,�;y) not to depend on ↵,�, the zj must be some permutation of
the xj, but no other reduction in the data retains su�ciency, i.e. the order statistics
x(1)  . . .  x(n) are minimal su�cient.

2.6 Exponential families of distributions

A family of distributions indexed by a multivariate parameter ~✓ 2 ⇥ ⇢ Rp, is an exponential

family i↵ for some real-valued functions {Aj; j = 1 . . . , K}, {Bj; j = 1 . . . , K}, C,D the
pdf has the form

p(x| ✓) = exp

(
KX

j=1

Aj(x)Bj(~✓) + C(~✓) +D(x)

)
8x, ~✓ (52)

Given observations {x1, . . . , xn}, the set of K statistics {
P

n

j=1
Ai(xj) : 1  i  K} are

su�cient for ~✓ and they are called the natural statistics of the exponential family
In fact, for a K-dimensional parameter ~✓, the minimal su�cient statistic vector is also K-

dimensional only for the distributions from the exponential family (under certain regularity
conditions, which are the same as those that apply for the validity of the Cramer-Rao
inequality described below).

Example. N(µ, �2):

p(x|µ, �) = exp

⇢
µ��2x� 1

2
��2x2 �

✓
1

2
µ2��2 + ln � +

1

2
ln(2⇡)

◆�
,

and B1(µ, �) = µ��2, B2(µ, �) = �1

2
��2, A1(x) = x, A2(x) = x2. The vector S =

(
P

i
xi,

P
i
x2

i
) based on sample (x1, . . . , xn) is su�cient for ~✓ = (µ, �).

2.7 Completeness

A su�cient statistic s(y) is complete if, for any real function g,

E✓ {g(s)} = 0 for all ✓

implies
P✓ {g(s) = 0} = 1 for all ✓. (53)

This definition has several consequences. For example, if an unbiased estimator of a scalar
parameter, ✓, is a function of a complete su�cient statistic s, then it is unique (except
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2.7 Estimators

Recall that an estimator is a statistic (i.e., a function of data only) that is used to obtain an
estimate of one or more parameters of the underlying distribution. Often we consider point
estimators which are single valued functions b✓(X1, . . . , Xn) of X1, . . . , Xn.

Examples of point estimators:

1. if ✓ = E(X), we can take b✓ to be mean, median, mode of the empirical distribution;
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pdf has the form

p(x| ✓) = exp

(
KX

j=1

Aj(x)Bj(~✓) + C(~✓) +D(x)

)
8x, ~✓ (52)

Given observations {x1, . . . , xn}, the set of K statistics {
P

n

j=1
Ai(xj) : 1  i  K} are

su�cient for ~✓ and they are called the natural statistics of the exponential family
In fact, for a K-dimensional parameter ~✓, the minimal su�cient statistic vector is also K-

dimensional only for the distributions from the exponential family (under certain regularity
conditions, which are the same as those that apply for the validity of the Cramer-Rao
inequality described below).

Example. N(µ, �2):

p(x|µ, �) = exp

⇢
µ��2x� 1

2
��2x2 �

✓
1

2
µ2��2 + ln � +

1

2
ln(2⇡)

◆�
,

and B1(µ, �) = µ��2, B2(µ, �) = �1

2
��2, A1(x) = x, A2(x) = x2. The vector S =

(
P

i
xi,

P
i
x2

i
) based on sample (x1, . . . , xn) is su�cient for ~✓ = (µ, �).

2.7 Estimators

Recall that an estimator is a statistic (i.e., a function of data only) that is used to obtain an
estimate of one or more parameters of the underlying distribution. Often we consider point
estimators which are single valued functions b✓(X1, . . . , Xn) of X1, . . . , Xn.

Examples of point estimators:

1. if ✓ = E(X), we can take b✓ to be mean, median, mode of the empirical distribution;



Exponential families
❖ Examples of exponential families

Pois(�) : p(x|�) = e��✓x

x!
= exp[(ln�)x� �� ln(x!)]
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Bin(n, p) : p(x| p) =
✓

n
x

◆
px(1� p)n�x = exp


ln

✓
p

1� p

◆
x+ n ln(1� p) + ln

✓
n
x

◆�
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N(µ0,�
2)(� unknown) : p(x|µ0,�) = exp[� 1

2�2
(x� µ0)

2 � ln� � 1

2
ln(2⇡)]
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E(�) : p(x|�) = �e��x = exp(��x+ ln�)
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2
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1

2
ln(2⇡)

◆�
,
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Estimators: unbiasedness
❖ The bias of an estimator of a parameter measures the difference between the mean 

value and the value of the parameter being estimated.

❖ An estimator is unbiased if the bias is zero

❖ Estimators may also be asymptotically unbiased

bias(✓̂) = b(✓) = E
⇣
✓̂
⌘
� ✓
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Unbiasedness is not necessarily required for all estimation problems, e.g.,
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θ1

θ2

True value b✓1 (with wide density) and
b✓2 (with narrow density)
are estimators of ✓;
b✓1 is unbiased;
b✓2 is biased;
but b✓2 may be preferred because it is
less likely to be a long way from ✓.

Biased estimators may be preferred to unbiased estimators in some circumstances. A
good property is asymptotic unbiasedness.

Definition 2. b✓ (r.v.) is asymptotically unbiased estimator of ✓ i↵

E(b✓) ! ✓ as n ! 1.

2.7.2 Consistency

As sample size is increased the sampling pdf of any reasonable estimator should become
more closely concentrated about ✓.

Definition 3. b✓ is a (weakly) consistent estimator for ✓ if

P(| b✓ � ✓ |> ✏) ! 0 as n ! 1

for any ✏ > 0.

For a particular problem, it may be di�cult to verify consistency from this definition,
however, a su�cient (not necessary) condition for consistency is given in the lemma below.

Lemma 2. If var (b✓) ! 0 and bias(b✓) ! 0 as n ! 1, then b✓ is (weakly) consistent.

Definition 4. The mean square error of an estimator b✓ is defined as

MSE(b✓) = E[(b✓ � ✓)2] = var(b✓) + [bias(b✓)]2.

Mean squared error consists of two terms: variance of b✓ and its squared bias.
The Markov inequality states that, for a non-negative random variable X and a > 0

P(X � a)  E(X)

a

which can be proved straightforwardly

E(X) =

Z 1

0

xp(x)dx =

Z
a

0

xp(x)dx+

Z 1

a

xp(x)dx �
Z 1

a

xp(x)dx � a

Z 1

a

p(x)dx = aP(X � a).
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2. moment estimators, including the sample mean

µ̂ =
1

n

nX

i=1

xi

and the sample variance

�̂2 =
1

n� 1

nX

i=1

(xi � µ̂)2 .

3. MLE - maximum likelihood estimator, which minimizes the score.

Typically there will be several possible estimators of a parameter ✓. To choose between
estimators we will define various desirable properties: unbiasedness, consistency and e�-
ciency. Admissibility and su�ciency are also desirable properties but we won’t discuss these
here. Su�ciency of an estimator is closely related to su�ciency of a statistic. Robustness
and ease of computation are not considered in this course, but may be important in practical
applications.

2.7.1 Unbiasedness

Definition 1. b✓ (r.v.) is an unbiased estimator of ✓ i↵

E(b✓) = ✓.

If E(b✓) 6= ✓ then b✓ is a biased estimator and we define the bias function of b✓ as

bias(b✓) = E(b✓)� ✓.

As an example, suppose ✓ is a population mean, then the sample mean X̄ is unbiased. Also,
X1 (first observation in sample) is unbiased, and if the distribution is symmetric so is the
sample median.

There are often several unbiased estimators to choose from, but which is best?



❖ Historically, a lot of weight was 
placed on unbiasedness. Now, 
minimising mean square error is 
considered more important.

❖ MSE can often be reduced by trading 
bias for variance. An estimator with a 
larger bias, but smaller variance, can 
be preferable.

Estimators: unbiasedness
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❖ An estimator is consistent if it becomes increasingly concentrated around the true 
value as the number of observations increases.

❖ From the Markov inequality

❖ we can deduce

❖ The term on the right hand side is the mean square error, which is the sum of 
variance and bias-squared. Therefore, if the bias and variance of an estimator tend to 
zero asymptotically, the estimator will be (weakly) consistent.

Estimators: consistency
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Setting X = (✓̂ � ✓)2 and a = ✏2 we find

P[| b✓ � ✓ |> ✏]  1

✏2
E(b✓ � ✓)2.

The term on the right had side is the mean square error. If both bias and variance tend
to zero asymptotically, the mean square error tends to zero and therefore the left hand side
must tend to zero. Hence we have proven Lemma 2.

Examples

1. Estimation of the mean of a normal distribution: using the sample mean X̄ or median
or just the value of X1 (first observation in sample) are all unbiased estimators and
have variances �

2

n
, ↵�

2

n
(↵ is a constant > 1) and �2. Therefore the first two are

consistent. However, it is evident that X1 is not consistent as its distribution does not
change with sample size.

2. The Cauchy distribution with scale 1 and pdf p(x| ✓) = ⇡�1[1+(x�x0)2]�1. In this case,
the sample mean X̄ has the same distribution as any single Xi, thus P[| X̄ � x0 |> ✏]
is the same for any n. This does not tend to zero as n ! 1, and so X̄ is not (weakly)
consistent. (However, the sample median is a consistent estimator of x0.)

2.8 E�ciency

Definition 5. The e�ciency of an unbiased estimator (b✓) is the ratio of the minimum
possible variance to var(b✓).

Definition 6. An unbiased estimator with e�ciency equal to 1 is called e�cient or a
minimum variance unbiased estimator (MVUE).

We can also define asymptotic e�ciency of an (asymptotically) unbiased estimator (b✓) is
the limit of the ratio of the minimum possible variance to var(b✓) as sample size n ! 1.

Definition 7. An estimator with asymptotic e�ciency equal to 1 is called asymptotically
e�cient.

We can compare the e�ciency of two estimators in the following way.

Definition 8. The (asymptotic) relative e�ciency of two unbiased estimators b✓1 and
b✓2 is the reciprocal of the ratio of their variances, as sample size ! 1: limn!1

V ar(b✓1)
V ar(b✓2)

.

The definition of asymptotic relative e�ciency can also be extended to asymptotically
unbiased estimators. These definitions are all fine, but they rely on knowing what the
smallest possible variance is. Under certain assumptions we can obtain this from the Cramér-
Rao inequality.



❖ The efficiency of an estimator is the ratio of the minimum possible variance to the 
variance of the estimator.

❖ An unbiased estimator with efficiency of 1 is called efficient or a minimum variance 
unbiased estimator (MVUE).

❖ Efficiency can also be defined asymptotically. An estimator whose efficiency tends to 
1 as the number of observations tends to infinity is asymptotically efficient.

❖ The (asymptotic) relative efficiency of two estimators is the reciprocal of the ratio of 
their variances (as the sample size tends to infinity)

Estimators: efficiency
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❖ The notion of efficiency requires knowledge of the smallest achievable variance of an 
estimator. This is provided by the Cramer-Rao bound.

❖ In the univariate case we first define Fisher’s Information Matrix

❖ where l is the log-likelihood, the derivative is evaluated at the true parameter values, 
and the expectation value is taken with respect to the pdf for the same parameter 
value. The second equality follows under certain conditions (see next slide).

❖ The Cramer-Rao inequality states that, for a random sample X1, …, Xn from a 
probability distribution with pdf              and some estimator     with bias

Cramer-Rao bound

I✓ = E
"✓

@l

@✓

◆2
#
= �E


@2l

@✓2

�
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2.8.1 Cramér-Rao lower bound (inequality)

The theorem below (Cramér-Rao inequality) provides a lower bound on the variance of an
estimator. When this lower bound is attainable for unbiased estimators, it can be used in
the definition of e�ciency.

Regularity conditions for the Cramér-Rao inequality.

1. 8✓1, ✓2 2 ⇥ such that ✓1 6= ✓2, p(x | ✓1) 6= p(x | ✓2) [identifiability].

2. 8✓ 2 ⇥, p(x | ✓) have common support.

3. ⇥ is an open set.

4. 9@p(x | ✓)/@✓.

5. E (@ log p(X|✓)/@✓)2 < 1.

Here I(✓) = E
⇣

@ log f(X|✓)
@✓

⌘2

is the Fisher information matrix.

Theorem 2. (Cramér-Rao inequality) Let X1, . . . , Xn denote a random sample from p(x| ✓),
and suppose that b✓ is an estimator for ✓. Then, subject to the above regularity conditions,

var(b✓) �
�
1 + @b

@✓

�2

I✓
,

where

b(✓) = bias(b✓) and I✓ = E
"✓

@`

@✓

◆2
#
.

Comments

1. For unbiased b✓, the lower bound simplifies to var(b✓) � I�1

✓
.

2. I✓ is called Fisher’s information about ✓ contained in the observations.

3. Regularity conditions are needed to change the order of di↵erentiation and integration
in the proof given below.

4. The result can be extended to estimators of functions of ✓.

Proof of Theorem 2.

E[b✓] =

Z
. . .

Z
b✓(x1, . . . , xn)

(
nY

i=1

p(xi| ✓)
)
dx

=

Z
. . .

Z
b✓(x1, x2, . . . , xn)L(✓;x)dx

R
. . .

R
is a multiple integral with respect to x=(x1, x2, . . . , xn).

From the definition of bias we have

✓ + b = E(b✓) =
Z

. . .

Z
b✓L(✓;x)dx.
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❖ The proof of the Cramer-Rao inequality relies on certain regularity conditions 

Cramer-Rao bound: assumptions
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Cramer-Rao bound: attainability
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Lemma 3. The Cramér-Rao lower bound is attainable i↵ there exists a function f(x) of x
only, and functions a(✓), c(✓) of ✓ only such that

@l

@✓
=

(f(x)� a(✓))

c(✓)
,

in which case b✓ = f(x) attains it. The expectation value E✓✓̂ = a(✓) and da/d✓ = c(✓)I✓.

Corollary 1. There is an unbiased estimator that attains the Cramér-Rao lower bound i↵
there exists a function g(x) of x only such that

@l

@✓
= I✓(g(x)� ✓),

in which case the unbiased estimator b✓ = g(x) attains it.

Lemma 4. Under the same regularity conditions as for the Cramér-Rao lower bound

I✓ = �E

@2l

@✓2

�

Example

X1, X2, . . . , Xn ⇠ N(µ, �2), �2 known.
Likelihood for µ

L(µ;x) =
nY

i=1

(2⇡�2)�
1
2 exp

⇢
� 1

2�2
(xi � µ)2

�

log likelihood for µ

l = logL = �n

2
log(2⇡�2)� 1

2�2

nX

i=1

(xi � µ)2

Thus we have
@l

@µ
=

1

�2

nX

i=1

(xi � µ),
@2l

@µ2
= � n

�2
,

and

I✓ = E

� @2l

@µ2

�
=

n

�2
.

The lower bound for unbiased estimators is I�1

✓
= �

2

n
. However,

var(X̄) =
�2

n
,

so X̄ attains its lower bound. No other unbiased estimator can have smaller variance than
X̄. Therefore X̄ is MVUE.

Alternatively, we can use Lemma 3, and

@l

@µ
=

1

�2

X
(Xi � µ) =

n

�2
(X̄ � µ)



❖ Consider                                                               The log-likelihood is

❖ We can compute

❖ and hence obtain the Fisher matrix

❖ We know that                             and hence it achieves this lower bound and is 
efficient. We could also deduce this from the earlier lemma (Lemma 3) by noticing

Cramer-Rao bound: example
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❖ Now consider                                          with likelihood

❖ here x(i) denotes the i’th element in the ordered sequence of observations and is 
called an order statistic. We can compute the Fisher matrix

❖ But if we consider the estimator X(n) we find

❖ So the Cramer-Rao bound is violated. This is because one of the regularity 
conditions (common support) is violated in this case.

Cramer-Rao bound: counterexample
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Therefore the bound is attainable.
Regularity conditions are essential to be able to use the lower bound. Consider the

uniform distribution case X1, X2, . . . , Xn ⇠ U [0, ✓]

L(✓;x) =

⇢
1

✓n
0  x(1)  x(2)  . . . , x(n)  ✓

0 elsewhere

In the range where L is di↵erentiable l = �n log ✓

@l

@✓
= �n

✓
and

@2l

@✓2
=

n

✓2
.

Thus

I✓ = E
"✓

@l

@✓

◆2
#
=

n2

✓2

but

E

� @2l

@✓2

�
=

�n

✓2
.

Therefore the lower bound should be ✓
2

n2 , but

var


n+ 1

n
X(n)

�
=

✓2

n(n+ 2)
< I�1

✓

The derivation and examples above were all for a one dimensional parameter. The cor-
responding result for the multiple parameter case is

cov(ti, tj) �
@mi

@✓k
[I✓]

�1

kl

@mj

@✓l
, [I✓]ij = E


@l

@✓i

@l

@✓j

�
,

where t is the realised value of some multi-dimensional statistic T and m = ~✓ + b = E(T).

2.9 Rao-Blackwell Theorem

The Rao-Blackwell theorem gives a method of improving an unbiased estimator, and involves
conditioning on a su�cient statistic.

Theorem 3. (Rao-Blackwell theorem). Let X1, X2, . . . , Xn be a random sample of observa-
tions from a distribution with pdf p(x| ✓). Suppose that S is a su�cient statistic for ✓ and
that b✓ is any unbiased estimator for ✓. Define b✓S = E[b✓ | S]. Then

(a) b✓S is a function of S only;

(b) E[b✓S] = ✓;

(c) var b✓S  var b✓.
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cov(ti, tj) �
@mi

@✓k
[I✓]

�1

kl

@mj

@✓l
, [I✓]ij = E


@l

@✓i

@l

@✓j

�
,

where t is the realised value of some multi-dimensional statistic T and m = ~✓ + b = E(T).

2.9 Rao-Blackwell Theorem

The Rao-Blackwell theorem gives a method of improving an unbiased estimator, and involves
conditioning on a su�cient statistic.

Theorem 3. (Rao-Blackwell theorem). Let X1, X2, . . . , Xn be a random sample of observa-
tions from a distribution with pdf p(x| ✓). Suppose that S is a su�cient statistic for ✓ and
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❖ In the multivariate case we generalise the definition of the Fisher matrix 
to

❖ For a multi-dimensional statistic T, we introduce an expectation vector 
m =            .

❖ The multivariate Cramer-Rao bound is then

Cramer-Rao bound: multivariate
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❖ The MLE may or may not be unbiased, but it is always asymptotically unbiased 
and asymptotically efficient. In fact it is asymptotically Normal

❖ In fact, if any unbiased estimator exists that attains the Cramer-Rao bound, it has to 
be the MLE.

❖ This, and the fact the MLE can be computed for any distribution, are reasons why 
the MLE is the mostly widely used frequentist estimator.

Maximum likelihood estimators

28 Introduction to Statistics for GWs

2.10 Maximum likelihood estimators

Definition 9. The maximum likelihood estimator (MLE) is defined by b✓ = argmax✓2⇥ L(✓;x) =
argmax✓2⇥ `(✓;x).

If 9@`/@✓j and ⇥ is open, then the MLE b✓ satisfies @`/@✓j(b✓) = 0, j = 1, . . . , K, ✓ 2 ⇥ ⇢
RK .

The MLE can be biased or unbiased but it is asymptotically unbiased and e�cient and
it is also consistent. In fact the following lemma holds.

Lemma 5. Let X1, . . . , Xn ⇠ p(x | ✓) IID, ✓ 2 ⇥ ⇢ RK. Under the regularity conditions of
Cramer-Rao inequality, the MLE asymptotically satisfies

b✓ ⇠ NK(✓, I
�1

✓
) n ! 1,

in particular, E(b✓) ! ✓ and for K = 1, Var(b✓)/I�1

✓
! 1 as n ! 1.

If there exists an unbiased e�cient estimator this has to be the MLE.

Lemma 6. Suppose there exists an unbiased estimator ✓̃ that attains Cramer-Rao lower
bound, and suppose that MLE ✓̂ is the solution of @`

@✓
= 0. Then, ✓̃ = ✓̂.

Proof. ✓̃ is unbiased and attains Cramer-Rao lower bound, hence, by the corollary to Lemma 3,
@`

@✓
= I✓(✓̃ � ✓). Then, the only solution of @`

@✓
= 0 is ✓̃, that is, ✓̃ = ✓̂.

Thus, (under the regularity conditions of Cramer-Rao inequality) if the Cramer-Rao lower
bound is attainable, theMLE attains it, thus in this case the MLE is e�cient. If the bound
is unattainable, then the MLE is asymptotically e�cient.
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MLE Example
❖ Consider n IID samples from an 

exponential distribution with pdf

❖ The likelihood is

❖ giving the MLE

❖ The mean and variance are

❖ The Fisher matrix is
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Confidence Regions
❖ We are not only interested in a point estimate of a parameter but an estimate of the 

uncertainty in that value. This is characterised by a confidence region or interval.

❖ The boundaries of a confidence region are random variables. The construction of a 
confidence interval is a procedure, which, when repeated, will contain the true 
parameter values a certain fraction (the confidence level) of the time. Formally

❖ Confidence regions can be constructed from pivotal quantities, quantities 
constructed from data and parameter values that have a common distribution.

❖ Example: Normal distribution: the quantity 

❖ giving a confidence interval for the mean

28 Introduction to Statistics for GWs

2.10 Maximum likelihood estimators

Definition 9. The maximum likelihood estimator (MLE) is defined by b✓ = argmax✓2⇥ L(✓;x) =
argmax✓2⇥ `(✓;x).

If 9@`/@✓j and ⇥ is open, then the MLE b✓ satisfies @`/@✓j(b✓) = 0, j = 1, . . . , K, ✓ 2 ⇥ ⇢
RK .

The MLE can be biased or unbiased but it is asymptotically unbiased and e�cient and
it is also consistent. In fact the following lemma holds.

Lemma 5. Let X1, . . . , Xn ⇠ p(x | ✓) IID, ✓ 2 ⇥ ⇢ RK. Under the regularity conditions of
Cramer-Rao inequality, the MLE asymptotically satisfies

b✓ ⇠ NK(✓, I
�1

✓
) n ! 1,

in particular, E(b✓) ! ✓ and for K = 1, Var(b✓)/I�1

✓
! 1 as n ! 1.

If there exists an unbiased e�cient estimator this has to be the MLE.

Lemma 6. Suppose there exists an unbiased estimator ✓̃ that attains Cramer-Rao lower
bound, and suppose that MLE ✓̂ is the solution of @`

@✓
= 0. Then, ✓̃ = ✓̂.

Proof. ✓̃ is unbiased and attains Cramer-Rao lower bound, hence, by the corollary to Lemma ??,
@`

@✓
= I✓(✓̃ � ✓). Then, the only solution of @`

@✓
= 0 is ✓̃, that is, ✓̃ = ✓̂.

Thus, (under the regularity conditions of Cramer-Rao inequality) if the Cramer-Rao lower
bound is attainable, the MLE attains it, thus in this case the MLE is e�cient. If the bound
is unattainable, then the MLE is asymptotically e�cient.

2.11 Confidence intervals and regions

Point estimators provide single estimated values for parameters, but we usually also need an
estimate of the uncertainty in those estimated values. These are characterised by confidence
intervals. A confidence interval is a random variable since the ends of the interval are
typically determined as a function of the observed data. The interval has the property that
over many realisations of the same experiment, the intervals constructed randomly by this
procedure will contain the true value of the parameter a certain fraction of the time.

Formally a set S↵(X) is a (1� ↵) confidence region for  if

P(S↵(X) 3  ; ,�) = 1� ↵ 8 ,�.

Thus, S↵(X) is a random set of  -values which includes the true value with probability 1�↵.
If more than one value of ↵ is considered, we usually require

S↵1(x) � S↵2(x) if ↵1 < ↵2. (53)

e.g. a 99% region contains the 95% region.
If  is a scalar and S↵(x) has the form { : t↵ �  } for some statistic t↵, then t↵ is a

(1� ↵) upper confidence limit for  .
If  is a scalar and S↵(x) has the form { : s↵   } for some statistic s↵, then s↵ is a ↵

lower confidence limit for  .
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The End



❖ From the definition of bias we have

❖ For any random variables U and V we have

❖ Setting                                         and noting                     we have

❖ and

❖ Hence we obtain the Cramer-Rao inequality

Cramer-Rao bound: proof
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Di↵erentiating both sides with respect to ✓ gives (using regularity conditions)

1 +
@b

@✓
=

Z
. . .

Z
b✓@L
@✓

dx

since b✓ does not depend on ✓. Since l = ln(L) we have

@l

@✓
=

@ln(L)

@✓
=

1

L

@L

@✓
, and thus

@L

@✓
= L

@l

@✓
.

Thus

1 +
@b

@✓
=

Z
. . .

Z
b✓ @l
@✓

Ldx = E
✓
b✓ @l
@✓

◆
.

Now use the result that for any two r.v.s Uand V ,

{cov(U, V )}2  var(U)var(V )

and let

U = b✓, and V = @l/@✓.

Then

E[V ] =

Z
. . .

Z
@l

@✓
Ldx =

Z
. . .

Z
@L

@✓
dx

=
@

@✓

✓Z
. . .

Z
L dx

◆
(using regularity conditions)

=
@

@✓
(1) = 0.

Hence

cov(U, V ) = E(UV ) = 1 +
@b

@✓
.

Similarly

var(V ) = E(V 2) = E
"✓

@l

@✓

◆2
#
= I✓ (by definition of I✓)

and since var(U) = var(b✓) we obtain the Cramér-Rao lower bound as

var(b✓) � {cov(U, V )}2

var(V )
=

�
1 + @b

@✓

�2

I✓
.

The Cramér-Rao lower bound will only be useful if it is attainable or at least nearly
attainable.
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