Lecture Recording

Note: These lectures will be recorded and posted onto the IMPRS website

Dear participants,

We will record all lectures on “Making sense of data: introduction to statistics for
gravitational wave astronomy”, including possible Q&A after the presentation,
and we will make the recordings publicly available on the IMPRS lecture
website at:

- https:/ /imprs-gw-lectures.aei.mpg.de /2023-making-sense-of-data /

By participating in this Zoom meeting, you are giving your explicit consent to
the recording of the lecture and the publication of the recording on the course
website.



Making sense of data: introduction to
statistics for gravitational wave astronomy

Lecture 2: staustics and estimators

AEI IMPRS Lecture Course
Jonathan Gair jgair@aei.mpg.de

2
0, ——

O, - - -

True value -----

1.5




Frequentst Statstics

Many measurable quantities are random variables. Inference describes
the process of learning the probability distribution of the random
variable from observations.

In parametric inference the form of the distribution is assumed and
inference reduces to making statements about the parameters of the
distribution.

In frequentist statistics the parameters are assumed to be fixed but
unknown. Statements, e.g., about significance or confidence, are about
repetitions of the same experiment with the parameters fixed.

Central to frequentist statistics are the notions of likelihood, statistics,
and estimators.



| ikelihood

The likelihood of an event E governed by some probability distribution determined

—

by a set of parameters g is P(E| ), regarded as a function of 0.

—

The likelihood, usually denoted L(8;x) is functionally the same quantity as the pdf,
but the latter is a function of x for fixed parameters, while the former is considered a
function of the parameters for fixed (observed) x.

It is often convenient to work with the log-likelihood, denoted [(; X)
[(6;x) = In[L(0; x)] = In[p(x] 0)]

One interpretation of the likelihood is the relative plausibility of two different values
of the parameters, given the observed data. This is expressed by

LR or 1B x) — UGy [x)




|l ikelihood

» Typically we will observe more than one random variable and so will be

interested in the joint likelihood. If the RVs are independent we usually

have
LO:x) =] [p@lo) = 10:x) =) U]0)
j=1 j=1
Example: Poisson distribution. We observe {1, - .., %, }, n IID observations

from a Poisson distribution with parameter A. Writing nz = DL T

e—nAAni

Iijj!
[(\;x) =log (L(A;x)] = —nA+nxln ) — ln(H z;!)
J

L(0;x) = (A > 0)

» You have to be a little careful with rounding of continuous RVs when the

rounding error is comparable to the variability in the data (see notes).



Maximum Likelihood

The score is the derivative of the log-likelihood, also regarded as a function of

ol
00

The point(s) where the score vanishes define the maximum likelihood

parameters

0 = arg Mmax L(0;x) = arg tax 0(6;x)

This is a function of the observed data only and is an estimator. It has various nice
properties which we will discuss later.



Staustics and estimators

A statistic is any function, t(Y), of a random variable. It is a function of the observed

values of the data only, not the (unknown) parameters of the distribution.

An estimator is any statistic used to estimate the value of parameter. Typically the

observed data would be a set of realisations of IID random variables, Xj, ...., Xnyand
an estimator is some function (X7, . .., X,,) used to infer values of the parameters
of the underlying pdf.
Examples
- maximum likelihood estimator
- sample mean (used to estimate mean) 15 one

RS Ly

n
1=1
- sample variance (used to estimate variance) J 1 n 1
o7 — Jha—/y
=1 (i — 1)




Sufficient staustics

Any function of the data is a statistic and any statistic could be an estimator, so how
do we find good statistics?

For some probability distributions there is a lower-dimensional vector that contains
the same information about the parameters of the distribution as the full data x.
These are sufficient statistics.

A statistic is sufficient for parameters § if the distribution of X given S does not
depend on 4, i.e., pX|S(X\S, 9) does not depend on £ .

The full set of observations X is always sufficient, but often there are sufficient
statistics of much lower dimensionality.

Sufficient statistics lead to a reduction in the size of the data. Statistics achieving the
greatest reduction are called minimal sufficient.



Sufficient staustics

Example: Bernoulli trials
- Consider a sequence of trials which yield “success” with probability p
px(x|p) = Ilp%]r— )17 = pX (1 — p)"m LT

- The sum statistic S = X; + . + X,, follows a Binomial distribution

pﬂﬂm==<n>p%1—mmﬁ (s=0,1, ... ,n)

S

- The pdf of X given S can be found to be

(X|3) . P(Xlzfl?l, ,Xn:.an,Xl—I— —I—Xn:S|(9)
£ m G Fee A =)
( x (x| p) R
g W =6
ol (2 x5 # )
Ear o]
MR e
L 0 (D_z; # s)

- which does not depend on p, so S is sufficient for p.



Sufficient staustics

Sufficient statistics can be recognised by looking at the likelihood. This is formalised
by the Neyman Factorisation Theorem

—

Theorem 1. (Neyman Factorization Theorem). Let X = (X1,...,X,) ~ p(x|0). Then,
statistic s = s(X1,...,X,) is sufficient for 0 iff there exist functions h of x and g of (s,0)
such that

— — —

p(x | 0) = L(6;x) = g(s(x),0)h(x) V€O, xe X

Example: Poisson distribution

5 ATiemA \ 1
- The likelihood factorises P(X|\) = H AT e G D= '
. 75 L o
] s —
- where s =x; + ... x,. We recognise s as a sufficient statistic, which can be verified

using

px(x|N) _ eT"IET([La) Tt sy =
pX|3(X’S) —= p5(8|)\) =g e_n>‘(n>\3)8 Hj ZUj! (Z 3:] — S)

s!

0 (2_x; # 3)




Sufficient staustics

Example: gravitational wave data analysis

- The usual likelihood for observed gravitational wave data takes the form

— 1 — —

plalf) x exp |5 (d~ h(d)jd - 1(@))|

~

e [ @ (DB + Al ()
QLTI e uT

- For many waveform families it is possible to find a reduced basis that can be used

df

to reconstruct all the waveforms in the family
M

h(t; 6) = Zai(g)hi(t)
==l
- The overlaps of the basis waveforms with the data, S; = (h;|b), are sufficient

statistics for inferring the waveform parameters.



Exponental families

Distributions taking particular forms have nice properties. In particular those that
belong to an exponential family.

An exponential family is any family of distributions of the form

p(z|0) =expq Y A;j(2)B;(0) + C(0) + D(z) ¢ Vz,0

=l

where{A4;;j =1...,K},{B;;j = 1...,K},C,D are real-valued functions.
Given a set of IID observations {xy, ..., x,} from this distribution, the set
n . .
{2 o1 Ailzy) 11 <@ < K}
of statistics are sufficient for § and are called the natural statistics of the family.

Any distribution that depends on a K-dimensional parameter and has a K-
dimensional minimal sufficient statistic is a member of the exponential family.



Exponental families

+  Examples of exponential families

: e g
Pois(\) : p(x| ) = i exp|(InA)z — A — In(z!)]

: : L n T Mt p n
Bin(n, p) : p(x|p)—<x)p(1—p) —exp[ln(l_p)x+nln(1—p)—l—ln(x)]
N(p,0?) : p(z| pu, o) = exp {,ua_zx — %O_2$2 — (%MZO_Q +Ino + % 1n(27r)) }

AN p(z|A) = dem** =exp(— Az +InX)
N (19, 0%) (o unknown) : p(x| po, o) = exp[—riz(m — )= il oy = %11’1(27‘(‘)]



Estumators: unbiasedness

The bias of an estimator of a parameter measures the difference between the mean
value and the value of the parameter being estimated.

bias(d) = b(6) = E (9) 0

An estimator is unbiased if the bias is zero

Definition 1. 6 (r.v.) is an unbiased estimator of 0 iff
E(6) = 6.

Estimators may also be asymptotically unbiased

Definition 2. § (r.v.) is asymptotically unbiased estimator of 0 iff

E(@\)%H as m — 00.



Estmators: unbiasedness

2 T T 7
. . . A\
Historically, a lot of weight was 0 —— !
) o A
placed on unbiasedness. Now, U2 by
el . True value ---- - oo
minimising mean square error is 15 | A

considered more important. o

1k .
A~ A~ A~ A~ . \

MSE(9) = E[(0 — 0)?] = var(0) + [bias(0)]’ .

MSE can often be reduced by trading
bias for variance. An estimator with a
larger bias, but smaller variance, can

be preferable.



Estimators: consistency

An estimator is consistent if it becomes increasingly concentrated around the true
value as the number of observations increases.

Definition 3. 0 is a (weakly) consistent estimator for 0 if

P(\§—9\>6)%0 as 1 — 00
for any € > 0.
From the Markov inequality E(X
R %)
a
we can deduce
=8 1~
| [F=gH = e = (=)
€

The term on the right hand side is the mean square error, which is the sum of
variance and bias-squared. Therefore, if the bias and variance of an estimator tend to
zero asymptotically, the estimator will be (weakly) consistent.



Estimators: efficiency

The efficiency of an estimator is the ratio of the minimum possible variance to the
variance of the estimator.

An unbiased estimator with efficiency of 1 is called efficient or a minimum variance
unbiased estimator (MVUE).

Efficiency can also be defined asymptotically. An estimator whose efficiency tends to
1 as the number of observations tends to infinity is asymptotically efficient.

The (asymptotic) relative efficiency of two estimators is the reciprocal of the ratio of
their variances (as the sample size tends to infinity)

Var(@\l)
Var(@\g)

[inmEAEERS



Cramer-Rao bound

The notion of efficiency requires knowledge of the smallest achievable variance of an
estimator. This is provided by the Cramer-Rao bound.

In the univariate case we first define Fisher’s Information Matrix

o1\ " 01
v=={(5) | == |om

where [ is the log-likelihood, the derivative is evaluated at the true parameter values,
and the expectation value is taken with respect to the pdf for the same parameter
value. The second equality follows under certain conditions (see next slide).

The Cramer-Rao inequality states that, for a random sample Xj, ..., X, from a
probability distribution with pdf p(x| 6) and some estimator § with bias b(9)

(1+8)

var(0) > ’




Cramer-Rao bound: assumptions

+ The proof of the Cramer-Rao inequality relies on certain regularity conditions

1. V6, 65 € © such that 0, £ 05, p(x | 01) # p(x | 02) [identifiability].

21 VO € O, p(z | #) have common support.

3. O is an open set.
4. 0p(x | 6)/00.
5. E (dlog p(X|0)/90)° < .



Cramer-Rao bound: attainability

Lemma 3. The Cramér-Rao lower bound is attainable iff there exists a function f(x) of x
only, and functions a(0), c(0) of 8 only such that

A _ (f(x) — alb)
06 c(0) ’

in which case 6 = f(x) attains it. The expectation value Eof = () and da/d0 = ¢(0)I,.

Corollary 1. There is an unbiased estimator that attains the Cramér-Rao lower bound iff
there exists a function g(xz) of x only such that

ol

90 = Io(g(z) — 0),

in which case the unbiased estimator 6 = g(x) attains it.



Cramer-Rao bound: example

Consider X, Xy,..., X, ~ N(u,0%), o% known. The log-likelihood is

We can compute
o 1 0?1 n

ou AT e T

and hence obtain the Fisher matrix

Heel n
i o Pk
4 GRS

We know that Var(X) = 0?/n and hence it achieves this lower bound and is
efficient. We could also deduce this from the earlier lemma (Lemma 3) by noticing

0l 1 s
but e = S e =
o (X —p) = (X —p)

0-2



Cramer-Rao bound: counterexample

Now consider X, X5, ..., X, ~ U|0, 0] with likelihood

1
S o e
. s o > L(1) = 4(2) ) o)
gl x) { 0 elsewhere

here x;) denotes the i"th element in the ordered sequence of observations and is
called an order statistic. We can compute the Fisher matrix

Ol n aI\?2 n?
BT B e e (@) ~ e

But if we consider the estimator X, we find

n+1 62
X | = e
Var{ n ”] n(n+2) ¢

So the Cramer-Rao bound is violated. This is because one of the regularity
conditions (common support) is violated in this case.



Cramer-Rao bound: multuvariate

* In the multivariate case we generalise the definition of the Fisher matrix

to

ol ol 0?1
[I@]ij = =

00, 00, 00,00,

»  For a multi-dimensional statistic T, we introduce an expectation vector

m = [E(T) .

»  The multivariate Cramer-Rao bound is then

Gmi — om.;
COV(tiytj) 2 8(9k [Ié]kll 8(9[]




Maximum likelihood estimators

The MLE may or may not be unbiased, but it is always asymptotically unbiased
and asymptotically efficient. In fact it is asymptotically Normal

Lemma 5. Let X;,..., X, ~p(z|0) IID, § € © C RE. Under the reqularity conditions of
Cramer-Rao inequality, the MLE asymptotically satisfies

é\NNK(Hale_l) n — oo,

In fact, if any unbiased estimator exists that attains the Cramer-Rao bound, it has to
be the MLE.

Lemma 6. Suppose there exists an unbiased estimator 0 that attains Cramer-Rao lower
bound, and suppose that MLE 0 is the solution s 9t — (), Then, 6 = 0.

This, and the fact the MLE can be computed for any distribution, are reasons why
the MLE is the mostly widely used frequentist estimator.



MLE Example

Consider n IID samples from an
exponential distribution with pdf

Bl = e e ¥
The likelihood is
p(x|A) = A"e™* 2%

giving the MLE

p(x)
2
1

n

5\MLE - Zx
)

The mean and variance are

< nA
Bloyi= (n—1)

n?\? g
(n—12n-2) o-+—

The Fisher matrix is -1 0 1 2 3

n X
IA:F

var(\) =




Confidence Regions

We are not only interested in a point estimate of a parameter but an estimate of the
uncertainty in that value. This is characterised by a confidence region or interval.

The boundaries of a confidence region are random variables. The construction of a
confidence interval is a procedure, which, when repeated, will contain the true
parameter values a certain fraction (the confidence level) of the time. Formally

S.(X) is a (1 — «) confidence region for ¢ if
P(Su(X) 3 G50, A) =1 —a Vb, A

Confidence regions can be constructed from pivotal quantities, quantities
constructed from data and parameter values that have a common distribution.

Example: Normal distribution: the quantity  \/n(z — p)/ \/ Z = SR

giving a confidence interval for the mean







Cramer-Rao bound: proof

From the definition of bias we have

1+— / /éﬁlmx— ( )

For any random variables U and V we have

cov(U,V)=EUV) =
SettingU = 6, and V = 91/86 and noting E(V') = 0 we have
{cov(U,V)}? < var(U)var(V)

and

var(V) = E(V?) = E

Hence we obtain the Cramer-Rao inequality

{cov(U,V)}? o

(

var(@\) & var(V)
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