
Lecture Recording
❖ Note: These lectures will be recorded and posted onto the IMPRS website 

❖ Dear participants, 

❖ We will record all lectures on “Making sense of data: introduction to statistics for 
gravitational wave astronomy”, including possible Q&A after the presentation, 
and we will make the recordings publicly available on the IMPRS lecture 
website at: 

- https://imprs-gw-lectures.aei.mpg.de/2023-making-sense-of-data/

❖ By participating in this Zoom meeting, you are giving your explicit consent to 
the recording of the lecture and the publication of the recording on the course 
website. 



AEI IMPRS Lecture Course

Making sense of data: introduction to 
statistics for gravitational wave astronomy 
Lecture 1: introduction to random variables
Jonathan Gair jgair@aei.mpg.de
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Outline of course
❖ Lectures will take place at 11am Monday, Wednesday, Thursday and 

Friday in the weeks beginning Nov 13th, 20th and 27th In the week 
beginning Dec 4th there will be lectures on Monday and Friday only. 
The last two lectures will take place on December 13th and 15th. 

❖ Lectures will all take place in seminar room 0.01 at the AEI and will 
also be broadcast via Zoom

- Meeting ID: 610 8405 1709

- Meeting password: 797295

❖ Lecture recordings will be made available on the course website

- https://imprs-gw-lectures.aei.mpg.de/2023-making-sense-of-data/



Outline of course
❖ Part 1 (lectures 1 to 6): Frequentist statistics and stochastic processes

• Random variables: definition, properties, some useful probability 
distributions, central limit theorem.

• Statistics: definition, estimators, likelihood, desirable properties of estimators, 
Cramer-Rao bound.

• Hypothesis testing: definition, Neyman-Pearson lemma, power and size of 
tests, type I and type II errors, ROC curves, confidence regions, uniformly-
most-powerful tests.

• Frequentist statistics in GW astronomy: false alarm rates, Fisher Matrix, PSD 
estimation.

• Stochastic processes, optimal filtering, signal-to-noise ratio, sensitivity curves.

• Practical: simulating random variables in python.



Outline of course

❖ Part 2 (lectures 7 to 12): Bayesian statistics

• Bayes' theorem, conjugate priors, Jeffrey's prior.

• Bayesian hypothesis testing, hierarchical models, posterior predictive 
checks.

• Sampling methods for Bayesian inference.

• Bayesian statistics in GW astronomy: parameter estimation, 
population inference, model selection.

• Practicals (2): sampling posterior distributions using pyMC3.



Outline of course

❖ Part 3 (lectures 13 to 16): Introduction to machine learning 

• Introduction to machine learning.

• Neural networks and deep learning.

• Machine learning for GW astronomy.

• Practical: GW search and PE using machine learning.



Outline of course
❖ Lecture notes will be made available on the course website

- https://imprs-gw-lectures.aei.mpg.de/2023-making-sense-of-
data/

❖ These notes will include more material than will be covered in lectures, 
and these extra topics will be denoted by an asterix. 

❖ Two problem sets will be provided (one for each of the first two parts of 
the course). Solutions will be made available later. 

❖ Problem sheets will have two parts, with the second part containing 
optional questions that are either more difficult or similar to questions in 
the first part.



Random variables
❖ Random variables are quantities 

that are not fixed, but can take 
new values each time they are 
observed (a realisation).

❖ Over many realisations the 
distribution of the random 
variable is described by a 
probability distribution.

❖ Random variables can be discrete 
(taken values in a countable set) 
or continuous (taking real values 
in some interval).



Discrete random variables
❖ Discrete random variables are 

characterised by a probability mass 
function, i.e., a set {pi} satisfying

❖ For example, Binomial distribution

❖ Related distributions: Bernoulli 
distribution, negative Binomial, 
geometric distribution. 
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1 Random variables

In classical physics most things are deterministic. There are physical laws governing the
evolution of a system which can be solved and used to predict the state of the system
in the future. In reality there are many situations in which things are not (or e↵ectively
not) deterministic, and so the outcome of an experiment cannot be predicted with certainty.
However, if the experiment is repeated many times some outcomes will occur more frequently
than others. This notion of in-deterministicity in measurements is encoded in the concept
of a random variable. A random variable, X, is a quantity that, when observed, can take
one of a (possibly infinite) number of values. Prior to making a measurement the value of
the random variable cannot be predicted, but the relative frequency of the outcomes over
many experiments are described by a probability distribution. The value that X takes in a
particular observation (or experiment), xi, say is called a realisation of the random variable.

Random variables can be discrete, in which case the values that the variable takes are
drawn from a countable set of discrete possibilities, or continuous in which case the random
variable may take on any value within one or more ranges.

1.1 Discrete random variables

A discrete random variable X can take on any of a (possibly infinite but countable) set of
possible values, {x1, x2, . . .)}, which together comprise the sample space. The probability
that X takes any particular value is represented by a probability mass function (pmf), which
is a set of numbers {pi} with the properties 0  pi  1 for all i and

P
pi = 1. The probability

that X takes the value xi is pi.

1.2 Examples of discrete random variables

1.2.1 Binomial and related distributions

The Binomial distribution is the distribution of the number of success in n trials for which
the probability of success in one trial is p. We write X ⇠ B(n, p) and

P (X = k) = pk =

8
<

:

✓
n
k

◆
pk(1� p)n�k if k 2 {1, . . . , n},

0 otherwise
. (1)

When n = 1 this is the Bernoulli distribution. The binomial distribution is the distribution of
the sum of n Bernoulli trials, i.e., the number of “successes” in n trials. A related distribution
is the negative binomial distribution which has pmf

P (X = k) = pk =

8
<

:

✓
k + r � 1

k

◆
pk(1� p)r if k 2 {0, 1, . . .},

0 otherwise
. (2)

This is the distribution of the number of successes in a sequence of Bernoulli trials that will
be observed before r failures have been observed. Setting r = 1 and p ! (1� p) this is the
geometric distribution, which is the distribution of the number of trials required before the
first success.
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❖ Poisson distribution is defined 
for non-negative k by

❖ Arises as the distribution of the 
number of counts of a process 
occurring in a certain period of 
time.

Discrete RVs: Poisson distribution
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Another generalisation of the Binomial distribution is the multinomial distribution. In
this case the outcome of a trial is not a binary ‘success’ or ‘fail’, but it is one of k pos-
sible outcomes. The probability of each outcome is denoted pi with

P
k

i=1
pi = 1 and the

multinomial distribution describes the probability of seeing n1 occurrences of outcome 1, n2

occurrences of outcome 2 etc. in n trials. The pmf is

P ({n1, . . . , nk}) =
⇢

n!

n1!n2!...nk!
pn1
1
pn2
2
. . . pnk

k
if ni � 0 8i and

P
k

i=1
ni = n

0 otherwise
. (3)

Applications: counting problems, e.g., distribution of events in categories or time, trials
factors.

1.2.2 Poisson distribution

This is the distribution of the number of occurrences of some event in a certain time interval
if that event occurs at a rate �. The quantity X follows a Poisson distribution, X ⇠ P (�) if

P (X = k) = pk =

⇢
�ke��/k! if k 2 {0, 1, . . .},
0 otherwise

. (4)

The Poisson distribution is the limiting distribution of B(n, p) as n ! 1, p ! 0 with np = �
fixed.

Applications: distribution of number of events in a population, e.g., gravitational wave
sources.

1.3 Continuous random variables

A continuous random variable can take any (usually real, but the extension to complex
RVs is straightforward) value within some continuous range, or some set of ranges, which
together comprise the sample space X . The probability that X takes a particular value is
characterised by the probability density function (pdf), p(x). The probability that X takes
a value in the range x to x + dx is p(x)dx. The pdf has the properties 0  p(x)  1 for all
x 2 X and Z

x2X
p(x)dx = 1. (5)

For single valued random variables with non-disjoint sample spaces continuous random vari-
ables may also be characterised by the cumulative density function or CDF, defined as

P (X  x) =

Z
x

�1
p(x)dx. (6)

1.3.1 Uniform distribution

X is uniform on an interval (a, b), denoted X ⇠ U [a, b] if the pdf is constant on the interval
[a, b]

p(x) =

⇢
1

b�a
if x 2 [a, b]

0 otherwise
. (7)

X takes values only in the range [a, b].
Applications: often used as an “uninformative” prior in parameter estimation.
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Continuous random variables
❖ Continuous random variables are 

characterised by a probability density 
function, satisfying

❖ For example, Uniform distribution
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❖ Normal distribution is characterised 
by mean     and variance 

❖ Arises as a limiting distribution and 
as the distribution of noise in 
gravitational wave detectors. 
Commonly used as the default 
distribution in parametric statistics 
and as a prior in Bayesian analysis.

❖ Normal distribution with zero mean 
and unit variance is the standard 
Normal distribution.

Continuous RVs: Normal distribution
Introduction to Statistics for GWs 5

1.3.2 Normal distribution

X is Normal with mean µ and variance �2, denoted X ⇠ N(µ, �2) if the pdf has the form

p(x) =
1p
2⇡�

exp

✓
�(x� µ)2

2�2

◆
. (8)

X takes all values in the range (�1,1). If µ = 0 and �2 = 1 we say that X follows a
standard Normal distribution.

Applications: distribution of noise fluctuations in a gravitational wave detector, priors
on mass distribution, most common distribution to assume in parametric statistics.

1.3.3 Chi-squared distribution

X is chi-squared with k degrees of freedom, denoted X ⇠ �2(k) or �2

k
is the pdf has the form

p(x) =
1

2k/2�(k/2)
x

k
2�2e�

x
2 (9)

Here �(n) is the Gamma function, defined by

�(n) =

Z 1

0

xn�1e�xdx (10)

and such that �(n+ 1) = n!. X takes non-negative real values only, x 2 [0,1). This is the
distribution of the sum of the squares of n independent standard normal distributions.

There is also a non-central chi-square distribution which depends on two parameters —
degrees of freedom, k > 0, as before plus a non-centrality parameter, � > 0. This has the
pdf

p(x) =
1

2
e�

(x+�)
2

⇣x
�

⌘ k
4�

1
2
I k

2�1
(
p
�x) (11)

where I⌫(y) is the modified Bessel function of the first kind. The non-central chi-square
distribution again takes non-negative values only and arises as the distribution of the sum of
k independent normal distributions with equal (unit) variance, but non-zero means, denoted
µi. The non-centrality parameter is then � =

P
k

i=1
µ2

i
.

Applications: used to test for deviations from normality, e.g., in noise fluctuations in a
gravitational wave detector.

1.3.4 Student’s t-distribution

X follows Student’s t-distribution with n > 0 degrees of freedom, X ⇠ tn, if it has pdf

p(x) =
�
�
n+1

2

�
p
n⇡�

�
n

2

�
✓
1 +

x2

n

◆�n+1
2

. (12)

The Student t-distribution arises in hypothesis testing as the distribution of the ratio of a
standard Normal distribution to an independent chi-squared distribution with n degrees of
freedom.

Applications: used for statistical test on significance of parameters in linear models,
used as a “heavy-tailed” distribution for robust parameter estimation, arises naturally when
marginalising over uncertainty in power-spectral density estimation.
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X takes all values in the range (�1,1). If µ = 0 and �2 = 1 we say that X follows a
standard Normal distribution.

Applications: distribution of noise fluctuations in a gravitational wave detector, priors
on mass distribution, most common distribution to assume in parametric statistics.

1.3.3 Chi-squared distribution

X is chi-squared with k degrees of freedom, denoted X ⇠ �2(k) or �2

k
is the pdf has the form
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Here �(n) is the Gamma function, defined by

�(n) =

Z 1

0

xn�1e�xdx (10)

and such that �(n+ 1) = n!. X takes non-negative real values only, x 2 [0,1). This is the
distribution of the sum of the squares of n independent standard normal distributions.

There is also a non-central chi-square distribution which depends on two parameters —
degrees of freedom, k > 0, as before plus a non-centrality parameter, � > 0. This has the
pdf
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where I⌫(y) is the modified Bessel function of the first kind. The non-central chi-square
distribution again takes non-negative values only and arises as the distribution of the sum of
k independent normal distributions with equal (unit) variance, but non-zero means, denoted
µi. The non-centrality parameter is then � =

P
k

i=1
µ2

i
.

Applications: used to test for deviations from normality, e.g., in noise fluctuations in a
gravitational wave detector.

1.3.4 Student’s t-distribution

X follows Student’s t-distribution with n > 0 degrees of freedom, X ⇠ tn, if it has pdf

p(x) =
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n+1

2
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The Student t-distribution arises in hypothesis testing as the distribution of the ratio of a
standard Normal distribution to an independent chi-squared distribution with n degrees of
freedom.

Applications: used for statistical test on significance of parameters in linear models,
used as a “heavy-tailed” distribution for robust parameter estimation, arises naturally when
marginalising over uncertainty in power-spectral density estimation.
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❖ Chi-squared distribution 
depends on a degrees of freedom 
parameter k > 0

❖ It is the distribution of the sum 
of squares of k standard normal 
random variables.

❖ There is also a non-central chi-
square distribution which has 
also a non-centrality parameter.

Continuous RVs: chi-squared distribution
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1.3.2 Normal distribution

X is Normal with mean µ and variance �2, denoted X ⇠ N(µ, �2) if the pdf has the form

p(x) =
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X takes all values in the range (�1,1). If µ = 0 and �2 = 1 we say that X follows a
standard Normal distribution.

Applications: distribution of noise fluctuations in a gravitational wave detector, priors
on mass distribution, most common distribution to assume in parametric statistics.

1.3.3 Chi-squared distribution

X is chi-squared with k degrees of freedom, denoted X ⇠ �2(k) or �2

k
is the pdf has the form
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Here �(n) is the Gamma function, defined by

�(n) =

Z 1

0

xn�1e�xdx (10)

and such that �(n+ 1) = n!. X takes non-negative real values only, x 2 [0,1). This is the
distribution of the sum of the squares of n independent standard normal distributions.

There is also a non-central chi-square distribution which depends on two parameters —
degrees of freedom, k > 0, as before plus a non-centrality parameter, � > 0. This has the
pdf
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where I⌫(y) is the modified Bessel function of the first kind. The non-central chi-square
distribution again takes non-negative values only and arises as the distribution of the sum of
k independent normal distributions with equal (unit) variance, but non-zero means, denoted
µi. The non-centrality parameter is then � =

P
k

i=1
µ2

i
.

Applications: used to test for deviations from normality, e.g., in noise fluctuations in a
gravitational wave detector.

1.3.4 Student’s t-distribution

X follows Student’s t-distribution with n > 0 degrees of freedom, X ⇠ tn, if it has pdf

p(x) =
�
�
n+1

2

�
p
n⇡�

�
n

2

�
✓
1 +

x2

n

◆�n+1
2

. (12)

The Student t-distribution arises in hypothesis testing as the distribution of the ratio of
a standard Normal distribution to the square root of an independent �2

n
distribution, nor-

malised by the degrees of freedom. Specifically if X ⇠ N(0, 1 and Y ⇠ �2

n
then X/

p
Y/n

follows a tn distribution.
Applications: used for statistical test on significance of parameters in linear models,

used as a “heavy-tailed” distribution for robust parameter estimation, arises naturally when
marginalising over uncertainty in power-spectral density estimation.



❖ Student’s t-distribution also 
depends on a degrees of freedom 
parameter n

❖ It arises in hypothesis testing as the 
ratio of a standard Normal 
distribution to a chi-squared 
distribution. It is used as a heavy-
tailed distribution in inference.

Continuous RVs: Student’s t-distribution
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X takes all values in the range (�1,1). If µ = 0 and �2 = 1 we say that X follows a
standard Normal distribution.

Applications: distribution of noise fluctuations in a gravitational wave detector, priors
on mass distribution, most common distribution to assume in parametric statistics.
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X is chi-squared with k degrees of freedom, denoted X ⇠ �2(k) or �2
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Here �(n) is the Gamma function, defined by

�(n) =

Z 1

0

xn�1e�xdx (10)

and such that �(n+ 1) = n!. X takes non-negative real values only, x 2 [0,1). This is the
distribution of the sum of the squares of n independent standard normal distributions.

There is also a non-central chi-square distribution which depends on two parameters —
degrees of freedom, k > 0, as before plus a non-centrality parameter, � > 0. This has the
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where I⌫(y) is the modified Bessel function of the first kind. The non-central chi-square
distribution again takes non-negative values only and arises as the distribution of the sum of
k independent normal distributions with equal (unit) variance, but non-zero means, denoted
µi. The non-centrality parameter is then � =

P
k

i=1
µ2
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.

Applications: used to test for deviations from normality, e.g., in noise fluctuations in a
gravitational wave detector.

1.3.4 Student’s t-distribution

X follows Student’s t-distribution with n > 0 degrees of freedom, X ⇠ tn, if it has pdf
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The Student t-distribution arises in hypothesis testing as the distribution of the ratio of a
standard Normal distribution to an independent chi-squared distribution with n degrees of
freedom.

Applications: used for statistical test on significance of parameters in linear models,
used as a “heavy-tailed” distribution for robust parameter estimation, arises naturally when
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❖ The F-distribution depends on 
two degrees of freedom 
parameters, n1 and n2

❖ This arises as the ratio of two 
chi-square distributions and is 
the basis for analysis of variance.

Continuous RVs: F-distribution
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1.3.5 F-distribution

X follows an F-distribution with degrees of freedom n1 > 0 and n2 > 0 if it has pdf
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where B(a, b) is the beta function, which is given by

B(a, b) =

Z
1

0

xa�1(1� x)b�1dx (14)

and is related to the Gamma function through B(a, b) = �(a)�(b)/�(a + b). The F-
distribution arises as the ratio of two independent chi-squared distributions with n2 and
n2 degrees of freedom.

Applications: arises primarily in analysis of variance to test di↵erences between groups.

1.3.6 Exponential distribution

X is exponential with rate � > 0, X ⇠ E(�) if it has pdf

p(x) =

⇢
�e��x if x > 0
0 otherwise

(15)

X takes positive real values only, x 2 (0,1). The exponential distribution is the distribution
of the time that elapses between successive events of a Poisson process.

Applications: distribution of time lag between events, e.g., gravitational wave signals.

1.3.7 Gamma distribution

X is Gamma with parameters n and �, X ⇠Gamma(n,�), if it has pdf

p(x) =

⇢
1

�(n)
�nxn�1e��x if x > 0

0 otherwise
(16)

X takes positive real values only, x 2 (0,1). The Gamma distribution is the distribution
of of the sum of n exponential distributions with parameter �.

Applications: conjugate distribution to the Poisson distribution, so useful in Bayesian
analysis of rates. Useful as prior distribution whenever variable has support on [0,1).

1.3.8 Beta distribution

X is Beta with parameters a and b, X ⇠Beta(a, b), if it has pdf

p(x) =

⇢
1

B(a,b)
xa�1(1� x)b�1 if 0 < x < 1

0 otherwise
(17)

X takes values in the range x 2 (0, 1) only.
Applications: conjugate to binomial distribution. Useful as prior when variable has

support on [0, 1], e.g., for probabilities.
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❖ The Exponential distribution 
depends on a rate parameter 

❖ This arises as the distribution of 
the separation of events in a 
Poisson process.

Continuous RVs: Exponential distribution
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1.3.5 F-distribution
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where B(a, b) is the beta function, which is given by

B(a, b) =

Z
1

0

xa�1(1� x)b�1dx (14)

and is related to the Gamma function through B(a, b) = �(a)�(b)/�(a + b). The F-
distribution arises as the ratio of two independent chi-squared distributions with n2 and
n2 degrees of freedom.

Applications: arises primarily in analysis of variance to test di↵erences between groups.

1.3.6 Exponential distribution

X is exponential with rate � > 0, X ⇠ E(�) if it has pdf

p(x) =

⇢
�e��x if x > 0
0 otherwise

(15)

X takes positive real values only, x 2 (0,1). The exponential distribution is the distribution
of the time that elapses between successive events of a Poisson process.

Applications: distribution of time lag between events, e.g., gravitational wave signals.

1.3.7 Gamma distribution

X is Gamma with parameters n and �, X ⇠Gamma(n,�), if it has pdf

p(x) =

⇢
1

�(n)
�nxn�1e��x if x > 0

0 otherwise
(16)

X takes positive real values only, x 2 (0,1). The Gamma distribution is the distribution
of of the sum of n exponential distributions with parameter �.

Applications: conjugate distribution to the Poisson distribution, so useful in Bayesian
analysis of rates. Useful as prior distribution whenever variable has support on [0,1).

1.3.8 Beta distribution

X is Beta with parameters a and b, X ⇠Beta(a, b), if it has pdf

p(x) =

⇢
1

B(a,b)
xa�1(1� x)b�1 if 0 < x < 1

0 otherwise
(17)

X takes values in the range x 2 (0, 1) only.
Applications: conjugate to binomial distribution. Useful as prior when variable has

support on [0, 1], e.g., for probabilities.
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where B(a, b) is the beta function, which is given by

B(a, b) =

Z
1

0

xa�1(1� x)b�1dx (14)

and is related to the Gamma function through B(a, b) = �(a)�(b)/�(a + b). The F-
distribution arises as the ratio of two independent chi-squared distributions with n2 and
n2 degrees of freedom.

Applications: arises primarily in analysis of variance to test di↵erences between groups.

1.3.6 Exponential distribution

X is exponential with rate � > 0, X ⇠ E(�) if it has pdf

p(x) =

⇢
�e��x if x > 0
0 otherwise

(15)

X takes positive real values only, x 2 (0,1). The exponential distribution is the distribution
of the time that elapses between successive events of a Poisson process.

Applications: distribution of time lag between events, e.g., gravitational wave signals.

1.3.7 Gamma distribution

X is Gamma with parameters n and �, X ⇠Gamma(n,�), if it has pdf

p(x) =

⇢
1

�(n)
�nxn�1e��x if x > 0

0 otherwise
(16)

X takes positive real values only, x 2 (0,1). The Gamma distribution is the distribution
of of the sum of n exponential distributions with parameter �.

Applications: conjugate distribution to the Poisson distribution, so useful in Bayesian
analysis of rates. Useful as prior distribution whenever variable has support on [0,1).

1.3.8 Beta distribution

X is Beta with parameters a and b, X ⇠Beta(a, b), if it has pdf

p(x) =

⇢
1

B(a,b)
xa�1(1� x)b�1 if 0 < x < 1

0 otherwise
(17)

X takes values in the range x 2 (0, 1) only.
Applications: conjugate to binomial distribution. Useful as prior when variable has

support on [0, 1], e.g., for probabilities.
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❖ The Gamma distribution 
depends on a shape parameter n > 0 
and a scale parameter  

❖ The Gamma distribution is 
commonly used in Bayesian 
inference as a prior with support 
on the positive real line, and is 
conjugate to the Poisson 
distribution.

Continuous RVs: Gamma distribution
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where B(a, b) is the beta function, which is given by

B(a, b) =

Z
1

0

xa�1(1� x)b�1dx (14)

and is related to the Gamma function through B(a, b) = �(a)�(b)/�(a + b). The F-
distribution arises as the ratio of two independent chi-squared distributions with n2 and
n2 degrees of freedom.

Applications: arises primarily in analysis of variance to test di↵erences between groups.

1.3.6 Exponential distribution

X is exponential with rate � > 0, X ⇠ E(�) if it has pdf

p(x) =

⇢
�e��x if x > 0
0 otherwise

(15)

X takes positive real values only, x 2 (0,1). The exponential distribution is the distribution
of the time that elapses between successive events of a Poisson process.

Applications: distribution of time lag between events, e.g., gravitational wave signals.

1.3.7 Gamma distribution

X is Gamma with parameters n and �, X ⇠Gamma(n,�), if it has pdf

p(x) =

⇢
1

�(n)
�nxn�1e��x if x > 0

0 otherwise
(16)

X takes positive real values only, x 2 (0,1). The Gamma distribution is the distribution
of of the sum of n exponential distributions with parameter �.

Applications: conjugate distribution to the Poisson distribution, so useful in Bayesian
analysis of rates. Useful as prior distribution whenever variable has support on [0,1).

1.3.8 Beta distribution

X is Beta with parameters a and b, X ⇠Beta(a, b), if it has pdf

p(x) =

⇢
1

B(a,b)
xa�1(1� x)b�1 if 0 < x < 1

0 otherwise
(17)

X takes values in the range x 2 (0, 1) only.
Applications: conjugate to binomial distribution. Useful as prior when variable has

support on [0, 1], e.g., for probabilities.
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where B(a, b) is the beta function, which is given by

B(a, b) =

Z
1

0

xa�1(1� x)b�1dx (14)

and is related to the Gamma function through B(a, b) = �(a)�(b)/�(a + b). The F-
distribution arises as the ratio of two independent chi-squared distributions with n2 and
n2 degrees of freedom.

Applications: arises primarily in analysis of variance to test di↵erences between groups.

1.3.6 Exponential distribution

X is exponential with rate � > 0, X ⇠ E(�) if it has pdf

p(x) =

⇢
�e��x if x > 0
0 otherwise

(15)

X takes positive real values only, x 2 (0,1). The exponential distribution is the distribution
of the time that elapses between successive events of a Poisson process.

Applications: distribution of time lag between events, e.g., gravitational wave signals.

1.3.7 Gamma distribution

X is Gamma with parameters n and �, X ⇠Gamma(n,�), if it has pdf

p(x) =

⇢
1

�(n)
�nxn�1e��x if x > 0

0 otherwise
(16)

X takes positive real values only, x 2 (0,1). The Gamma distribution is the distribution
of of the sum of n exponential distributions with parameter �.

Applications: conjugate distribution to the Poisson distribution, so useful in Bayesian
analysis of rates. Useful as prior distribution whenever variable has support on [0,1).

1.3.8 Beta distribution

X is Beta with parameters a and b, X ⇠Beta(a, b), if it has pdf

p(x) =

⇢
1

B(a,b)
xa�1(1� x)b�1 if 0 < x < 1

0 otherwise
(17)

X takes values in the range x 2 (0, 1) only.
Applications: conjugate to binomial distribution. Useful as prior when variable has

support on [0, 1], e.g., for probabilities.
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❖ The Beta distribution depends on 
two shape parameters a, b > 0

❖ The Beta distribution is conjugate 
to the Binomial distribution and is 
used as a prior for parameters with 
support in [0,1].

Continuous RVs: Beta distribution
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1.3.5 F-distribution

X follows an F-distribution with degrees of freedom n1 > 0 and n2 > 0 if it has pdf
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where B(a, b) is the beta function, which is given by

B(a, b) =

Z
1

0

xa�1(1� x)b�1dx (14)

and is related to the Gamma function through B(a, b) = �(a)�(b)/�(a + b). The F-
distribution arises as the ratio of two independent chi-squared distributions with n2 and
n2 degrees of freedom.

Applications: arises primarily in analysis of variance to test di↵erences between groups.

1.3.6 Exponential distribution

X is exponential with rate � > 0, X ⇠ E(�) if it has pdf

p(x) =

⇢
�e��x if x > 0
0 otherwise

(15)

X takes positive real values only, x 2 (0,1). The exponential distribution is the distribution
of the time that elapses between successive events of a Poisson process.

Applications: distribution of time lag between events, e.g., gravitational wave signals.

1.3.7 Gamma distribution

X is Gamma with parameters n and �, X ⇠Gamma(n,�), if it has pdf

p(x) =

⇢
1

�(n)
�nxn�1e��x if x > 0

0 otherwise
(16)

X takes positive real values only, x 2 (0,1). The Gamma distribution is the distribution
of of the sum of n exponential distributions with parameter �.

Applications: conjugate distribution to the Poisson distribution, so useful in Bayesian
analysis of rates. Useful as prior distribution whenever variable has support on [0,1).

1.3.8 Beta distribution

X is Beta with parameters a and b, X ⇠Beta(a, b), if it has pdf

p(x) =

⇢
1

B(a,b)
xa�1(1� x)b�1 if 0 < x < 1

0 otherwise
(17)

X takes values in the range x 2 (0, 1) only.
Applications: conjugate to binomial distribution. Useful as prior when variable has

support on [0, 1], e.g., for probabilities.
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where B(a, b) is the beta function, which is given by

B(a, b) =

Z
1

0

xa�1(1� x)b�1dx (14)

and is related to the Gamma function through B(a, b) = �(a)�(b)/�(a + b). The F-
distribution arises as the ratio of two independent chi-squared distributions with n2 and
n2 degrees of freedom.

Applications: arises primarily in analysis of variance to test di↵erences between groups.

1.3.6 Exponential distribution

X is exponential with rate � > 0, X ⇠ E(�) if it has pdf

p(x) =

⇢
�e��x if x > 0
0 otherwise

(15)

X takes positive real values only, x 2 (0,1). The exponential distribution is the distribution
of the time that elapses between successive events of a Poisson process.

Applications: distribution of time lag between events, e.g., gravitational wave signals.

1.3.7 Gamma distribution

X is Gamma with parameters n and �, X ⇠Gamma(n,�), if it has pdf

p(x) =

⇢
1

�(n)
�nxn�1e��x if x > 0

0 otherwise
(16)

X takes positive real values only, x 2 (0,1). The Gamma distribution is the distribution
of of the sum of n exponential distributions with parameter �.

Applications: conjugate distribution to the Poisson distribution, so useful in Bayesian
analysis of rates. Useful as prior distribution whenever variable has support on [0,1).

1.3.8 Beta distribution

X is Beta with parameters a and b, X ⇠Beta(a, b), if it has pdf

p(x) =

⇢
1

B(a,b)
xa�1(1� x)b�1 if 0 < x < 1

0 otherwise
(17)

X takes values in the range x 2 (0, 1) only.
Applications: conjugate to binomial distribution. Useful as prior when variable has

support on [0, 1], e.g., for probabilities.
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❖ The Dirichlet distribution is a multivariate 
distribution, generating K samples {xi} 
constrained such that 0 < xi < 1 and        

❖ The distribution depends on a vector of 
concentration parameters

❖ and has pdf

❖ The Dirichlet process is used as a prior on 
probability distributions in Bayesian 
nonparametric inference.
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1.3.9 Dirichlet distribution

The Dirichlet distribution is a multivariate extension of the Beta distribution. A realisation of
a Dirichlet random variable is a set ofK values, {xi}, satisfying the constraints 0 < xi < 1 for
all i and

P
K

i=1
xi = 1. The Dirichlet distribution is characterised by a vector of concentration

parameters ~↵ = (↵1, . . . ,↵K) satisfying ↵i > 0 for all i and has pdf

p(x) =
1

B(~↵)

KY

i=1

x↵i�1

i
, where B(~↵) =

Q
K

i=1
�(↵i)

�
⇣P

K

j=1
↵j

⌘ . (18)

Applications: infinite dimensional generalisation is a Dirichlet process which is used
as a distribution on probability distributions. Very important in Bayesian nonparametric
analysis.

1.3.10 Cauchy distribution

X follows a Cauchy distribution (also known as a Lorentz distribution) with location param-
eter x0 and scale parameter �, if it has pdf

p(x) =
1

⇡�


1 +

⇣
x�x0
�

⌘2
� . (19)

X takes any real value x 2 (�1,1). The Cauchy distribution arises as the distribution of
the x intercept of a ray issuing from the point (x0, �) with a uniformly distributed angle. It
is also the distribution of the ratio of two independent zero-mean Normal distributions.

Applications: used to model distributions with sharp features. In a gravitational wave
context it is used as a model for lines in the spectral density of gravitational wave detectors,
for example in BayesLine (and hence BayesWave).

1.4 Properties of random variables

The pdf (or pmf) of a random variable tells us everything about the random variable. How-
ever, it is often convenient to work with a smaller number of quantities that summarise the
properties of the distribution. These characterise the ‘average’ value of a random variable
and the spread of the random variable about the average. We summarise a few of these quan-
tities here. They all rely on the notion of an expectation value, denoted E. The expectation
value of a function, T (X), of a discrete random variable X is defined by

E(T (X)) =
1X

i=1

pit(xi). (20)

A similar definition holds for continuous random variables by replacing the sum with an
integral

E(T (X)) =

Z 1

�1
p(x)t(x)dx. (21)
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❖ The Cauchy distribution (or 
Lorentz distribution) depends on a 
location parameter, x0, and a scale 
parameter, 

❖ This distribution arises in optics 
and is used to model distributions 
with sharp features, e.g., spectral 
lines in LIGO.

Continuous RVs: Cauchy distribution
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❖ The pdf (or pmf) completely characterises a 
probability distribution, but it is often more 
convenient to work with summary quantities.

❖ These are based on expectation values

❖ There are various quantities that summarise 
the average value of a random variable

- Mean

- Median m satisfies

- Mode

Summarising random variables: average
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1.4.1 Quantities representing the average value of a random variable

• Mean The mean, often denoted µ, is the expectation value of X, µ = E(X).

• Median The median, m, is the central value of the distribution in probability, i.e., a
value such that the probability of obtaining a value smaller than that or larger than
that is (roughly) equal. For discrete random variables m = xk, where

X

i:xi<xk

pi < 0.5 and
X

i:xixk

pi � 0.5. (22)

For continuous random variables m is the value such that
Z

m

�1
p(x)dx =

Z 1

m

p(x)dx =
1

2
. (23)

• Mode The mode, M , is the ‘most probable’ value of the random variable. For discrete
random variables

M = argmax
i2Xpi (24)

and for continuous random variables

M = argmax
x2Xp(x). (25)

The mode may not be unique.

1.4.2 Quantities representing the spread of a random variable

• Variance The variance, often denoted �2, is the expectation value of the squared
distance from the mean, i.e.,

Var(X) = E
⇥
(X � E(X))2

⇤
. (26)

• Standard deviation The standard deviation is simply the square root of the variance,
usually denoted �.

• Covariance When considering two random variables, X and Y say, the covariance is
defined as the expectation value of the product of their distance from their respective
means, i.e.,

cov(X, Y ) = E [(X � E(X)) (Y � E(Y ))] . (27)

Here the expectation value is taken with respect to the joint distribution (see section
on independence below).

• Skewness Given the mean, µ, and variance, �2, defined above, the skewness of a
distribution is

�1 = E
"✓

x� µ

�

◆3
#
. (28)

8 Introduction to Statistics for GWs

1.4.1 Quantities representing the average value of a random variable

• Mean The mean, often denoted µ, is the expectation value of X, µ = E(X).

• Median The median, m, is the central value of the distribution in probability, i.e., a
value such that the probability of obtaining a value smaller than that or larger than
that is (roughly) equal. For discrete random variables m = xk, where

X

i:xi<xk

pi < 0.5 and
X

i:xixk

pi � 0.5. (22)

For continuous random variables m is the value such that
Z

m

�1
p(x)dx =

Z 1

m

p(x)dx =
1

2
. (23)

• Mode The mode, M , is the ‘most probable’ value of the random variable. For discrete
random variables

M = argmax
i2Xpi (24)

and for continuous random variables

M = argmax
x2Xp(x). (25)

The mode may not be unique.

1.4.2 Quantities representing the spread of a random variable

• Variance The variance, often denoted �2, is the expectation value of the squared
distance from the mean, i.e.,

Var(X) = E
⇥
(X � E(X))2

⇤
. (26)

• Standard deviation The standard deviation is simply the square root of the variance,
usually denoted �.

• Covariance When considering two random variables, X and Y say, the covariance is
defined as the expectation value of the product of their distance from their respective
means, i.e.,

cov(X, Y ) = E [(X � E(X)) (Y � E(Y ))] . (27)

Here the expectation value is taken with respect to the joint distribution (see section
on independence below).

• Skewness Given the mean, µ, and variance, �2, defined above, the skewness of a
distribution is

�1 = E
"✓

x� µ

�

◆3
#
. (28)

8 Introduction to Statistics for GWs

1.4.1 Quantities representing the average value of a random variable

• Mean The mean, often denoted µ, is the expectation value of X, µ = E(X).

• Median The median, m, is the central value of the distribution in probability, i.e., a
value such that the probability of obtaining a value smaller than that or larger than
that is (roughly) equal. For discrete random variables m = xk, where

X

i:xi<xk

pi < 0.5 and
X

i:xixk

pi � 0.5. (22)

For continuous random variables m is the value such that
Z

m

�1
p(x)dx =

Z 1

m

p(x)dx =
1

2
. (23)

• Mode The mode, M , is the ‘most probable’ value of the random variable. For discrete
random variables

M = argmax
i2Xpi (24)

and for continuous random variables

M = argmax
x2Xp(x). (25)

The mode may not be unique.

1.4.2 Quantities representing the spread of a random variable

• Variance The variance, often denoted �2, is the expectation value of the squared
distance from the mean, i.e.,

Var(X) = E
⇥
(X � E(X))2

⇤
. (26)

• Standard deviation The standard deviation is simply the square root of the variance,
usually denoted �.

• Covariance When considering two random variables, X and Y say, the covariance is
defined as the expectation value of the product of their distance from their respective
means, i.e.,

cov(X, Y ) = E [(X � E(X)) (Y � E(Y ))] . (27)

Here the expectation value is taken with respect to the joint distribution (see section
on independence below).

• Skewness Given the mean, µ, and variance, �2, defined above, the skewness of a
distribution is

�1 = E
"✓

x� µ

�

◆3
#
. (28)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

p(
x)

Beta( 2 , 5 )
Mean
Median
Mode



❖ Other quantities summarise the spread of a RV

- Variance/Standard deviation

Summarising random variables: spread
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❖ Other quantities summarise the spread of a RV

- Variance/Standard deviation

- Skewness

- Excess Kurtosis

Summarising random variables: spread
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1.4.1 Quantities representing the average value of a random variable

• Mean The mean, often denoted µ, is the expectation value of X, µ = E(X).

• Median The median, m, is the central value of the distribution in probability, i.e., a
value such that the probability of obtaining a value smaller than that or larger than
that is (roughly) equal. For discrete random variables m = xk, where

X

i:xi<xk

pi < 0.5 and
X

i:xixk

pi � 0.5. (22)

For continuous random variables m is the value such that
Z

m

�1
p(x)dx =

Z 1

m

p(x)dx =
1

2
. (23)

• Mode The mode, M , is the ‘most probable’ value of the random variable. For discrete
random variables

M = argmax
i2Xpi (24)

and for continuous random variables

M = argmax
x2Xp(x). (25)

The mode may not be unique.

1.4.2 Quantities representing the spread of a random variable

• Variance The variance, often denoted �2, is the expectation value of the squared
distance from the mean, i.e.,

Var(X) = E
⇥
(X � E(X))2

⇤
. (26)

• Standard deviation The standard deviation is simply the square root of the variance,
usually denoted �.

• Covariance When considering two random variables, X and Y say, the covariance is
defined as the expectation value of the product of their distance from their respective
means, i.e.,

cov(X, Y ) = E [(X � E(X)) (Y � E(Y ))] . (27)

Here the expectation value is taken with respect to the joint distribution (see section
on independence below).

• Skewness Given the mean, µ, and variance, �2, defined above, the skewness of a
distribution is

�1 = E
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#
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❖ Other quantities summarise the spread of a RV

- Variance/Standard deviation

- Skewness

- Excess Kurtosis

- Higher moments

❖ Moments can be efficiently computed using 
the moment generating function

Summarising random variables: spread
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• Kurtosis In a similar way, kurtosis is defined as

Kurt(X) = E
"✓

x� µ

�

◆4
#
. (29)

This measures the heaviness of the tails of the distribution of the random variable.
The kurtosis of the Normal distribution is 3, so it is common to quote excess kurtosis,
which is the kurtosis minus 3, i.e., the excess relative to the Normal distribution.

• Higher moments Higher moments can be defined in a similar way. The n’th moment
about a reference value c of a probability distribution is

E [(X � c)n] . (30)

Moments are usually defined with c taken to be the mean, µ, as in the definition of
skewness and kurtosis above.

1.4.3 Moment generating functions

A useful object for computing summary quantities of a probability distribution is themoment
generating function, MX(t), which is defined as

MX(t) = E
⇥
etX

⇤
t 2 R. (31)

It is clear that derivatives of this function with respect to t, evaluated at t = 0, give successive
moments about zero of the distribution. Moment generating functions (MGFs) are defined
in the same way for both discrete and continuous random variables.

In Table 1 we list these various summary quantities for the probability distributions listed
earlier. Where quantities are not known in closed form they are omitted from this table.
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❖ A set of random variables {X1, X2, …, XN} is independent if, for all choices 
of {x1, x2, …, xN}

❖ In terms of the density function this is equivalent to

❖ Two independent random variables have zero covariance

❖ but the converse is not necessarily true.

❖ Random variables are independent identically distributed (IID) if they are 
independent and are all drawn from the same probability distribution.

Independence
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1.5 Independence

Most of the random variables described above are single valued, but a few of them, e.g., the
multinomial and Dirichlet distributions, return multiple values. In other situations, several
random variables might be evaluated simultaneously, or sequentially, or the same random
variable might be observed multiple times. When dealing with multiple random variables,
covariance as introduced above is an important concept, as is independence. A set of random
variables {X1, . . . , XN} are said to be independent if

P (X1  x1, X2  x2, . . . , XN  xN) = P (X1  x1)P (X1  x1) . . . P (X1  x1) 8 x1, x2, . . . , xN .
(32)

In terms of the pdf (or pmf) the random variables are independent if their joint distribution
p(x1, . . . , xN) can be separated

p(x1, . . . , xN) = pX1(x1)pX2(x2) . . . pXN (xN). (33)

Independence of two random variables implies that the covariance is 0, but the converse is
not true except in certain special cases, for example for two Normal random variables.

A set of variables {Xi} is called independent identically distributed or IID if they are
independent and all have the same probability distribution. This situation arises often, for
example when taking multiple repeated observations with an experiment.

1.6 Linear combinations of random variables

Suppose X1, . . . , XN are (not necessarily independent) random variables and consider a new
random variable Y defined as

Y =
NX

i=1

aiXi. (34)

For any set of random variables

E(Y ) =
NX

i=1

aiE(Xi), Var(Y ) =
NX

i=1

a2
i
Var(Xi) +

X

i 6=j

cov(Xi, Xj). (35)

If the random variables are independent then the variance expression simplifies to

Var(Y ) =
NX

i=1

a2
i
Var(Xi) (36)

and the moment generating function of Y can be found to be

MY (t) =
NY

i=1

MXi(t). (37)

A commonly used linear combination of random variables is the sample mean of a set of IID
random variables, defined as

µ̂ =
1

N

NX

i=1

Xi (38)

for which

E(µ̂) = E(X1), Var(µ̂) =
1

n
Var(X1), Mµ̂(t) = (MX1(t))

N . (39)
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cov(X,Y ) = E [(X � E(X)) (Y � E(Y ))] = 0
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Linear combinations of RVs
❖ Suppose X1, …, XN are random variables and consider a new RV

❖ Y has the properties

❖ The first equation holds for any random variables. If the RVs are independent 
then the relationships simplify

❖ If {Xi} are IID then the sample mean defined by ai=1/N for all i has the 
properties
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p(x1, . . . , xN) can be separated

p(x1, . . . , xN) = pX1(x1)pX2(x2) . . . pXN (xN). (33)

Independence of two random variables implies that the covariance is 0, but the converse is
not true except in certain special cases, for example for two Normal random variables.

A set of variables {Xi} is called independent identically distributed or IID if they are
independent and all have the same probability distribution. This situation arises often, for
example when taking multiple repeated observations with an experiment.

1.6 Linear combinations of random variables

Suppose X1, . . . , XN are (not necessarily independent) random variables and consider a new
random variable Y defined as

Y =
NX

i=1

aiXi. (34)

For any set of random variables

E(Y ) =
NX

i=1

aiE(Xi), Var(Y ) =
NX

i=1

a2
i
Var(Xi) +

X

i 6=j

aiajcov(Xi, Xj). (35)

If the random variables are independent then the variance expression simplifies to

Var(Y ) =
NX

i=1

a2
i
Var(Xi) (36)

and the moment generating function of Y can be found to be

MY (t) =
NY

i=1

MXi(ait). (37)

A commonly used linear combination of random variables is the sample mean of a set of IID
random variables, defined as

µ̂ =
1

N

NX

i=1

Xi (38)

for which

E(µ̂) = E(X1), Var(µ̂) =
1

n
Var(X1), Mµ̂(t) =

✓
MX1

✓
t

N

◆◆N

. (39)
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1.7 Laws of large numbers

Suppose that X1, . . . , Xn are a sequence of IID random variables, each having finite mean µ
and variance �2. We denote the sum of the random variables by

Sn =
nX

i=1

Xi, which implies E(Sn) = nµ, Var(Sn) = n�2. (40)

Laws of large numbers tells us that the sample mean becomes increasingly concentrated
around the mean of the random variable as the number of samples tends to infinity.

1.7.1 Weak law of large numbers

The weak law of large numbers states that, for ✏ > 0,

P

✓����
Sn

n
� µ

���� > ✏

◆
! 0, as n ! 1. (41)

1.7.2 Strong law of large numbers

The strong law of large numbers states simply

P

✓
Sn

n
! µ

◆
= 1. (42)

1.7.3 Central limit theorem

In many applications, people assume that the data generating process is Normal. This is
partially because the Normal distribution is convenient to work with and has many nice
properties, but also because regardless of the distribution large samples of random variables
tend to look quite Normally distributed. This fact is encoded in the Central Limit Theorem,
which states that the standardized sample mean, S⇤

n
, is approximately standard Normal in

the limit n ! 1
S⇤
n
=

Sn � nµ

�
p
n

. (43)

Formally the statement of the central limit theorem is

limn!1P (a  S⇤
n
 b) = �(b)� �(a) = limn!1P (nµ+ a�

p
n  Sn  nµ+ b�

p
n). (44)

E(X) = µ
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