Lecture Recording

Note: These lectures will be recorded and posted onto the IMPRS website

Dear participants,

We will record all lectures on “Making sense of data: introduction to statistics for
gravitational wave astronomy”, including possible Q&A after the presentation,
and we will make the recordings publicly available on the IMPRS lecture
website at:

- https:/ /imprs-gw-lectures.aei.mpg.de /2023-making-sense-of-data /

By participating in this Zoom meeting, you are giving your explicit consent to
the recording of the lecture and the publication of the recording on the course
website.
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l.ecture 1: introduction to random variables
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Outline of course

# Lectures will take place at 11am Monday, Wednesday, Thursday and

Friday in the weeks beginning Nov 13th, 20th and 27th In the week
beginning Dec 4th there will be lectures on Monday and Friday only:.
The last two lectures will take place on December 13th and 15th.

« Lectures will all take place in seminar room 0.01 at the AEI and will

also be broadcast via Zoom

- Meeting ID: 610 8405 1709
- Meeting password: 797295

# Lecture recordings will be made available on the course website

- https:/ /imprs-gw-lectures.aei.mpg.de /2023-making-sense-of-data/



Outline of course

Part 1 (lectures 1 to 6): Frequentist statistics and stochastic processes

* Random variables: definition, properties, some useful probability
distributions, central limit theorem.

* Statistics: definition, estimators, likelihood, desirable properties of estimators,
Cramer-Rao bound.

» Hypothesis testing: definition, Neyman-Pearson lemma, power and size of
tests, type I and type II errors, ROC curves, confidence regions, uniformly-
most-powerful tests.

* Frequentist statistics in GW astronomy: false alarm rates, Fisher Matrix, PSD
estimation.

* Stochastic processes, optimal filtering, signal-to-noise ratio, sensitivity curves.

* Practical: simulating random variables in python.



Outline of course

Part 2 (lectures 7 to 12): Bayesian statistics

Bayes' theorem, conjugate priors, Jeffrey's prior.

Bayesian hypothesis testing, hierarchical models, posterior predictive
checks.

Sampling methods for Bayesian inference.

Bayesian statistics in GW astronomy: parameter estimation,
population inference, model selection.

Practicals (2): sampling posterior distributions using pyMC3.



Outline of course

Part 3 (lectures 13 to 16): Introduction to machine learning
* Introduction to machine learning.

* Neural networks and deep learning.

* Machine learning for GW astronomy:.

* Practical: GW search and PE using machine learning.



Outline of course

»  Lecture notes will be made available on the course website

https:/ /imprs-gw-lectures.aei.mpg.de /2023-making-sense-of-
data/

These notes will include more material than will be covered in lectures,
and these extra topics will be denoted by an asterix.

Two problem sets will be provided (one for each of the first two parts of
the course). Solutions will be made available later.

Problem sheets will have two parts, with the second part containing
optional questions that are either more difficult or similar to questions in
the first part.



Random variables

* Random variables are quantities
that are not fixed, but can take
new values each time they are

observed (a realisation).

“ Over many realisations the
distribution of the random
variable is described by a
probability distribution.

+ Random variables can be discrete
(taken values in a countable set)
or continuous (taking real values

in some interval).
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Discrete random variables

+ Discrete random variables are
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characterised by a probability mass
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Discrete RVs: Poisson distribution

* Poisson distribution is defined

for non-negative k by

Nee=A k)
P(X:k)zpk:{o /

+  Arises as the distribution of the

number of counts of a process
occurring in a certain period of
time.
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Conunuous random variables

»  Continuous random variables are

characterised by a probability density
function, satistying

0 < p(x) /%Xp(fﬂ)dw =1

»  For example, Uniform distribution
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Contunuous RVs: Normal distribution

+* Normal distribution is characterised

by mean {t and variance o~

T, (z — p)° —
plz) = s €xXp 902 __ — Meozg

* Arises as a limiting distribution and = ¢ -
as the distribution of noise in 2
gravitational wave detectors. <
Commonly used as the default
distribution in parametric statistics
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and as a prior in Bayesian analysis.

+ Normal distribution with zero mean
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and unit variance is the standard 9 " . , .
Normal distribution. "



Continuous RVs: chi-squared distribution

* Chi-squared distribution
depends on a degrees of freedom
parameter k > 0

1 k
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+ It is the distribution of the sum
of squares of k standard normal
random variables.

“ There is also a non-central chi-
square distribution which has
also a non-centrality parameter.
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* Student’s t-distribution also s

“ It arises in hypothesis testing as the

Continuous RVs: Student’s t-distribution
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depends on a degrees of freedom — n=s
parameter n
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(f

ratio of a standard Normal

distribution to a chi-squared
distribution. It is used as a heavy-

tailed distribution in inference.

0.1

0.0




Continuous RVs: F-distribution
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* The F-distribution depends on
two degrees of freedom
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“ This arises as the ratio of two
chi-square distributions and is

the basis for analysis of variance. §\
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* The Exponential distribution

+ This arises as the distribution of

Continuous RVs: Exponenual distribution

depends on a rate parameter
A >0
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the separation of events in a °
Poisson process.




Contnuous RVs: Gamma distribution

* The Gamma distribution
depends on a shape parameter n > 0
and a scale parameter A > 0
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+ The Gamma distribution is
commonly used in Bayesian

inference as a prior with support 5 - /
on the positive real line, and is
conjugate to the Poisson o

distribution. . . 0 o



Contnuous RVs: Beta distribution

“ The Beta distribution depends on
two shape parameters a, b > 0

Bla,p) ¥

0 11—z if0<z<1
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“ The Beta distribution is conjugate
to the Binomial distribution and is
used as a prior for parameters with
support in [0,1].




Continuous RVs: Dirichlet distribution

* The Dirichlet distribution is a multivariate
distribution, generating K samples {x;/ A
constrained such that 0 < x; <1 and ‘ o ‘ o
D _ie1 L =1 "

* The distribution depends on a vector of
concentration parameters

= A
@:(&17”'7&1() a ‘ .
* and has pdf t e " |

p(z) = 1 |K| AT where B(d) = 1oy D) ‘ . S
Bl F T (ZK 1 aj) Figure from Wikipedia
I~ Pt

* The Dirichlet process is used as a prior on
probability distributions in Bayesian
nonparametric inference.



* The Cauchy distribution (or

Continuous RVs: Gauchy distribution
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Summarising random variables: average

* The pdf (or pmf) completely characterises a

probability distribution, but it is often more
convenient to work with summary quantities.

* These are based on expectation values

E(T(X)) = / " p(o)t(a)da

— 00
* There are various quantities that summarise
the average value of a random variable

- Mean

p=E(X)

- Median m satisfies
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- Mode
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Summarising random variables: spread

+  Other quantities summarise the spread of a RV

- Variance/Standard deviation

Var(X) =E [(X — E(X))"]

Standard deviation = 1




Summarising random variables: spread

+  Other quantities summarise the spread of a RV

- Variance/Standard deviation

Var(X) =E [(X — E(X))"]
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Summarising random variables: spread

* QOther quantities summarise the spread of a RV

- Variance/Standard deviation

Var(X) =E [(X — E(X))"]
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Summarising random variables: spread

* QOther quantities summarise the spread of a RV

* Moments can be efficiently computed using

- Variance/Standard deviation

Var(X) =E [(X — E(X))"]
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the moment generating function
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Independence

* A set of random variables { X1, X5, ..., Xn/ is independent if, for all choices
Of {X], X2, ooy xN}

P(Xl SZEl,XQSZCQ,...,XNSZEN):P(XlSZEl)P(Xl SZEl)P(Xl <£131)

* In terms of the density function this is equivalent to

p(T1,- -, TN) = px; (T1)Px,(T2) - - - Pxy (TN)

“ Two independent random variables have zero covariance
cov(X,Y)=E[(X —EX)) (Y —E(Y))] =0

* but the converse is not necessarily true.

* Random variables are independent identically distributed (1ID) if they are
independent and are all drawn from the same probability distribution.



l.inear combinations of RVs

* Suppose Xj, ..., Xy are random variables and consider a new RV

N
W= Z CLZ'XZ'
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> Y has the properties
N N
EY)=> aE(X;), Var(Y)=)> a?Var(X;)+» a;ajcov(X;, X;)
i=1 i=1 i3]

» The first equation holds for any random variables. If the RVs are independent

then the relationships simplify
N

Var(Y) =) a?Var(X;) My (t) = H Mx, (a;t)

=

» If {X;} are IID then the sample mean defined by a;=1/N for all i has the

properties

) =E(X1),  Var(p) = %VM(X”’ Math) = <MX1 G»N




Laws of large numbers

“ Averages of random variables have
various nice asymptotic properties
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