# Lecture Recording

\* Note: These lectures will be recorded and posted onto the IMPRS website

- Dear participants,
- We will record all lectures on "Making sense of data: introduction to statistics for gravitational wave astronomy", including possible Q&A after the presentation, and we will make the recordings publicly available on the IMPRS lecture website at:
  - https://imprs-gw-lectures.aei.mpg.de/2023-making-sense-of-data/
- By participating in this Zoom meeting, you are giving your explicit consent to the recording of the lecture and the publication of the recording on the course website.

### Making sense of data: introduction to statistics for gravitational wave astronomy Lecture 1: introduction to random variables

AEI IMPRS Lecture Course

Jonathan Gair jgair@aei.mpg.de



- Lectures will take place at 11am Monday, Wednesday, Thursday and Friday in the weeks beginning Nov 13<sup>th</sup>, 20<sup>th</sup> and 27<sup>th</sup> In the week beginning Dec 4<sup>th</sup> there will be lectures on Monday and Friday only. The last two lectures will take place on December 13th and 15th.
- \* Lectures will all take place in seminar room 0.01 at the AEI and will also be broadcast via Zoom
  - Meeting ID: 610 8405 1709
  - Meeting password: 797295
- \* Lecture recordings will be made available on the course website
  - https://imprs-gw-lectures.aei.mpg.de/2023-making-sense-of-data/

- \* Part 1 (lectures 1 to 6): Frequentist statistics and stochastic processes
  - Random variables: definition, properties, some useful probability distributions, central limit theorem.
  - Statistics: definition, estimators, likelihood, desirable properties of estimators, Cramer-Rao bound.
  - Hypothesis testing: definition, Neyman-Pearson lemma, power and size of tests, type I and type II errors, ROC curves, confidence regions, uniformly-most-powerful tests.
  - Frequentist statistics in GW astronomy: false alarm rates, Fisher Matrix, PSD estimation.
  - Stochastic processes, optimal filtering, signal-to-noise ratio, sensitivity curves.
  - Practical: simulating random variables in python.

- \* Part 2 (lectures 7 to 12): Bayesian statistics
  - Bayes' theorem, conjugate priors, Jeffrey's prior.
  - Bayesian hypothesis testing, hierarchical models, posterior predictive checks.
  - Sampling methods for Bayesian inference.
  - Bayesian statistics in GW astronomy: parameter estimation, population inference, model selection.
  - Practicals (2): sampling posterior distributions using pyMC3.

- Part 3 (lectures 13 to 16): Introduction to machine learning
  - Introduction to machine learning.
  - Neural networks and deep learning.
  - Machine learning for GW astronomy.
  - Practical: GW search and PE using machine learning.

- \* Lecture notes will be made available on the course website
  - https://imprs-gw-lectures.aei.mpg.de/2023-making-sense-ofdata/
- \* These notes will include more material than will be covered in lectures, and these extra topics will be denoted by an asterix.
- \* Two problem sets will be provided (one for each of the first two parts of the course). Solutions will be made available later.
- Problem sheets will have two parts, with the second part containing optional questions that are either more difficult or similar to questions in the first part.

### Random variables

- *Random variables* are quantities that are not fixed, but can take new values each time they are observed (a *realisation*).
- Over many realisations the distribution of the random variable is described by a probability distribution.
- Random variables can be *discrete* (taken values in a countable set) or *continuous* (taking real values in some interval).



### Discrete random variables

 Discrete random variables are characterised by a *probability mass function*, i.e., a set {*p<sub>i</sub>*} satisfying

 $0 \le p_i \le 1 \qquad \qquad \sum p_i = 1$ 

\* For example, **Binomial distribution** 

$$P(X = k) = p_k = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & \text{if } k \in \{1, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

 Related distributions: Bernoulli distribution, negative Binomial, geometric distribution.



### Discrete RVs: Poisson distribution

 Poisson distribution is defined for non-negative k by

$$P(X = k) = p_k = \begin{cases} \lambda^k e^{-\lambda}/k! \\ 0 \end{cases}$$

 Arises as the distribution of the number of counts of a process occurring in a certain period of time.



### Continuous random variables

 Continuous random variables are characterised by a *probability density function*, satisfying

$$0 \le p(x)$$
  $\int_{x \in \mathcal{X}} p(x) dx = 1$ 

\* For example, **Uniform distribution** 

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$



### Continuous RVs: Normal distribution

\* **Normal distribution** is characterised by mean  $\mu$  and variance  $\sigma^2$ 

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- Arises as a limiting distribution and as the distribution of noise in gravitational wave detectors.
  Commonly used as the default distribution in parametric statistics and as a prior in Bayesian analysis.
- Normal distribution with zero mean and unit variance is the *standard Normal distribution*.



#### Continuous RVs: chi-squared distribution

Chi-squared distribution
depends on a *degrees of freedom* parameter k > 0

$$p(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}$$

- It is the distribution of the sum of squares of k standard normal random variables.
- \* There is also a *non-central chisquare distribution* which has also a *non-centrality parameter*.



#### Continuous RVs: Student's t-distribution

 Student's t-distribution also depends on a degrees of freedom parameter n

$$p(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

It arises in hypothesis testing as the ratio of a standard Normal distribution to a chi-squared distribution. It is used as a *heavy-tailed* distribution in inference.



### Continuous RVs: F-distribution

 The F-distribution depends on two degrees of freedom parameters, n<sub>1</sub> and n<sub>2</sub>

$$p(x) = \frac{1}{B\left(\frac{n_1}{2}, \frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} x^{\frac{n_1}{2}-1} \left(1 + \frac{n_1}{n_2}x\right)^{-\frac{n_1+n_2}{2}}$$

 This arises as the ratio of two chi-square distributions and is the basis for *analysis of variance*.



#### Continuous RVs: Exponential distribution

\* The **Exponential distribution** depends on a *rate* parameter  $\lambda > 0$ 

$$p(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

 This arises as the distribution of the separation of events in a Poisson process.



#### Continuous RVs: Gamma distribution

\* The Gamma distribution depends on a *shape parameter* n > 0and a *scale parameter*  $\lambda > 0$ 

$$p(x) = \begin{cases} \frac{1}{\Gamma(n)} \lambda^n x^{n-1} e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

\* The Gamma distribution is commonly used in Bayesian inference as a prior with support on the positive real line, and is conjugate to the Poisson distribution.



### Continuous RVs: Beta distribution

 The Beta distribution depends on two *shape parameters* a, b > 0

$$p(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} & \text{if } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$$

 The Beta distribution is conjugate to the Binomial distribution and is used as a prior for parameters with support in [0,1].



### Continuous RVs: Dirichlet distribution

The Dirichlet distribution is a multivariate distribution, generating K samples {x<sub>i</sub>} constrained such that 0 < x<sub>i</sub> < 1 and</li>

$$\sum_{i=1}^{K} x_i = 1$$

\* The distribution depends on a vector of *concentration parameters* 

$$\vec{\alpha} = (\alpha_1, \ldots, \alpha_K)$$

and has pdf

$$p(x) = \frac{1}{B(\vec{\alpha})} \prod_{i=1}^{K} x_i^{\alpha_i - 1}, \quad \text{where } B(\vec{\alpha}) = \frac{\prod_{i=1}^{K} \Gamma(\alpha_i)}{\Gamma\left(\sum_{j=1}^{K} \alpha_j\right)}.$$

 The Dirichlet process is used as a prior on probability distributions in Bayesian nonparametric inference.





Figure from Wikipedia

### Continuous RVs: Cauchy distribution

\* The Cauchy distribution (or Lorentz distribution) depends on a location parameter,  $x_0$ , and a scale parameter,  $\gamma > 0$ 

$$p(x) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - x_0}{\gamma}\right)^2\right]}$$

 This distribution arises in optics and is used to model distributions with sharp features, e.g., spectral lines in LIGO.



### Summarising random variables: average

- The pdf (or pmf) completely characterises a probability distribution, but it is often more convenient to work with summary quantities.
- \* These are based on *expectation values*  $\mathbb{E}(T(X)) = \int_{-\infty}^{\infty} p(x)t(x) dx$
- \* There are various quantities that summarise the *average* value of a random variable
  - Mean

$$\mu = \mathbb{E}(X)$$

- Median m satisfies

$$\int_{-\infty}^{m} p(x) \mathrm{d}x = \int_{m}^{\infty} p(x) \mathrm{d}x = \frac{1}{2}$$

- Mode

$$M = \operatorname{argmax}_{x \in \mathcal{X}} p(x)$$



- \* Other quantities summarise the spread of a RV
  - Variance/Standard deviation  $Var(X) = \mathbb{E}\left[ (X - \mathbb{E}(X))^2 \right]$



- \* Other quantities summarise the spread of a RV
  - Variance/Standard deviation

 $\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]$ 

- Skewness

$$\gamma_1 = \mathbb{E}\left[\left(\frac{x-\mu}{\sigma}\right)^3\right]$$



- \* Other quantities summarise the spread of a RV
  - Variance/Standard deviation

 $\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]$ 

- Skewness

$$y_1 = \mathbb{E}\left[\left(\frac{x-\mu}{\sigma}\right)^3\right]$$

- Excess Kurtosis

$$\operatorname{Kurt}(X) = \mathbb{E}\left[\left(\frac{x-\mu}{\sigma}\right)^4\right] - 3$$



- \* Other quantities summarise the spread of a RV
  - Variance/Standard deviation

 $\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]$ 

- Skewness

$$u_1 = \mathbb{E}\left[\left(\frac{x-\mu}{\sigma}\right)^3\right]$$

- Excess Kurtosis  $\operatorname{Kurt}(X) = \mathbb{E}\left[\left(\frac{x-\mu}{\sigma}\right)^4\right] - 3$
- Higher moments

 $\mathbb{E}\left[(X-c)^n\right]$ 

\* Moments can be efficiently computed using the *moment generating function* 

 $M_X(t) = \mathbb{E}\left[e^{tX}\right] \quad t \in \mathbb{R}$ 



## Independence

\* A set of random variables { $X_1$ ,  $X_2$ , ...,  $X_N$ } is *independent* if, for all choices of { $x_1$ ,  $x_2$ , ...,  $x_N$ }

 $P(X_1 \le x_1, X_2 \le x_2, \dots, X_N \le x_N) = P(X_1 \le x_1)P(X_1 \le x_1) \dots P(X_1 \le x_1)$ 

\* In terms of the density function this is equivalent to

$$p(x_1, \ldots, x_N) = p_{X_1}(x_1)p_{X_2}(x_2) \ldots p_{X_N}(x_N)$$

\* Two independent random variables have zero covariance

$$\operatorname{cov}(X,Y) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)\left(Y - \mathbb{E}(Y)\right)\right] = 0$$

- \* but the converse is not necessarily true.
- \* Random variables are *independent identically distributed* (IID) if they are independent and are all drawn from the same probability distribution.

### Linear combinations of RVs

\* Suppose *X*<sub>1</sub>, ..., *X*<sub>N</sub> are random variables and consider a new RV

$$Y = \sum_{i=1}^{N} a_i X_i$$

\* *Y* has the properties

$$\mathbb{E}(Y) = \sum_{i=1}^{N} a_i \mathbb{E}(X_i), \qquad \operatorname{Var}(Y) = \sum_{i=1}^{N} a_i^2 \operatorname{Var}(X_i) + \sum_{i \neq j} a_i a_j \operatorname{cov}(X_i, X_j)$$

\* The first equation holds for any random variables. If the RVs are *independent* then the relationships simplify

$$Var(Y) = \sum_{i=1}^{N} a_i^2 Var(X_i) \qquad M_Y(t) = \prod_{i=1}^{N} M_{X_i}(a_i t)$$

\* If  $\{X_i\}$  are IID then the *sample mean* defined by  $a_i=1/N$  for all i has the properties

$$\mathbb{E}(\hat{\mu}) = \mathbb{E}(X_1), \qquad \operatorname{Var}(\hat{\mu}) = \frac{1}{n} \operatorname{Var}(X_1), \qquad M_{\hat{\mu}}(t) = \left(M_{X_1}\left(\frac{t}{N}\right)\right)^N$$

7 7

# Laws of large numbers

 Averages of random variables have various nice asymptotic properties

$$S_n = \sum_{i=1}^n X_i$$
  $\mathbb{E}(X) = \mu$   $\operatorname{Var}(X) = \sigma^2$ 

- \* Weak law of large numbers: for  $\epsilon > 0$  $P\left(\left|\frac{S_n}{n} - \mu\right| > \epsilon\right) \to 0, \text{ as } n \to \infty$
- \* Strong law of large numbers

$$P\left(\frac{S_n}{n} \to \mu\right) = 1$$

\* *Central Limit Theorem:* for  $S_n^* = \frac{S_n - n\mu}{\sigma\sqrt{n}}$ 

 $\lim_{n \to \infty} P(a \le S_n^* \le b) = \Phi(b) - \Phi(a)$ 

