
Problem set 5

1. In this problem you will derive the interaction cross section including gravitational fo-

cusing. You will start by assuming that a test particle of some very small mass starts at

effectively infinite distance from a compact body of mass M . The initial speed of the test

particle is v with respect to M , and if it traveled in a straight line then the closest it would

get to M is a distance b; b is called the impact parameter of the trajectory. As a result, the

specific angular momentum of the trajectory relative to M is bv and the specific energy of

the trajectory is 1
2
v2. By conserving energy and angular momentum, determine the value

of b such that the closest approach to M is rp. Hint: at the closest approach, the velocity

vector is perpendicular to the direction to M . The effective cross section for an interaction

of closest approach rp or closer is then Σ = πb2.

2. In this problem we will perform calculations related to the production of a binary by

direct capture during a two-body encounter. The scenario is that in a dense stellar system

two black holes, which are initially unbound with respect to each other, pass close enough

to each other that the gravitational radiation released during the encounter binds the black

holes into a binary. Because the relative speed at great distances (typically ∼tens of km s−1)

is tiny compared with the speed at pericenter in such encounters (typically tens of thousands

of km s−1), we can approximate the orbit as parabolic. The energy release in gravitational

waves for a parabolic encounter between two masses m1 and m2 with closest approach rp is
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Given this:

1. For an initial relative speed at a large distance of v∞, calculate the closest approach

rp such that ∆E is equal to 1
2
µv2
∞, where µ = m1m2/(m1 + m2) is the reduced mass.

Thus encounters with closest approach distances of rp or smaller will result in a bound

binary.

2. Calculate the effective cross section of such encounters, assuming that at rp the relative

speed is much larger than v∞. Hint: gravitational focusing is dominant in this limit.

3. Suppose that the core of a globular cluster has v∞ = 10 km s−1, and 100 black holes each

with mass 10 M�, at a number density of 105 pc−3. Given the cross section that you

found in part b, compute the expected number of double black hole mergers you would

expect in the globular in 1010 years. Here the assumption (which you should check)

is that once black holes are captured into a binary by this mechanism, coalescence is

rapid.



3. Dr. Sane doesn’t understand all this focus on binary compact object mergers. Instead,

direct collisions of single neutron stars in clusters with each other will make wonderful burst

sources. Dr. Sane has requested that you work out the numbers. Suppose that you consider

a dense globular cluster, such that in the center the number density of neutron stars is

106 pc−3 and there are 1000 total neutron stars per cluster. Suppose that each neutron star

has a radius of 10 km and mass of 1.5M� = 3×1033 g, and that the typical random speed in

the cluster is 10 km s−1. To within an order of magnitude, calculate how often two neutron

stars in a given cluster will hit each other. If there are 1010 such clusters in the universe,

how often will this happen in the universe? Hint: be careful when you calculate the cross

section for collisions, because gravitational focusing is important.

4. If you have a cluster of stars moving around and interacting gravitationally, then an

important concept in dynamics is the relaxation time. This, essentially, is the time needed

for a given object (say, a star) to double or halve its semimajor axis; that is, it’s the time

needed for the semimajor axis to change substantially. The local relaxation time is
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where ln Λ ∼ 10 comes from the “Coulomb integral” (which is a factor that lumps together

various detailed effects), σ(r) is the local velocity dispersion, M is the typical mass of an

object, and n(r) is the local number density of objects. Consider a region r < rinfl, where

σ(r) is given by the Keplerian orbital speed.

1. If n(r) ∝ r−3/2 (a typical profile), how does the relaxation time depend on r?

2. In contrast, for r � rinfl, assume that n(r) ∝ r−2 and σ(r) is constant. Then how does

the relaxation time depend on r?

5. One of the ways that black holes can acquire mass, and possibly grow into supermassive

black holes, is Bondi-Hoyle-Lyttleton accretion. In this process, gas that moves at a speed v

relative to the black hole (we assume here that v is much larger than the sound speed of the

gas) is gravitationally deflected by the hole, heats itself, shocks as a result, releases energy,

and if it is close enough to the hole it is then bound and eventually accretes into the hole.

For a black hole of mass M , the cross section for this type of accretion is ΣBHL = π(GM/v2)2

times a numerical factor close to unity that depends on the details of the flow.

But what if the matter does not interact with itself? An example would be dark matter.

Then, for the matter to accrete it needs to hit the hole directly. For a nonrotating black

hole (rotating black holes have slightly different numbers), capture requires that the angular

momentum per unit mass is less than 4GM/c. Given this, compute the ratio of the cross

section for direct impact accretion to the cross section for Bondi-Hoyle-Lyttleton accretion,



and comment on the implications for rapid growth of black holes by accretion of dark matter.

Hint: assume that at a great distance from the black hole, the dark matter is moving at the

same speed v relative to the hole as is the gas and note that in galaxies v is typically a few

hundred kilometers per second.


