
Neutron Star Structure

We now enter the study of neutron stars. Like black holes, neutron stars are one of

the three possible endpoints of stellar evolution (the remaining one being white dwarfs).

Also like black holes, neutron stars are very compact objects, so GR is important in their

description. Unlike black holes, they have surfaces instead of horizons, so they are a lot more

complicated than black holes. We’ll start with an overall description of neutron stars, then

discuss some of the physics of degenerate objects. We will conclude by talking a bit about

white dwarfs.

Summary of Neutron Stars

A typical neutron star has a mass of 1.2 − 2M� and a radius of ∼ 11 − 13 km, so

their bulk average densities can be a few times larger than “nuclear saturation density”

(the density at the centers of large nuclei on Earth) ρsat ≈ 2.6 × 1014 g cm−3. Known

neutron stars have spin frequencies up to 716 Hz and their inferred surface magnetic field

strengths are ∼ 108 − 1016 G. The surface gravity is few × 1014 cm s−2, so mountains of

even perfect crystals can’t be higher than < 1 mm, meaning that these are the smoothest

surfaces in the universe. They have many types of behavior, including pulsing (in radio, IR,

opt, UV, X-ray, and gamma-rays, but this is rarely all seen from a single object), glitching,

accreting, and possibly gravitational wave emission. They are the best clocks in the natural

universe. Their cores are at several times nuclear density, and may be composed of exotic

matter such as quark-gluon plasmas, strange matter, kaon condensates, or other weird stuff.

In their interiors they are superconducting and superfluid, with transition temperatures

around 108 − 109 K. All these extremes mean that neutron stars are attractive to study for

people who want to push the envelope of fundamental theories about gravity, magnetic fields,

and high-density matter. A few thousand neutron stars are known, mostly from their radio

pulsations, and a few gravitational wave events have involved neutron stars (two events that

were probably NS-NS, and a few more that might have been BH-NS).

High densities

Let’s talk about the quantum physics that enters at high densities. An essential new

concept that is introduced at high densities is Fermi energy. The easiest way to think about

this is in terms of the uncertainty principle,

∆p∆x ≥ ~/2 . (1)

If something is localized to a region of size ∆x, then its momentum must be at least ∼ ~/∆x
(where you see that we have dropped the factor of 2; we’re looking for general insight rather

than precise values). That means that in a dense environment, there is a momentum, and



hence an energy, associated with the confinement. Therefore, squeezing something increases

its total energy, and this Fermi energy acts as a pressure (sometimes called degeneracy

pressure). The existence of this energy has a profound role in the structure of white dwarfs,

and especially neutron stars. In fact, if degeneracy pressure dominates, then unlike normal

stars, which get larger as they get more massive, degenerate stars are smaller at higher

masses. In particular, an approximate relation is that R ∼ M−1/3 for a degenerate star,

although for neutron stars the poorly known details of nuclear physics beyond the density

of an atomic nucleus means that things aren’t as clear.

Now let’s get some basic numbers. If the energy and momentum are low, then the Fermi

energy EF is related to the Fermi momentum pF ∼ ~/∆x by EF ≈ p2F/2m, where m is

the rest mass of the particle (this is the standard nonrelativistic expression for energy as a

function of momentum). Since ∆x ∼ n−1/3, where n is the number density of the particle,

in this nonrelativistic regime EF ∼ n2/3. At some point, however, EF > mc2. Then in the

extreme relativistic limit EF ∼ pF c, so EF ∼ n1/3. For electrons, the crossover to relativistic

Fermi energy happens at a density ρ ∼ 106 g cm−3, assuming a fully ionized plasma with two

nucleons per electron. For protons and neutrons the crossover density is about 6×1015 g cm−3

(it scales as the particle’s mass cubed). The maximum density in neutron stars is no more

than 1015 g cm−3, so for most of the mass electrons are highly relativistic but neutrons and

protons are at best mildly relativistic.

Suppose that we have matter in which electrons, protons, and neutrons all have the same

number density. For a low density, which has the highest Fermi energy? The electrons, since

at low densities the Fermi energy goes like the inverse of the particle mass. Given what we

said before, what is the approximate value of the electron Fermi energy when ρ = 106 g cm−3?

That’s the relativistic transition, so EF ≈ mec
2 ≈ 0.5 MeV. Then at 107 g cm−3 the Fermi

energy is about 1 MeV, and each factor of 10 doubles the Fermi energy since EF ∼ n1/3

in the relativistic regime. What that means is that the energetic “cost” of adding another

electron to the system is not just mec
2, as it would be normally, but is mec

2 + EF,e, where

the “e” subscript means “electron”. It therefore becomes less and less favorable to have

electrons around as the density increases.

Now, in free space neutrons are unstable. This is because the sum of the masses of an

electron and a proton is about 1.5 MeV short of the mass of a neutron, so it is energetically

favorable to decay (for the pedantic: what we really mean is that decay is favorable because it

increases the total number of states accessible to the system and thus increases the system’s

entropy). Ask class: what happens, though, at high density? If mp +me +EF,e > mn, then

it is energetically favorable to combine a proton and an electron into a neutron. Therefore,

at higher densities matter becomes more and more neutron-rich. First, atoms get more

neutrons, so you get nuclei such as 120Rb, with 40 protons and 80 neutrons. Then, at about

4× 1011 g cm−3 it becomes favorable to have free neutrons floating around, along with some



nuclei (this is called “neutron drip” because the effect is that neutrons drip out of the nuclei).

At even higher densities, the matter is essentially a smooth distribution of neutrons plus a

∼ 5 − 10% smattering of protons and electrons. At higher densities yet (here we’re talking

about nearly 1015 g cm−3), the neutron Fermi energy could become high enough that it is

favorable to have other particles appear.

It is currently unknown whether such particles will appear, and this is a focus of much

present-day research. If they do, it means that the energetic “cost” of going to higher density

is less than it would be otherwise, since energy is released by the appearance of other, exotic

particles instead of more neutrons. In turn, this means that it is easier to compress the star:

squashing it a bit doesn’t raise the energy as much as you would have thought. Another way

of saying this is that when a density-induced phase transition occurs (here, a transition to

other types of particles), the equation of state (the pressure as a function of energy density)

is “soft”. Maybe the new phase of matter is hard, but at the transition itself the matter is

soft.

Soft matter can’t support as much mass as hard matter. That’s because as more mass

is added, the star compresses more and more, so its gravitational compression increases. If

pressure doesn’t increase to compensate, in it goes and forms a black hole. What all this

means is that by measuring the mass and radius of a neutron star, or by establishing the

maximum mass of a neutron star, or (highly relevant to gravitational waves) by determining

how deformed a star is under the influence of an external gravitational tidal field, one gets

valuable information about the equation of state (EOS: this is the pressure as a function

of energy density), and hence about nuclear physics at very high density. This is just one

of many ways in which study of neutron stars has direct implications for microphysics.

We’ll talk about more when we discuss what we’ve already learned from gravitational wave

detections.

White Dwarfs

The overwhelming majority of stars will end their lives as white dwarfs rather than

neutron stars or black holes; only if the initial mass is > 8 − 9 M� will the star become

something other than a white dwarf. A white dwarf will typically have a mass of ∼ 0.6 M�
and a radius roughly that of Earth. This makes its average density something like 106 times

that of water, and means that the maximum frequency it can reach (whether by rotation,

or in a binary, or because of a sound wave that involves most of the star) is typically a few

tenths of a Hertz. This is well below what we’d expect to access using current or future

ground-based gravitational-wave detectors, but is comfortably above what we will see using

the space-based gravitational-wave detector LISA (Laser Interferometer Space Antenna).

This means that LISA will be able to see detached (i.e., non-accreting) double white dwarf

(DWD) binaries. Since these have low mass and (compared with LVK events) low frequency,



their gravitational wave luminosity is small and thus we only expect to see them if they are

in the Milky Way galaxy or possibly in a nearby satellite galaxy. But they make up for their

weakness with sheer numbers: we expect something like a hundred million DWD binaries in

our Galaxy, which is so many that from few × 10−4 Hz to few × 10−3 Hz, it is the confusion

of unresolved DWDs, rather than instrumental sensitivity, which will limit the detection of

other sources using LISA.

White dwarfs are supported against gravity by gradients of electron degeneracy pressure,

in contrast to the neutron degeneracy pressure that holds up neutron stars. Electrons are

much less massive than neutrons (by around a factor of 2000), and this turns out to very

roughly explain the difference in their radii: at an approximate level, white dwarfs are around

1000 times larger than neutron stars.

A remarkable fact about white dwarfs that was discovered by Chandrasekhar (and, as it

turns out, a couple of years earlier by Edmund Stoner) is that they have a maximum mass.

The basic idea is that whereas when the degenerate electrons are nonrelativistic the star can

settle into a stable equilibrium, when the degenerate electrons are relativistic the star either

reaches a minimum total energy by expanding into nonrelativistic degeneracy (if the mass

is below a threshold) or it can’t reach a minimum energy at all and thus collapses. The

threshold mass, for an iron white dwarf, is about MCh = 1.35 M� (where the subscript is

for Chandrasekhar). Fundamentally, this is what drives a core-collapse supernova, in which

a massive star produces an iron core, which cannot fuse to produce energy; when the core

reaches MCh (more or less, with some caveats), it collapses, at least temporarily produces

a neutron star, and the energy blows apart the remaining portions of the star (with details

that are still tricky after many decades of study).

If you apply the same logic to get the maximum mass of a neutron star, your initial

estimate would be around 5.6 M�. But it’s actually much less than that (the best current

estimate is < 2.5 M�), because of various subtleties involved in general relativity and nuclear

physics. Nonetheless, that neutron stars have a maximum mass is crucial in making the

argument that certain things are black holes; if it’s non-luminous and heavier than the

neutron star maximum, it’s likely a black hole.

But back to white dwarfs. Their nuclei are basically ordinary, and the interactions of

degenerate electrons are not a mystery. There are always details (e.g., how they cool is

still being analyzed carefully), but why should we be interested in them and in particular

gravitational waves from DWD binaries?

The most compelling answer is that, at least currently, DWD mergers are the best

candidate to explain the so-called Type Ia supernovae (also known as SNe Ia), which are

fantastic cosmological standard candles. For example, it was the study of SNe Ia which

convinced people that the expansion of the universe is accelerating, and thus that dark



energy makes up most of the mass-energy density in the universe.

Backing up a bit, after considerable study it was determined that there are two fun-

damentally different types of supernovae that have been detected. For historical and ob-

servational reasons, the two types are SNe Ia and everything else (including other SNe I

designations). SNe Ia involve white dwarfs, and everything else is the core collapse of a mas-

sive star. Other types of supernovae have been postulated (e.g., pair-instability supernovae)

but not yet clearly seen.

One observational clue about the distinction between the types is that because non-Ia

types of SNe involve massive stars, which live short lifetimes (millions rather than billions

of years), you expect to find them, and do, in galaxies with very active star formation. But

SNe Ia are also found in galaxies without active star formation, which means that they have

to be able to happen in older systems. For a long time the favorite idea was the “single-

degenerate” origin, in which a white dwarf accretes mass from a companion star. If the white

dwarf has enough mass, the idea went, then it could become unstable to thermonuclear fusion

of (say) carbon into oxygen. Enough energy could be released in such fusion, if it happened

throughout the star, that it would blow the star apart and leave no remnant.

But more recent observations have not found the signs of such systems. For example,

given the rate of SNe Ia we would have expected to see a number of accreting systems where

a high-mass white dwarf had matter actively falling on its surface, which we would see in

ultraviolet. But not nearly enough systems have been seen. Thus a different idea has taken

center stage: that SNe Ia are the result of the inspiral and merger of two white dwarfs that

were in a binary. If this is the case then it means that the many DWD systems that LISA

will see and identify individually are precursors to SNe Ia. Gravitational-wave detection of

those systems will (1) confirm (or not!) that the rates are compatible, and if confirmation

is achieved then (2) the characterization of those systems will tell us about their typical

masses and mass ratios and (optimistically) might allow such systems to be better-modeled

and thus allow them to be even more precise standard candles. Oh, also, this will give the

people interested in white dwarfs on their own a lot more data!


