
Black Holes

We’re now ready to start tackling the properties of black holes. For astronomers in-

terested in compact objects, what is most important about black holes is the properties of

their spacetime. Mathematically, a black hole can have only three properties: mass, angular

momentum, and electric charge. However, like all other big things in the universe (here

we’ll take “big” to mean “of planetary or greater mass”), black holes are expected to have

negligible net electric charge. That means we have only to worry about mass and angular

momentum. We’ll begin with nonrotating (or Schwarzschild) black holes and then talk about

the effects of rotation.

Nonrotating black holes

(1) There is a unique spacetime outside spherically symmetric objects.

(2) Black holes have event horizons. For nonrotating black holes, the circumferential

radius (circumference divided by 2π) at the horizon is RH = 2GM/c2 ≈ 3 km (M/M�) for

a black hole of mass M . Coincidentally, this is the radius at which the Newtonian escape

velocity is c.

(3) There are unstable circular orbits close enough to a black hole or neutron star. Far

away, a slight perturbation of an orbit just makes it a little elliptical. Close enough, however,

a slight perturbation causes it to spiral in quickly. For a nonrotating object, the so-called

innermost stable circular orbit, or ISCO, is at a circumferential radius RISCO = 6GM/c2 ≈
9 km (M/M�).

(4) Photons can be deflected dramatically close to a black hole. Indeed, a photon could

undergo a circular orbit at a circumferential radius of Rph = 3GM/c2 ≈ 4.5 km (M/M�)

around a nonrotating black hole, but because this is inside RISCO the orbit is unstable. The

dramatic deflection of photon orbits means that there can be photon “rings”, and thus if

there is a sharp burst of radiation this can produce echoes as photons undergo different

numbers of orbits. These are, however, successively fainter than the previous echo.

In Newtonian physics, the gravity around a spherically symmetric object is as if all the

mass is concentrated at a point in the center. If the object explodes or contracts, but in a

spherically symmetric way, it is still the case that the gravity outside that region is the same

as before.

In general relativity, one gets a similar result: if the spacetime is spherically symmetric,

then it is unique. Birkhoff’s theorem says that the only vacuum, spherically symmetric

gravitational field is static. One convenient metric for this spacetime is the Schwarzschild

metric:
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(
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)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ (1)



where dΩ = dθ2 + sin2 θ dφ2. Here we follow convention in setting G = c = 1. Note here

an important distinction: a metric is a description of a spacetime based on a particular

choice of coordinates. The spacetime itself is more general. In Schwarzschild coordinates,

t is the time between events measured by someone at infinity, θ and φ are their usual

spherical coordinate equivalents, and r is 1/2π times the circumference of a circle drawn at

Schwarzschild coordinate at r. However, you have to be careful: the proper radial distance

from r1 to r2 is not r2 − r1. It is
∫ r2
r1

(grr)
1/2 dr, which is larger in general.

Because of differences in the way in which local or distant observers measure things, in

GR one must always be precise when specifying the frame in which a quantity is measured.

If necessary, one can then use transformation rules to figure out what that quantity would be

in other frames. Confusion between frames is a common sticking-point for many crackpots!

The region r = 2M (or 2GM/c2 when we put G and c back in) is the event horizon,

which defines the “surface” of the black hole and defines the Schwarzschild radius. This

is also called the static limit: static (non-moving) observers can’t exist inside this radius.

Now, this also means that if we at infinity watch something fall in to the black hole, it never

appears to cross the horizon because of time dilation. It seems to “freeze” there, although

it dims rapidly so we shouldn’t expect to see a collection of frozen surprised aliens at the

horizons of black holes! A person falling through r = 2M does so in finite proper time (one

can verify this by integration), and does not feel infinite tidal forces (those happen at r = 0,

which is a genuine singularity). Note that as r −→ 2M the redshift approaches infinity. A

misunderstanding about what really happens at r = 2M led many people, including Einstein,

to disbelieve in black holes because they thought it meant a star somehow could hover just

outside the horizon.

The ISCO is important astrophysically because matter that gets into a black hole typ-

ically can’t fall in directly; everything has some angular momentum, and black holes are

small for their mass, so gas spirals in through an accretion disk. If there are no other forces

involved, then when the gas reaches the ISCO it spirals in to the black hole without further

loss of energy or angular momentum. In reality there are other forces (e.g., gas pressure gra-

dients or magnetic fields), but this isn’t usually a terrible approximation. For a nonrotating

black hole, a particle in a circular orbit at the ISCO radius RISCO = 6M has a specific energy

(where “specific” means “per mass”) of
√

8/9c2, which means that if it started far away and

moving slowly compared with the speed of light, it had to release 1 −
√

8/9 ≈ 0.057c2 of

energy per mass. That’s a lot; nuclear fusion of hydrogen to helium only releases 0.007c2 per

mass.

Rotating black holes

A dimensionless parameter that characterizes the angular momentum of a rotating object

is â ≡ cJ/(GM2), where J is the angular momentum and M is the mass of the black hole.



Black holes can have 0 ≤ |â| ≤ 1. This isn’t an absolute limit on the angular momentum

of things in the universe (for example, for the Earth, â ≈ 700), but nothing with â > 1 can

have a horizon, and as far as we know we can’t spin a black hole up to have â > 1. People

often use a (without the hat) to represent âM .

Whereas the spacetime outside a spherically symmetric object is always the Schwarzschild

spacetime, the spacetime outside a rotating object depends on the properties of the object.

For a black hole, in the most commonly-used coordinates in astrophysics (Boyer-Lindquist

coordinates), the metric line element is

ds2 = −(∆/ρ2)[dt− a sin2 θ dφ]2 + (sin2 θ/ρ2)[(r2 + a2)dφ− a dt]2 + (ρ2/∆)dr2 + ρ2 dθ2 , (2)

where ∆ ≡ r2 − 2Mr + a2 and ρ2 ≡ r2 + a2 cos2 θ. This is the Kerr line element in these

coordinates, and it reduces to the Schwarzschild line element when a = 0. Comparing

this carefully with Schwarzschild, we note that whereas Schwarzschild is diagonal (the only

nonzero elements are dt2, dr2, dθ2, and dφ2), for Kerr we have dtdφ and (symmetrically)

dφdt terms. This introduces an important new feature of spacetime around rotating objects:

frame-dragging. That is, spacetime itself is dragged in the direction of rotation of the object.

This changes the horizon radius in Boyer-Lindquist coordinates to

r+ = M + (M2 − a2)1/2 , (3)

which reduces to the Schwarzschild expression r+ = 2M in the nonrotating limit a = 0.

When the hole rotates, we have a new, important radius: the “ergosphere”. This is at

r0 = M + (M2 − a2 cos2 θ)1/2 , (4)

where θ is the colatitude (θ = 0 at one pole and θ = π at the other, and θ = π/2 at

the rotational equator). Note that there is room between r0 and the horizon radius r+
for a < 1 (and even for a = 1 it turns out that the horizon and ergosphere are distinct).

Inside this radius, test particles (massive or massless) must rotate with the hole, even if

they are outside the horizon. The ergosphere is therefore the static limit; things inside can’t

remain stationary with respect to infinity. This is an extreme example of frame-dragging.

Even outside the ergosphere, spacetime is dragged in the direction of rotation of the hole.

The natural frequency for this frame-dragging (i.e., the frequency of a particle with no

angular momentum) is ω ≈ 2Ma
r3

. The ergosphere is named thus (“ergo” being Greek for

energy) because in principle something sent in there could split in two and emerge with

more than the original energy of the particle, thereby tapping the spin energy of the hole.

More astrophysically plausible is that threaded magnetic fields down the hole might extract

its spin energy (the “Blandford-Znajek process”).

Rotation also changes the location of the ISCO and thus the total energy that is extracted

from test particles or fluids if they spiral toward a black hole in a quasicircular accretion



disk. The full expression for the ISCO radius is more complicated than is worth writing

down (see Bardeen, Press, and Teukolsky 1972, ApJ, 178, 347), but some interesting limits

are our previous rISCO = 6M for â = 0 (and 5.7% of the energy is extracted), rISCO = 9M

for â = 1 but retrograde accretion (i.e., the disk spirals the opposite way from the black

hole spin), and rISCO = M for â = 1 and prograde accretion (the disk spirals the same

way as the black hole spin). In the prograde â = 1 case, about 42% of the mass-energy

of a particle needs to be radiated to get to the ISCO. There are some complications when

astrophysics is put back in. For example, Kip Thorne showed (1974, ApJ, 191, 507) that in

a real accretion disk, the capture of photons with negative angular momentum would limit

the spin parameter to â < 0.998, which might seem pretty close to 1 but that tiny change

limits the energy efficiency to ∼ 30% instead of 40%. When even more effects are considered

(e.g., magnetic fields in the accretion disk), the limit might be â = 0.95 or even a bit less.

Another nonideality is that when a real accretion disk is involved, pressure gradients in the

disk allow the innermost part of the disk to move inside the ISCO by a bit before they spiral

into the black hole.

Despite such complications, the spin-dependent properties of orbits around black holes

are a key to understanding their properties. The spectrum of an accretion disk, particularly

as it relates to spectral lines in X-rays, depends on the spin parameter. With that in mind,

various groups have estimated the spin parameters of black holes electromagnetically, and

have found a full range, from consistent with 0 to consistent with â > 0.9. This is an

interesting contrast with the spins inferred from gravitational wave observations, which are

mostly consistent with zero and are definitely not consistent with values close to 1.

Astrophysical black holes

Identifying probable black holes with electromagnetic observations is tougher than you’d

think, because their existence is something of a negative proposition: if nothing else fits,

maybe it’s a black hole. Also, black holes by themselves are essentially silent; for context,

there are probably ∼ 108 black holes in our galaxy (based on how stars evolve), but we only

have decent confidence about a few tens of them, because they need to be accreting gas or at

least causing a companion star to move for us to notice them. However, good evidence is to

be had from a variety of quarters. Neutron stars can’t have M > 3M�, so if a compact X-ray

source in a binary is seen that has a mass greater than this, it’s probably a black hole. On

a larger scale, dynamical measurements of stellar movements in the cores of several galaxies

imply M > 105M� or so in small region (∼pc), and one can at least say that if the central

object isn’t a black hole, it is something a lot more exotic! Gravitational wave detections

are fully consistent with the expectations from GR and black holes. Recently, the Event

Horizon Telescope collaboration has shown that there are “shadows” of the expected sizes

from two supermassive black holes (in our Galactic center and in the center of the galaxy

M87), although they have not demonstrated the existence of an event horizon. Overall, the



electromagnetic evidence is consistent with black holes in the ∼ 3−20 M� range (stellar-mass

black holes) and in the ∼ 105 − few × 1010 M� range (supermassive black holes in galactic

centers); an ongoing question is whether black holes in the middle range of the masses, i.e.,

“intermediate-mass black holes” exist.

Can we be absolutely sure that the things that are currently identified as black holes are,

in fact, the black holes described by general relativity? A reasonable perspective is that if it

walks, acts, and quacks like a duck then maybe, well, it’s a duck. There is no evidence that

these things aren’t GR black holes. But GR has singularities, which are uncomfortable, and

most physicists think that quantum gravity (whatever its proper description) will eventually

take over from GR, so it is reasonable to ask (1) can deviations from GR manifest themselves

at the scale of astrophysical black holes, and (2) even with GR, are there ways to avoid an

event horizon? The answer to both is that we don’t know. If the things that look like black

holes have surfaces rather than horizons, then for various reasons their surfaces have to be

very close to the horizon. For example, if a nonrotating object has a surface at r = 2.1M ,

just outside what would have been the radius of the horizon, then infalling matter will hit

that surface and radiate close to 100% of their mass-energy, which would lead to dramatically

different predictions than what we observe. But, perhaps strangely, if the surface is much,

much closer to the horizon (say, a few Planck lengths), then radiation has a much more

difficult time escaping (it can escape only in an almost-radial direction), and it might be

possible to evade detection.

One hope from the gravitational wave standpoint is that if there is a surface close to the

horizon, then there will be “echoes” of the ringdown waveform that can be seen after the

primary ringdown. This has even been claimed, but not at a level that has convinced the

community.

What other signatures of a very compact surface would you expect?


