
Gravitational-Wave Course Homework Sheet 6

Instructor: Alessandra Buonanno (alessandra.buonanno@hu-berlin.de)
Tutor (corresponding for this sheet): Raj Patil (raj.patil@aei.mpg.de)
Tutor: Lorenzo Pompili (lorenzo.pompili@aei.mpg.de)

Course webpage: https://imprs-gw-lectures.aei.mpg.de/2022-gravitational-waves/

Homework due date: Homeworks must be emailed by Monday, December 12 2022 to the corresponding
Tutor for this homework.
Homework rules: Homeworks must be neat, and must either be typed or written in pen (not pencil!).
Please do not turn in homework that is messy or that has anything that’s been erased and written over (or
written over without erasing), making it harder to read.

Grading system: The homework sheet will be graded with an overall score within 0, 1, 2.

0 : not sufficient, the student has done less than half of the problems and did not attempt all of them.

1 : sufficient, the student has done more than half of the problems and she/he tried to solve almost all
of them.

2 : good, the student correctly solved almost all the problems.

RECOMMENDED READINGS:

1. B. F. Schutz and C. M. Will, Astrophys.J.Lett. 291 (1985), L33-L36

2. V. Ferrari and B.Mashhoon, Phys. Rev. D30 (1984), 295

3. E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502 (2008) [arXiv:0709.1915].

I. NEWTONIAN QUADRUPOLAR TIDAL IMPRINT IN THE GW PHASING

Consider a neutron star-black hole binary system of total mass M and reduced mass µ whose orbital
motion is described by Newtonian gravity. The Lagrangian is

L =
1

2
µṙ2 +

1

2
µr2φ̇2 +

µM

r
− 1

2
QijEij + Lint, (1)

where Lint describes the internal dynamics of the quadrupole and the Newtonian tidal field is

Eij = −mBH∂i∂j(1/r) = −mBH(3ninj − δij)/r3, (2)

where ni = xi/r is a unit vector. Note that nini = 1 and δijδij = 3. Assume that the quadrupole is
adiabatically induced and given by

Qad
ij = −λEij , (3)

where λ is the tidal deformability parameter. The internal Lagrangian then describes only the elastic
potential energy Lad

int = −QijQ
ij/(4λ). Throughout this exercise, assume that tidal effects are small and can

be treated as linear perturbations.

(a) Obtain the equations of motion for r and φ from the Euler-Lagrange equations.

(b) Assume that the orbit is circular (r̈ = 0 and φ̇ = Ω). Starting from the radial equation of motion,
express the radius as r(Ω) = M1/3Ω−2/3(1 + δr) and compute the linear tidal corrections δr.
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(c) Calculate the energy of the system from (1). Specialize to adiabatic quadrupoles and circular orbits,
and express the energy in terms of Ω.

(d) The leading order gravitational radiation is generated by the total quadrupole of the system QT
ij =

Qorbit
ij +Qij . Compute the tidal contribution to the energy flux from the quadrupole formula.

(e) In the stationary phase approximation (SPA) for the gravitational wave signal, the phasing can be
computed from the formula

d2ΨSPA

dΩ2
= 2

dE/dΩ

ĖGW

. (4)

Compute the tidal contribution to ΨSPA, to linear order in the tidal effects. Express your result in
terms of the post-Newtonian parameter x = (MΩ)2/3 = (πMfGW)2/3 and show that the tidal phase
correction scales as x5 relative to the leading order phasing.

II. BLACK-HOLE QUASI-NORMAL MODES

In the lectures and the previous tutorial session, it was shown that the quasinormal modes (QNMs) of a
Schwarzschild black hole are characterized by complex frequencies ω = ωR + iωI , with ωR and ωI the real
and the imaginary parts, respectively.

(a) Use Table I from arXiv:gr-qc/0411025 to plot ωR and ωI of the quadrupolar mode (l = 2) versus n,
where n is the overtone number that identifies the number of nodes in the radial wavefunction (plus 1
in the reference’s conventions). Use n = 1–12, 20, 30, 40. [Note that the values in Table I correspond
to (ωR,−ωI) in our conventions, given the time-dependence of the QNMs as eiωt.]

Your plot should exhibit some features which could be considered strange according to certain intuition,
interpreting ωR as an oscillation frequency and ωI as a decay rate. For typical systems with a set of
vibrational modes, like a string or an elastic body, both the oscillation frequency and the decay rate increase
with increasing overtone number, i.e. with an increasing number of nodes in the wavefunction. The QNM plot,
however, shows that ωR is first decreasing with n, then has a zero, and then increases to an asymptotically
constant value. This behavior can be seen as somewhat less mysterious by reinterpreting ωR and ωI as
follows.

(b) Consider a simple damped oscillator with amplitude ψ(t) obeying

ψ̈ + γ0ψ̇ + ω2
0ψ = 0. (5)

Writing the two linearly independent solutions as exp((±iωR − ωI)t), find the relationship between
ωR, ωI and ω0, γ0. Invert this relation, make plots of ω0 and γ0 versus n for the Schwarzschild QNMs
and comment how this interpretation alleviates the above discussion.
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