
Gravitational-Wave Course Homework Sheet 4

Instructor: Alessandra Buonanno (alessandra.buonanno@hu-berlin.de)
Tutor: Raj Patil (raj.patil@aei.mpg.de)
Tutor(corresponding for this sheet): Lorenzo Pompili (lorenzo.pompili@aei.mpg.de)

Course webpage: https://imprs-gw-lectures.aei.mpg.de/2022-gravitational-waves/

Homework due date: Homeworks must be emailed by Thursday, November 24 2022 to the corresponding
Tutor for this homework.
Homework rules: Homeworks must be neat, and must either be typed or written in pen (not pencil!).
Please do not turn in homework that is messy or that has anything that’s been erased and written over (or
written over without erasing), making it harder to read.

Grading system: The homework sheet will be graded with an overall score within 0, 1, 2.

0 : not sufficient, the student has done less than half of the problems and did not attempt all of them.

1 : sufficient, the student has done more than half of the problems and she/he tried to solve almost all
of them.

2 : good, the student correctly solved almost all the problems.

RECOMMENDED READINGS:

1. Neutron star physics: http://adsabs.harvard.edu/abs/2004Sci...304..536L

2. A. Buonanno and T. Damour, Phys. Rev. D59 (1999) 084006.

3. A. Buonanno and T. Damour, Phys.Rev. D62 (2000) 064015.

EXERCISES:

I. GRAVITATIONAL WAVES FROM PULSARS

Neutron stars possess a rigid crust that is 10 billion times stronger than steel and can support a “mountain”
of up to ∼few cm height. Consider a neutron star rotating with angular frequency Ω around a principal
body axis e3 and with constant principal moments of inertia I1, I2, I3. Assume that the neutron star has a
deformation such that I1 ̸= I2.

1. Consider the inertia tensor Iij =
∫
d3xρ

(
r2δij − xixj

)
that is given by Iij = diag(I1, I2, I3) in the

body frame whose axes rotate with the neutron stars. Compute the components of the inertia tensor
in an inertial frame. Use the analogy between Iij and the Newtonian quadrupole moment to obtain the
power radiated in gravitational waves. Express your result in terms of the ellipticity ϵ and I3, where

ϵ =
I1 − I2

I3
(1)

2. Consider a neutron star that is approximated as a uniform density sphere with mass ∼ 1.4M⊙ and
R ∼ 10km so that I3 ∼ 2

5MR2 ∼ 1045g cm2. Its rotational energy is E = I3Ω
2/2. For the Crab pulsar,

the rotational period is P = 33ms. Use the balance between the energy radiated in gravitational waves
and the change in E to obtain its spin-down rate Ω̇. Show that for a fiducial ellipticity of ϵ = 10−7

the rate of change in the frequency is small and thus the GWs are approximately monochromatic over
∼few years observation time.
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3. The observed spindown rate of the Crab pulsar is Ṗ = 4.2 × 10−13s/s. Assuming that this is caused
solely by GW emission, what would the ellipticity of the Crab pulsar need to be to explain this value?

In several pulsars, the spindown rate has been measured with pulsar timing observations and is generally
quantified by a braking index n defined by Ω̇ ∝ Ωn. For the Crab pulsar, n ≈ 2.5 (n ∼ 3 is expected
for magnetic dipole radiation), while for the Vela pulsar n ≈ 1.5. Read off the braking index from your
result (b). Is GW emission the dominant mechanism for the spindown of the Crab pulsar?

II. ON THE EFFECTIVE-ONE-BODY HAMILTONIAN AND DYNAMICS

We have derived in class the mapping between the real PN Hamiltonian and the effective Hamiltonian
using the Hamilton-Jacobi formalism. Here we want to construct the effective-one-body (EOB) Hamiltonian
using a canonical transformation.
Using reduced (or dimensionless) variables Q,P and Ĥeff , the EOB Hamiltonian reads

Ĥeff(Q,P ) = c2

√
A(Q)

[
1 +

1

c2
P2 +

(
A(Q)

D(Q)
− 1

)
1

c2
(N ·P)2

]
, (2)

where N = Q/Q and

A(Q) = 1 +
a1
c2 Q

+
a2

c4 Q2
+

a3
c6 Q3

+ · · · , (3)

D(Q) = 1 +
d1
c2 Q

+
d2

c4 Q2
+ · · · , (4)

where ai, di are unknown coefficients that will be determined by the mapping to the (reduced) PN Hamilto-
nian

Ĥreal(q, p) = ĤNewt(q, p) +
1

c2
Ĥ1PN(q, p) + · · · , (5)

ĤNewt(q, p) =
1

2
p2 − 1

q
, (6)

Ĥ1PN(q, p) = −1

8
(1− 3ν)p4 − 1

2q
[(3 + ν)p2 + ν(n · p)2] + 1

2q2
, (7)

where q and p are reduced variables, n = q/q and ν = m1 m2/(m1 +m2)
2, being m1 and m2 the black-hole

masses. At 1PN order the real and effective Hamiltonians are related as

1 +
Ĥreal(q, p)

c2

(
1 + α1

Ĥreal(q, p)

c2

)
=

Ĥeff(Q(q, p), P (q, p))

c2
, (8)

where α1 is an unknown coefficient that will be determined by the mapping. The canonical transformation
at 1PN order is

Qi = qi +
1

c2
∂G1PN

∂pi
, (9)

Pi = pi −
1

c2
∂G1PN

∂qi
, (10)

with

G1PN(q,p) = (q · p)
[
c1p

2 +
c2
q

]
, (11)
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where c1, c2 are unknown coefficients that will be determined by the mapping.

The goal of this exercise is to determine α1, c1, c2 as a function of ν.
Insert the canonical transformation given in Eqs. (9) and (10) in Eq. (8) and expand the latter in PN orders
through 1PN order. By equating terms with the same structures in q, p, derive the equations for the
unknown coefficients a1, α1, c1, c2 and set a2 = a3 = ... = an = d1 = d2 = ... = dn = 0. In this case you
should find that: α1 = ν/2, c1 = −ν/2 and c2 = 1 + ν/2. [Hint: introduce the parameter ϵ2 ≡ 1/c2, work
with the square of Eq. (8) to get rid of the square root in Eq. (2), and neglect the terms with order higher

than O(ϵ4). Note that it is sufficient to derive Q ≡ |Q| =
√
Qi Qi, P ≡ |P| =

√
P i Pi and N ·P = N i Pi as

function of q ≡ |q|, p ≡ |p| and n ·p through 1PN order using the canonical transformation given in Eqs. (9)
and (10).]
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