
Gravitational-Wave Course Homework Sheet 3

Instructor: Alessandra Buonanno (alessandra.buonanno@hu-berlin.de)
Tutor(corresponding for this sheet): Raj Patil (raj.patil@aei.mpg.de)
Tutor: Lorenzo Pompili (lorenzo.pompili@aei.mpg.de)

Course webpage: https://imprs-gw-lectures.aei.mpg.de/2022-gravitational-waves/

Homework due date: Homeworks must be emailed by Thursday, November 17 2022 to the corresponding
Tutor for this homework.
Homework rules: Homeworks must be neat, and must either be typed or written in pen (not pencil!).
Please do not turn in homework that is messy or that has anything that’s been erased and written over (or
written over without erasing), making it harder to read.

Grading system: The homework sheet will be graded with an overall score within 0, 1, 2.

0 : not sufficient, the student has done less than half of the problems and did not attempt all of them.

1 : sufficient, the student has done more than half of the problems and she/he tried to solve almost all
of them.

2 : good, the student correctly solved almost all the problems.

RECOMMENDED READINGS:

1. post-Newtonian approximation and EFT: M. Levi, Rept. Prog. Phys. 83, 075901 (2020); arxiv:1807.01699.

2. Fokker action: T. Damour, G. Esposito-Farese, Phys. Rev. D 53 5541–5578 (1996); arXiv:gr-
qc/9506063.

EXERCISES:

1. Central-force problem at 1PN order

Starting from the 1PN-Lagrangian (also known as the Einstein-Infeld-Hoffman Lagrangian)

L = LN + L1PN +O(c−4), (1a)
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in the coordinates r1 ≡ x1, r2 ≡ x2 and velocities v1, v2, where r = |r1 − r2|, n = (r1 − r2)/r:

a) Derive the canonical momenta p1 and p2. [Recall from classical mechanics that pa = ∂L/∂va.]
Then, introduce the variables R = r1 + r2, r = r2 − r1, P = (p1 + p2)/2, and p = (p2 − p1)/2,
and show that P is conserved.

b) Obtain the relative-motion Hamiltonian H = p1 · v1 + p2 · v2 − L at 1PN order in the variables
r, p, M = m1 + m2 and ν = m1m2/M

2. [Hint: in carrying out the calculation here and below
keep only terms at 1PN order! It is also strongly suggested to use Mathematica to manipulate
long algebraic expressions.]
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c) Compute the binding energy E = H and orbital angular momentum L at 1PN order for circular
orbits. Express the final result for E and L in terms of the velocity v ≡ (MΩ)1/3, where Ω is the
orbital frequency. [Hint: Impose the circular orbit condition and derive the relation between r and
Ω. You will find a few new terms at 1PN order beyond the usual Newtonian relation M/r3 = Ω2.
You might find it convenient to work with Hamilton’s equations in spherical coordinates and
choose the motion to be in the equatorial plane.]

d) Compute the periastron advance at 1PN order for nearly circular orbits. [Hint: It is more con-
venient to employ the relative-motion Lagrangian. Use the conservation of energy and angular
momentum to derive the equation for the radial perturbation around a circular orbit and com-
pute the radial frequency Ωr as function of Ω. The fractional advance of the periastron per radial
period is ∆Φ/(2π) = K(Ω)− 1, where K(Ω) = Ω/Ωr.] [optional!]

e) Study the stability of circular orbits using the 1PN Hamiltonian. [optional!]

Consider the polar coordinates (r, φ, pr, pφ) and a perturbation of the circular orbit defined by

pr = δpr ,

pφ = p0φ + δpφ ,

r = r0 + δr ,

Ω = Ω0 + δΩ ,

where r0, Ω0 and p0φ refer to the unperturbed circular orbit. Write down the Hamilton equations
and linearize them around the circular orbit solution. You should find

δṗr = −A0 δr −B0 δpφ ,

δṗφ = 0 ,

δṙ = C0 δpr ,

δΩ = B0 δr +D0 δpφ , (2)

where A0, B0, C0 and D0 depend on the unperturbed orbit. Determine explicitly A0, B0, C0 and
D0.

Look at solutions of Eqs. (2) proportional to eiσt and find the criterion of stability. [Hint: you
should find that there exists a combination Σ0 of A0, B0, C0 and D0 such that when Σ0 > 0 the
orbits are stable. The innermost stable circular orbit (ISCO) corresponds to Σ0 = 0].

Express Σ0 as function of v = (MΩ)1/3 and show that for any value of the binary mass ratio the
ISCO at 1PN order coincides with the Schwarzschild ISCO. [This is an accident, which does not
hold at high PN orders!]

Finally, show that Σ0 = 0 coincides with Ωr = 0. What is the physical meaning of this result?
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2. Leading-order spin-orbit interaction

We consider the action of two spinning point-particles labeled a = 1, 2 interacting gravitationally to
order c−2:
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Here the spin tensor is given by Sija (t) = −Sjia (t) = εijkS
k
a(t) and the spin vector fulfills the usual

angular-momentum Poisson bracket {Sia, Sja} = εijkS
k
a (a corresponding kinematic term in the action

encoding this Poisson bracket is omitted for simplicity). As in the lectures, let us eliminate the
gravitational fields φ and Ai from the action, keeping contributions up to order c−2, but now pick out
the leading-order spin-orbit interactions, that is, terms that are linear in S1 and independent of S2:

• The last line in (3) does not contribute to the desired result. Briefly argue why, or annotate in
the following steps where those terms would enter and show that they either contribute to higher
orders in c−2 or to the nonspinning case.

• Derive the field equations for φ and Ai from the action.

• Eliminate the fields by inserting the solution to the field equations into the action, keeping only
terms to the desired order in spins and c−2. As in the lectures, you can make use of the formula
∆−1δ(x− xa) = −1/(4π|x− xa|) to get an explicit result for the two-body Lagrangian, and drop
singular self-interactions. (The result is a so-called Fokker action.)

• Optional: From this Lagrangian, obtain the relative-motion Hamiltonian in the center-of-mass
system where p1 = −p2, with definitions given in the previous exercise (the spin variables remain
untouched in the Legendre transform).

The analogous result linear in S2 and independent of S1 can be obtained by swapping particle la-
bels. Optional: Include in the above calculation the leading-order S1-S2 interaction, that is, terms
containing both S1 and S2.

Note that the spin of black holes can be written as Sa = Gm2
aχa/c where the dimensionless spin χa

is less than 1. Hence each order in spin is suppressed by another power of c−1. The leading-order
spin-orbit interaction for compact binaries is then at order c−3 or 1.5PN, and the S1-S2 interaction at
order c−4 or 2PN.
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