
Gravitational-Wave Course Homework Sheet 2

Instructor: Alessandra Buonanno (alessandra.buonanno@hu-berlin.de)
Tutor (corresponding for this sheet): Raj Patil (raj.patil@aei.mpg.de)
Tutor: Lorenzo Pompili (lorenzo.pompili@aei.mpg.de)

Course webpage: https://imprs-gw-lectures.aei.mpg.de/2022-gravitational-waves/

Homework due date: Homeworks must be emailed by Monday, November 7 2022 to the corresponding
Tutor for this homework.
Homework rules: Homeworks must be neat, and must either be typed or written in pen (not pencil!).
Please do not turn in homework that is messy or that has anything that’s been erased and written over (or
written over without erasing), making it harder to read.

Grading system: The homework sheet will be graded with an overall score within 0, 1, 2.

0 : not sufficient, the student has done less than half of the problems and did not attempt all of them.

1 : sufficient, the student has done more than half of the problems and she/he tried to solve almost all
of them.

2 : good, the student correctly solved almost all the problems.

RECOMMENDED READINGS:

1. Local Lorentz and free-falling frames, Sec. 8.4 in J. Hartle, “Gravity”.

2. Proper detector frame, see, e.g., W. Ni and M. Zimmermann, Phys. Rev. D 17, 1473 (1978).

3. Newtonian and relativistic tidal gravity, see e.g., Sec. 24.2-24.5 in R.D. Blandford and K.S. Thorne,
http://www.pma.caltech.edu/Courses/ph136/ph136.html

4. Gravitational lensing, see: J. Wambsganss, Living Rev. Relativ. (1998) 1: 12 https://dx.doi.org/10.12942/lrr-
1998-12

EXERCISES:

1. Resonant mass detectors

The first gravitational-wave detector was a resonant mass detector or bar detector. It was built at the
University of Maryland by Joseph Weber in the late 60’s. It was a large, heavy, metal bar. The bar
would absorb an impinging gravitational wave and be set into oscillations. Hopefully, those oscillations
would be detectable.

The simplest way to model a bar detector is with a damped spring. Let us assume that we have two
masses m1 and m2, along the x-axis, connected by a spring with spring constant k and subjected to
a dissipative force Fdiss = −b dx/dt, where x(t) is the displacement of the masses. In equilibrium the
masses are separated by a length L. Let us assume that a plane gravitational wave with frequency ω
arrives along the z-axis and it is polarized only along the x-axis, i.e., h+ = h cosω t, h× = 0.

• Assuming that L� λGW, with λ = 2πc/ω, show that the equation of motion for the displacement
of the masses x(t) with respect to the equilibrium position are of the form:
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where γ and ω2
0 are constants dependent on b,m1,m2, k. Find how γ and ω2

0 are related to
b,m1,m2, k. [Hint: follow the description in the local inertial frame.]

• The solution of the equation of motion in the previous item can be written as x(t) = A cos(ω t+ δ).
Derive A and δ and find the resonance frequency ωr, i.e. the frequency that maximizes the
amplitude A. Determine also A(ωr) and δ(ωr). Express your results in terms of h, L, γ, ω2

0 .

• Derive the kinetic energy of the oscillations, the potential energy of the oscillator, the work done
on the oscillator by the gravitational wave and the rate of energy dissipated. Compute those
quantities averaging over a cycle of oscillations.

• Assume that h = 10−21, L = 1 m, reduced mass µ = m1m2/(m1 +m2) = 1000 kg, quality factor
Q = 106 and f = ω0/(2π) = 1 kHz, compute the maximum of oscillations at resonance and the
total energy in the oscillations, i.e., kinetic energy and potential energy, averaging over a cycle of
oscillations. Remember that the quality factor is Q = 2π energy stored

energy dissipated per cycle .

When comparing the averaged total energy to the thermal energy at room temperature, what do
you conclude about the possibility of measuring gravitational waves with such a system?

2. Gravitational lensing of gravitational waves

Consider a gravitational wave burst (a short-
duration gravitational-wave signal) in the geomet-
ric optics limit. As it travels from the source S
to the observer O on Earth, the gravitational-
wave rays (red) are deflected, or “lensed,” by a
heavy (point-)mass M . In addition, during this
trip to the observer, the gravitational potential of
the point mass affects the time of arrival to the
observer. For solving this exercise, assume that
the rays and the mass M are in the same plane,
and that the distances DL, DLS are large com-
pared to ξ1, ξ2, i.e., the deflection is confined to a
“lensing plane”, and that the deflection angles are
α̃i = 4M/ξi.

Calculate:

• the time delay due to only the lensing effect, i.e. the time it takes for the signal from S to O
along the two red paths in the above figure. Use the fact that the considered angles are small and
notice that α̃1 ≈ DS(θ1 − β)/DLS and α̃2 ≈ DS(θ2 + β)/DLS .

• the time delay due to only the gravitational potential of the point mass M , which is called Shapiro
delay. The approximate line element reads

dτ2 =

(
1− 2M

r

)
dt2 −

(
1 +

2M

r

)
dxidxi +O

(
M2

r2

)
, (2)

where r2 = xixi. You can also assume that the path from S to O is a straight line at a distance
ξi from the point mass.

What is the difference in arrival times between the two rays (red paths) for a burst like GW150914
(distance DS = 1 Gly) passing a galaxy of 1012 solar masses in the middle of its way and at an angle
of β = 2 arsec? Compare this to the burst duration of ∼ 200 ms observed in the detector. What
are the magnification factors of the two rays? Remember that the magnification factors are given by
µi = (1− (θE/θi)

4)−1, where θE =
√

4MDLS/(DLDS).

3. Energy-momentum tensor of a plane gravitational wave

Calculate the effective energy-momentum tensor of a plane gravitational wave in TT gauge from

TGW
µν =

1

32π
< ∂µh

αβ∂νhαβ >, (3)
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hµν =
[
(eµxe

ν
x − eµyeνy)A+ + (eµxe

ν
y + eµye

ν
x)A×

]
eikαx

α

+ c.c. (4)

It holds eµxeyµ = eµxkµ = eµykµ = kµkµ = 0, eµxexµ = eµyeyµ = 1, and A+, A× ∈ C.

4. Attenuation of gravitational waves

Assume that a gravitational wave encounters a viscous fluid, which is initially at rest with fluid four-
velocity given by uµ = (1, 0, 0, 0).

• The shearing of the fluid is described by the shear tensor

σµν =
1

2
∇µuν +

1

2
∇νuµ +

1

2
uµu

α∇αuν +
1

2
uνu

α∇αuµ −
1

3
(gµν + uµuν)∇αuα . (5)

Show that the shear has purely spatial components when the gravitational-wave is expressed in
the transverse-traceless (TT) gauge, and that

σij =
1

2

∂

∂t
hTT
ij . (6)

• The shearing of the viscous fluid generates a contribution to the stress-energy tensor of the form

Tµν = −2η σµν , (7)

where we indicate with η the coefficient of viscosity of the fluid. What is the linearized field
equation for the gravitational wave in the TT gauge in presence of the viscous fluid? Show that
a plane wave travelling along the z-axis is attenuated by the fluid by an amount e−z/l where l is
the attenuation length scale l = c3/(8πGη).

• Chocolate has a coefficient of viscosity of η = 25 kg/(m s). Calculate the distance L that a
gravitational wave must travel through chocolate before it is attenuated by a factor 1/e.
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