Overview of BBH results in NR

Vijay Varma AEI, Potsdam

Computational Physics IMPRS Course, Apr 11, 2022

Credit: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)

Outline

- Brief history of NR
- Important BBH phenomena everyone should know:
 - Higher order modes
 - Junk radiation.
 - Precession
 - "Hang-up" effect
 - Eccentricity
 - Kicks
- Status of the field and frontiers

Part I: Brief history of NR

The very beginning

ANNALS OF PHYSICS: 29, 304-331 (1964)

The Two-Body Problem in Geometrodynamics

SUSAN G. HAHN

International Business Machines Corporation, New York, New York

AND

RICHARD W. LINDQUIST

The numerical calculations were carried out on an IBM 7090 electronic computer. The parameters a and μ_0 were both set equal to unity; the mesh lengths were assigned the values $h_1 = 0.02$, $h_2 = \pi/150 \approx 0.021$, yielding a 51×151 mesh. The calculations of all unknown functions, including a great number of input-output operations and some built-in checking procedures, took approximately four minutes per time step. Different check routines indicated that results close to the point $\mu = 0$, $\eta = 0$ lost accuracy fairly quickly. Since these would, in the long run, influence meshpoints further away, the computations were stopped after the 50th time step, when the total time elapsed was approximately 1.8. Some of the results are shown in Table I.

Evolution time 1.8M

40 years later...

VOLUME 92, NUMBER 21

PHYSICAL REVIEW LETTERS

week ending 28 MAY 2004

Numerical Simulation of Orbiting Black Holes

Bernd Brügmann, Wolfgang Tichy, and Nina Jansen

Center for Gravitational Physics and Geometry and Center for Gravitational Wave Physics, Penn State University, University Park, Pennsylvania 16802, USA (Received 26 December 2003; published 24 May 2004)

We present numerical simulations of binary black hole systems which for the first time last for about one orbital period for close but still separate black holes as indicated by the absence of a common apparent horizon. An important part of the method is the construction of comoving coordinates, in which both the angular and the radial motion are minimized through a dynamically adjusted shift condition. We use fixed mesh refinement for computational efficiency.

DOI: 10.1103/PhysRevLett.92.211101

PACS numbers: 04.25.Dm, 04.30.Db, 95.30.Sf

First 50 years of numerical relativity for BBH

1962 ADM 3+1 formulation Abra critic 1964 Hahn-Lindquist 2 wormholes 1984 Unruh excision	1992,3 Choptuik; ahams+Evans cal phenomena gr 1997 Brandt Brügma puncture o 1994-9 BBH Grand C	1999-00 AEI/PSU razing collision ~2 - Schi nn m data 8 :hallenge ~19999	2000-04 AEI/UTB-NAS revive crashi codes (Lazar s 000 Choptui netter;Brügma esh refinement 2 Guno constrai	2005 A inspiral ringdov w/ ha w/ ha cam k; ann c 005 dlach ea nt damping	Pretorius -merger- vn (IMR) rmonic 2005-06 panelli+; Bake NR w/ BSSN & oving punctures 2006-0 Scheel+ (S IMR w/ spe 2005	200 Ajith, AE phenom G r+ EOE 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	I/- I, Jena V models 2009- JMD, SXS 3 GVV models 201 Schmidi Boyle Radiation a framo	2011 Lousto ea q=100 2014- precessing GVV models t ea; 2015 ea Szilagyi ea aligned 175 orbits e 2015	a •
I975-77 Smarr-Eppley head-on collision I979 You kinematics a dynamics of I989- Bona-M modified (hyperbo	I 994 Cook Bowen-York initial data rk I 994- nd NCSA-W GR improv -95 head-on co asso ADM, licity) Co hyp	I 999 BSSN evolution system 95 (ashU red con con said official ornell, Caltech perbolic formu	2000-02 Alcubierr gauge condit 999 York formal thin ndwich ID York, h, LSU lations	2 re tions 2004 Brügmann ea one orbit 2003 Cook, Pf improv 00 Ashtekar ated horizons	2006,0 Baker ea Gonzalez non-spinning kicks 8-08 feiffer ea red ID 20 RIT; Je BBH s	7 2 a; all ea N BBH 2007 SXS PN-NR comparison 07-11 ena; AE1; superkicks	2008 of NR NNJA 2009-11 Bishop, Cauchy characteristic extraction 201 Bernuz	2011 Lovelace ea S/M ² =0.97 2011- Le Tiec ea self-force studies 2013 CaTech; SXS Precessing 0 parameter studies	

Credit: C. Lousto and H. Pfeiffer

First BBH simulations

Pretorius 05

Important early result: Simplicity of merger.

Continuous transition inspiral \rightarrow ringdown

Part II: Important BBH phenomena

Binary black hole parameters

 $\Lambda = \{q, \chi_{1x}, \chi_{1y}, \chi_{1z}, \chi_{2x}, \chi_{2y}, \chi_{2z}\}$

Higher order modes

$$h = h_{+} - i h_{\times}$$

$$h(\iota, \varphi_{0}, t) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} -2Y_{\ell m}(\iota, \varphi_{0}) h_{\ell m}(t)$$

$$h_{\ell m} = A_{\ell m} e^{i\phi_{\ell m}}; \quad \omega_{lm} = \frac{d\phi_{\ell m}}{dt} \sim m \,\omega_{\text{orb}}$$

$$e_{y}^{S}$$
Source frame

- Quadrupole modes, $(2, \pm 2)$, are typically dominant.
- Other modes are referred to as higher (order) modes, higher harmonics, nonquadrupole modes, or subdominant modes.
- Become important at large q or large inclination angles θ .

Higher order modes

Junk radiation

Effective spin and orbital "hang-up" effect

- Effective spin: $\chi_{\text{eff}} = (m_1 \chi_1 + m_2 \chi_2)/(m_1 + m_2)$.
- Binaries with positive χ_{eff} merge at smaller separations, and at higher frequencies.

Eccentricity

- Two additional parameters: eccentricity and mean anomaly.
- More important for LISA than LIGO.

Merger kicks

- GWs can carry linear momentum away from BBHs
- Center-of-mass recoils to compensate
- Recoil or "kick" velocity imparted to final BH
- Kicks up to 5000 km/s possible for precessing BBHs

Superkicks

• Spin asymmetry much more important than mass asymmetry.

Part III: Status of the field

Frontiers: Next generation NR codes

SpECTRE

Kidder+ (1609.00098)

Frontiers: Extreme mass ratios

Dhesi+ (2109.03531)

- Need to resolve the dynamics of the small BH.
- Maximum time steps $\sim m_2$, due to Courant condition.
- Talk to Niko.
- Near extremal spins: Scheel, Giesler+ (1412.1803)

Frontiers: Simulations of alternate theories

- •BBHs in DCS, EdGB: Okounkova, Ripley, Witek, Silva, etc.
- BNS in scalar-tensor gravity: Barausse, Shibata, etc.
- BHNS in scalar-tensor gravity: Ma+Varma, etc.

Challenges

- •Numerical stability (well-posed?).
- Dealing with 3rd/4th derivatives of metric.
- Large parameter space, extra fields.
- Degeneracies with GR parameters.

BNS merger in scalar-tensor