IMPRS GW Astronomy - Computational Physics 2022

Problem Set 2, Part I: ODEs.

Serguei Ossokine, Vijay Varma

1 RK methods

We saw in the lectures that for a given order, the RK approach produces a family of methods. Here we explore some aspects of this.

Task RK-1:

Derive the most general explicit second-order RK method. Show in particular that its Butcher tableau is given by

$$
\begin{array}{c|c}
0 & \tag{1}\\
\alpha & \alpha \\
\hline & \left(1-\frac{1}{2 \alpha}\right)
\end{array} \frac{1}{2 \alpha}
$$

Task RK-2:

Make your own. Implement 2 new different 2nd order RK methods and evolve the same problem as given in the accompanying notebook. How do their accuracy compare to the classical second-order methods (make a plot of absolute error with respect to the analytic solution)?

Task RK-3:

In class we saw the region of stability for Euler's method. Write a program to draw the region of stability for Forward Euler, Midpoint and classical RK4 methods.

Task RK-4:

The total error (consisting of roundoff and truncation errors) for a given nth-order method can be schematically written as $E \sim \epsilon / h+h^{n}$, where ϵ is the machine epsilon ($\simeq 2.22 \times 10^{-16}$ for 64 bit double-precision). Estimate the "break-even" step size h for where the total error is minimized (i.e. find the local minimum of the error) and plot the result as a function of n.

2 Kepler problem

Next, let's use a Scipy ODE solver with adaptive time stepping to solve the Kepler problem for a comet in an elliptical orbit around the Sun, as shown in Fig. 1.

Figure 1: Trajectory of a comet orbiting the Sun.
Here, the Sun is at origin (the focus of the ellipse), the semimajor axis is along the x axis, and the semiminor axis is along the y-axis. q denotes the distance to the perihelion (point of closest approach, while Q denotes the distance to the aphelion (point of furthest approach). The equations of motion are given by:

$$
\begin{equation*}
\ddot{\boldsymbol{r}}=-\frac{G M}{r^{2}} \hat{\boldsymbol{r}} \tag{2}
\end{equation*}
$$

Where M is the mass of the Sun. Being good physicists, we will work with units of $G=1$. To simplify notation and code, we will also use $M=Q=1$. Then, the comet's orbit in Fig. 1 has an eccentricity e, and is initialized at the aphelion $\boldsymbol{r}_{0}=(1,0)$, with initial velocity $\dot{\boldsymbol{r}}_{0}=\left(0, V_{i}\right)$, with $V_{i}=\sqrt{1-e}$. The period of the orbit is given by $T=\frac{2 \pi}{(1+e)^{3 / 2}}$. See https://young.physics.ucsc.edu/115/kepler.pdff for a derivation of these relations. Working in Cartesian coordinates, with $r=\sqrt{x^{2}+y^{2}}$, the ODE problem to solve is:

$$
\begin{align*}
\ddot{\boldsymbol{x}} & =-\frac{1}{r^{3}} \boldsymbol{x}, & \ddot{\boldsymbol{y}} & =-\frac{1}{r^{3}} \boldsymbol{y} \\
\boldsymbol{x}_{0} & =1, & \boldsymbol{y}_{0} & =0 \\
\dot{\boldsymbol{x}}_{0} & =0, & \dot{\boldsymbol{y}}_{0} & =\sqrt{1-e},
\end{align*}
$$

over the time interval $t=[0, T]$.

Task KP-1:

The ODEs in Eq. (3) are of second-order. Reduce them to first order using auxiliary variables. For your choice of $e<1$, solve the first-order ODE equations using scipy.integrate.solve_ivp, with method='RK45', and atol=rtol=1e-7. Produce a plot similar to Fig. 1 .

Task KP-2:

The exact solution is given by

$$
\begin{equation*}
r=\frac{1-e}{1-e \cos \theta} \tag{4}
\end{equation*}
$$

where $\theta=\arctan (y / x)$.
Evaluate the ODE solution on a time array with 1000 uniform steps between $[0, T]$. Compute $r(t)$ and $\theta(t)$ and use them to compute:

$$
\begin{equation*}
\operatorname{err}_{r}(t)=\left|r(t)-\frac{1-e}{1-e \cos \theta(t)}\right|, \tag{5}
\end{equation*}
$$

Plot $\operatorname{err}_{r}(t)$. Is $\operatorname{err}_{r}(t)$ comparable to the requested tolerance?

Task KP-3:

Repeat Tasks KP-1 and KP-2 for $e c c=\{0,0.1,0.5,0.9,0.99\}$. Notice how the adaptive time stepper takes small steps near the perihelion and big steps near the aphelion, especially as you increase ecc.

