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We look in more detail at convergence of one‑step explicit methods when solving ODEs. In PS1, you

have already seen the Forward Euler, Midpoint and RK4 methods.

We now introduce an IVP where the amplitude and frequency of the solution grow with time, mimicking

a chirping gravitational wave:

def F(t, y,info): 
    """ This function returns the RHS of the differential equation  
    dy/dt = func(t, y), for which the solution is y = exact_sol(t) below. 
    """ 
    return 3/100 * t**3 * np.cos(1/100 * t**3) + np.sin(1/100 * t**3) 
def exact_sol(t): 
    """ Exact solution for a test case, chosen because that it has  
    varying amplitude and time scales. In particular the ampltude grows 
    proportinally to t, while the frequency grows proportionally to t**2. 
    """ 
    Amp = t                      # Amplitude 
    omega = 1/100 * t**2         # Frequency (rad/s) 
    return Amp * np.sin(omega * t) 
We will solve this problem with the following times and intial conditions:

t0 = 0                   # Start time 
tmax = 25                # End time 
y0 = exact_sol(t0)       # initial value 

Here is the plot of the analytic solution.

Let's solve this problem numerically with different steppers from the lectures.

Unusurprisingly the higher order method performed better, achieving a much lower error. One

important thing to keep in mind is that at a given order the RK methods are not unique and some may

be suited better for a given problem. Indeed, let's try with a very particular 2nd order RK method,

Ralston's method.

As we can see, the error is significantly better. It turns out that Ralston's method minimizes the local

truncation error at 2nd order as discussed for example in Section 3 of the original paper.

(Side note: there is some inconsistency on what people call the "Ralston method". Here we have

followed the original paper definition)

Let's now check that we get the global truncation error scaling we expect from these methods.

We do indeed see the expected scaling, except for RK4 for . Can you think of why the error

might start growing?

Something interesting happens when we also compare our second‑order steppers:

Notice that for Ralston's method, the error seems to scale as  even though the method is 2nd

order. Why did this happen?

The reason for this behaviour is that the particular choice of the stages of this RK2 method has

reduced the constant in front of the  term in the local truncation error so much that the higher

order term dominates for this problem.

Note that this is not guaranteed for all problems.

h ≲ ×10−3

O(h
3)

O(h
3)

https://www.ams.org/journals/mcom/1962-16-080/S0025-5718-1962-0150954-0/S0025-5718-1962-0150954-0.pdf

