
IMPRS GW Astronomy – Computational Physics 2022

Problem Set 1

Tim Dietrich, Harald Pfeiffer

1 Floating Point Operations

As discussed in the lecture, round-off errors and other problems due to floating point
operations can cause a lot of headache. Hence, it is of special importance to be careful.
Please look at the python code below.

1 Del ta =[]
2 t =0.
3 dt=0.1
4 i=0
5 for i in range (1000000) :
6 t=t+dt
7 i=i+1
8 Del ta . append (t−i ∗dt)
9 Del ta=np . ar ray (Del ta)

10
11 f i g , ax=p l t . subp lo t s (1 ,3 , f i g s i z e =(12 ,5))
12 ax [0] . p l o t (Del ta)
13 ax [0] . s e t x l i m (0 ,5000)
14 ax [0] . s e t y l i m (−.5e−10,2e−10)
15 ax [1] . p l o t (Del ta)
16 ax [1] . s e t x l i m (0 ,80000)
17 ax [1] . s e t y l i m (−1e−8,1e−8) ;
18 ax [2] . p l o t (Del ta) ;
19 f i g . s u p t i t l e (’ Del ta (three d i f f e r e n t zooms) ’) ;

Task FP-1: Execute the code yourself, and explain the features in the output. In
particular, explain the magnitude of the peaks and their spacing.

Task FP-2: Please change the timestep to 0.099853515625. Execute the code
agian and explain your findings. What is did cause the issue in task Task FP-1?

Another potential problem occurs when you have equalities and inequalities. Please have
a look at the following C-code.

1 #include<s t d i o . h>
2 #include <s t d l i b . h>
3 #include <math . h>

4
5 in t main(in t argc , char ∗argv [])
6 {
7 double a , b ;
8
9 [. . .]

10
11
12 i f (a==b)
13 p r i n t f (” a i s equal b \n”) ;
14 else
15 p r i n t f (” a i s not equal b \n”) ;
16
17 i f ((1 . / a)==(1./b))
18 p r i n t f (” 1/a i s equal 1/b \n”) ;
19 else
20 p r i n t f (” 1/a i s not equal 1/b \n”) ;
21
22 return 0;
23 }

Task FP-3: Please fill the part [...] in such a way that we obtain the output: ’a
is equal b’ and ’1/a is not equal 1/b’. To compile the code you have to install a
C-compiler, e.g., gcc, and compile this code.

Another problem discussed in the lecture, was the summation or subtraction of two
numbers of very different size. For the purpose of investigating this problem, please have
a look at the following code, which is written in yet another programming languange:
Fortan.

1 program addNumbers
2
3 ! This s imple program adds two numbers
4 i m p l i c i t none
5
6 ! Type d e c l a r a t i o n s
7 r e a l (kind=4) : : a1 , b1 , x1 , y1 , z1
8 r e a l (kind=8) : : a2 , b2 , x2 , y2 , z2
9 r e a l (kind=16) : : a3 , b3 , x3 , y3 , z3

10
11
12 ! Computation with s i n g l e p r e c i s i o n
13 a1 = 1.0
14 b1 = 1.E−13
15 x1 = a1 − s q r t (a1−b1)
16 y1 = b1/(a1+s q r t (a1−b1))
17 z1 = b1/(a1+s q r t (a1+b1))
18 p r i n t ∗ , ’ With s i n g l e p rec i s i on , we obta in ’ , x1 , y1 , z1
19
20 ! Computation with double p r e c i s i o n
21 a2 = 1.0
22 b2 = 1.E−13
23 x2 = a2 − s q r t (a2−b2)
24 y2 = b2/(a2+s q r t (a2−b2))
25 z2 = b2/(a2+s q r t (a2+b2))
26 p r i n t ∗ , ’ With double p rec i s i on , we obta in ’ , x2 , y2 , z2
27

28 ! Computation with quad p r e c i s i o n
29 a3 = 1.0
30 b3 = 1.E−13
31 x3 = a3 − s q r t (a3−b3)
32 y3 = b3/(a3+s q r t (a3−b3))
33 z3 = b3/(a3+s q r t (a3+b3))
34 p r i n t ∗ , ’ With double p rec i s i on , we obta in ’ , x3 , y3 , z3
35
36 end program addNumbers

To compile this code, you have to install a fortran compiler on your machine, e.g.,
gfortran.

Task FP-4: Please run the code and explain the output. What do you see and
how could you explain this. Is it surprising to you that for double and quadrupole
precision even a wrong equation provides a more precise answer to the real result?

2 Numerically solving the Advection Equation

In the fifth lecture we will discuss various algorithms to solve hyperbolic partial differen-
tial equations. Let’s get our hands dirty and actually code one example to completion.
Your goal is to program a numerical PDE solver for the simplest of hyperbolic equations,
the 1-D advection equation,

∂u

∂t
(x, t) +

∂u

∂x
(x, t) = 0, x ∈ [0, 1], t ≥ 0. (1)

As indicated, we will use the interval x ∈ [0, 1], and to keep things simple, we will use
periodic boundary conditions.

We aim to solve Eq. (1) with two different numerical methods: (1) finite-differences, and
(2) pseudo-spectral methods.

If you have never coded before, this is a challenging assignment. In that case, even “just”
getting the finite-differences code to work will be an impressive accomplishment. On
the other hand, if you have a lot of numerical experience, you might find the early tasks
quite easy, and arrive quickly at the more advanced methods. Work at your own pace.
We recommend you work in groups, however, it is educational if everybody in a group
tries to get her/his own code working.

We will use the initial guess
u(x, 0) = e−2 cos(2πx). (2)

This function is periodic, and has more structure than a simple sine-wave1

You can use any programming language of your choice. We recommend Python, as it
is convenient to use, provides the fft routines we use below, and is fast enough for our
1-dimensional problems.

1In fact, a sine-wave sin(2πx) is one of the basis-functions of the pseudo-spectral methods developed
in (2) below. Therefore the seemingly obvious initial guess of u(x, 0) = sin(2πx) would be represented
exactly by the pseudo-spectral method. The exponential in Eq. (2) levels the playing field, somewhat.

2.1 Finite Differences

Use a uniform grid with N grid-points

xi =
i

N
, i = 0, . . . , N − 1, (3)

i.e. with grid-spacing h = (xmax − xmin)/N = 1/N . The solution is represented by the
values at the grid-points:

u(x, t) ≈ u(xi, t), i = 0, . . . , N − 1. (4)

At fixed time, this will be represented by an array of doubles (in Python, a numpy array).
Discretizing the spatial derivative with central differences, we get

∂u

∂x
(xi, t) =

u(xi+1, t)− u(xi−1, t)

2h
+O(h2). (5)

Ignoring the higher-order corrections O(h2), this is a formula to compute ∂u/∂x. For the
boundary points (i = 0 and i = N − 1), one has to wrap around and use points from the
opposite end of the interval in Eq. (5). This way, you obtain a set of ordinary differential
equations for the values of the solutions at the grid-points:

du(xi, t)

dt
= F [u(xi, t)], (6)

where the right-hand-side F [u(xi, t)] couples the different spatial grid-points with terms
like Eq. (5).

Task FD-1: Write a function that computes the right-hand-side of Eq. (6), i.e. it
takes an array of doubles of length N (representing the grid-point values u(xi) at
time t, and returns an array of length N representing F at the grid-points. This
function will internally index the array u according to Eq. (5). It will also inter-
nally need to accommodate the periodic boundary conditions. Test this function
by feeding it sin(2πx), and check that the result is (approximately) 2π cos(2πx).
Also apply this function to Eq. (2), plot, and ensure by visual inspection that the
result seems right.

Writing the array of variables u(xi) as u, Eq. (6) becomes a vector equation:

du

dt
= F[u]. (7)

This is now a set of ordinary differential equations for the variables u. With this view-
point, called Method of Lines (MOL) we can now employ any method to solve ordinary
differential equations. Let us now develop a few time-steppers so we have building blocks
when we get to the later methods.

2.2 Forward Euler

We begin with the simplest possible time-stepper, the Forward-Euler method. We dis-
cretize time,

t→ tk ≡ k∆t, k = 0, 1, ... (8)

We also write the vector of variables at time tk as

uk ≡
(
u(xi, t

k)
)
i=0,...,N−1

. (9)

The Forward-Euler method is now

uk+1 = uk + ∆tF[uk] (10)

Task FD-2: Write a function, called FE Step that performs one step of the Forward-
Euler method. I.e. this function takes an array u representing uk, a time-step ∆t
and a pointer to the function F[u] you coded in Task FD-1. It then returns an
array u that represents the variables one time-step later, i.e. uk+1.

All time-steppers we encounter today are explicit, i.e. the spatial derivatives are only
computed on already known data. Explicit methods are only stable if the time-step is
sufficiently small, roughly,

∆t . consth, (11)

where h is the spatial grid-spacing, and the constant is of order unity (its precise value
depends on the time-stepper and the spatial discretisation method).

Task FD-3: Write a function, called Evolve that calls the single-time-step function
as often as needed, to evolve up to a desired final time Tfinal. This function should
take a ’Courant Factor’ CF, and then automatically choose a step-size satisfying
∆t < CF∆xmin. (This will make convergence tests a lot more convenient). A
possible calling sequence for this function is given just below. Check Evolve with
CF = 1/2, and by evolving to t = 1/10, t = 1/5, etc. Observe whether the solution
looks as expected (i.e. translated by 1/10, 1/5, etc.)

Sooner or later, it is useful to standardize on function calling sequences that are general
enough for the entire exercise. We recommend you do this now, while working on FD-3.
Specifically, the instructor has found the following calling interface for Evolve useful,
which you are recommended to duplicate:

def Evolve(t, T_final, u, F, Tstepper, CF, info):

"""Evolve the evolution equations represented by right-hand-side ’F’

with time-stepper Tstepper until final time ’T_final’.

t - current time

T_final - final time

u - solution at current time ’t’

F - A function computing the right-hand-side of the

evolution equations. Calling sequence: F(t, u, info)

Tstepper - A function that performs one time-step.

Calling sequence: Tstepper(t, u, F, dt, info)

CF - courant-factor; ’Evolve’ will choose a timestep dt

that satisfies dt < CF*dxmin

info - a namedtuple with any additional information needed by

’F’ or ’Tstepper’. Specifically, ’info.dxmin’ must

return the minimal grid-spacing. ’info’ is passed

into ’TStepper’ and ’F’. These two functions can either

ignore ’info’, or retrieve any information from there

that they need.

returns

t_final, u_final"""

... Your python code goes here ...

return t_final, u_final

The extra variable info will become more useful later, when we have more additional
information that needs to be passed around2. It is convenient to use a namedtuple for
info. For example

FD_Info_t=collections.namedtuple(’FD_Info_t’, ’dxmin, x’)

x = np.linspace(0., 1., N, endpoint=False)

info=FD_Info_t(dxmin=1./N, x=x)

print("dxmin=", info.dxmin) # dxmin (required to compute dt from CF)

print("x =", info.x) # all grid-points (useful for plots)

Just plotting data and looking at it is of course not good enough to ensure the code is
correct. The primary means to test for correctness is via a convergence test. As the
resolution is increased (i.e. h→ 0, and ∆t→ 0), the solution should approach a limiting
solution, and it should approach this solution at the correct rate, given the choices of
discretization. The spatial discretization in Eq. (5) is second order accurate.

Task FD-4: Perform simulations up to T = 1 with Forward-Euler.
Compute the root-mean-square difference to the analytic solution,

err:=
[

1
N

∑N
i=0(u(xi, T)− uAnalytic(xi, T))2

]1/2

.

Plot the error vs. N and vs. ∆t. Confirm that the error decays as expected: ∝ N−2

and ∝ ∆t. Because the time-convergence of Forward Euler is so abysmally slow
you will have to go to very small time-steps, say Courant factors CF ∼ 2−1 . . . 2−8.

2Do NOT use global variables to pass information around; this is much too error-prone.

2.3 Better time-steppers

Clearly, Forward Euler is the limitation, so let’s switch to time-steppers that converge
more quickly. Runge-Kutta 2 uses two right-hand-side evaluations, and achieves a time-
step error of O(∆t2)

w1 = F [t,u] (12)

w2 = F [t+ 0.5∆t,uk + 0.5∆tw1] (13)

uk+1 = uk + ∆tw2 (14)

Runge-Kutta 4 uses four right-hand-side evaluations, and achieves a time-step error of
O(∆t4)

w1 = F (t,uk) (15)

w2 = F (t+ 0.5∆t,uk + 0.5∆tw1) (16)

w3 = F (t+ 0.5∆t,uk + 0.5∆tw2) (17)

w4 = F (t+ ∆t,uk + ∆tw3) (18)

uk+1 = uk +
∆t

6
(w1 + 2w2 + 2w3 + w4) (19)

Task FD-5: Perform simulations up to t = 1 with Runge-Kutta 2 and Runge-Kutta
4. Plot the error at t = 1 (compared to the analytical solution) vs. time-step for
different choices of N . Confirm that the spatial discretization error decays ∝ N−2.
You will find that for any time-step ∆t for which the methods are stable, the time-
discretization error is already smaller than the spatial discretization error. There-
fore, it is difficult to verify that the time-stepping errors decay as ∝ ∆t2 and ∝ ∆t4,
respectively. You can postpone this to the next section.

Optional Task FD-6: Implement Eq. (5) with higher-order spatial stencils. For
instance, a 5-point stencil that represents ∂u/∂x with an error O(h4).

2.4 Pseudo-spectral collocation methods

The difficulty with finite-differences is the low order accurate spatial differencing stencil.
We could increase the order, but let’s go a different route, and let’s expand the solution
in basis-functions. Because of periodicity, we will use a Fourier series

u(x, t) ≈
Ñ−1∑
k=0

ãk(t) cos(2πkx) + b̃k(t) sin(2πkx) = Re
Ñ−1∑
k=0

c̃k(t)e
−2π i kx, (20)

where the complex coefficients c̃k = ãk + ib̃k.
As discussed in the lecture, for smooth, periodic functions a Fourier series converges
exponentially in the number of modes, Ñ . Therefore, the derivative

∂u

∂x
=

Ñ−1∑
k=0

−2πkãk sin(2πkx) + 2πkb̃k cos(2πkx) (21)

will also be exponentially accurate. From Eq. (21), we can read off the spectral coeffi-
cients of the Fourier series of the derivative ∂u/∂x:

ã′k = 2πkb̃k, b̃′k = −2 ikãk, or c̃′k = −2π i kc̃k. (22)

If we can use the expansion Eq. (20), then we know our solution everywhere with high
accuracy (i.e. we can interpolate). We can then also use Eq. (22) to compute derivatives
with high accuracy. If we can use this to evaluate F [u] in Eq. (7), we will have our spatial
discretization error vastly reduced.
It turns out that for a Fourier-series the associated real-space collocation points are
equally spaced:

xj =
j

N
, j = 0, . . . , N − 1. (23)

This is identical to the finite-difference example above (fundamentally, a periodic prob-
lem is translation invariant, and so equal-spacing must be the right choice).
The grid-points xj are also the corresponding grid-points for Gaussian quadrature, and
each grid-point carries the same weight. That means, we can compute the Fourier coef-
ficients as a sum:

ãk =
1

2

∫ 1

0

u(x) cos(2πkx)dx ≈ 1

2N

∑
j

u(xj) cos(2πkxj) (24)

b̃k =
1

2

∫ 1

0

u(x) sin(2πkx)dx ≈ 1

2N

∑
j

u(xj) sin(2πkxj) (25)

c̃k =
1

2

∫ 1

0

u(x)e2πikxdx ≈ 1

2N

∑
j

u(xj)e
2πikxj =

1

2N

∑
j

u(xj)e
2π i jk/N (26)

The factor 1/2 arises, because the average of sin2(x) over a full period is 1/2. Equa-
tion (26) is a discrete Fourier transform, and can be evaluated with built-in functions
in python’s numpy.fft module. Unfortunately, there are many different conventions for
Fourier transforms, and therefore:

Task PS-1: Read the Python documentation on fast Fourier transforms, and fig-
ure out how precisely you need to call a numpy.fft–routine to implement Eq. (26).
This may involve overall scaling, and it may involve complex conjugation to get
the sign-conventions of Eq. (26). Implement a function that takes u and returns
the spectral coefficients c̃k. Test by transforming sin(4πx)− 1/6 cos(8πx) to ensure
you obtain c̃2 = i and c̃4 = −1/6, with the other terms vanishing. Transform also
a constant function, to explore the conventions the FFT-routines use for the k = 0
coefficients (they often differ by a factor of 2).

Task PS-2: The evaluation of Eq. (20) at the grid-points u(xj) is the inverse trans-
formation (from spectral to physical space), c̃k → u(xj). Show that this can also be
written as a fast Fourier transform. Work out the conventions, and implement as a
function complementing the one of Task PS-1. Test by ensuring that PS-1 followed
by PS-2 returns the original data.

We’re almost done computing derivatives with pseudo-spectral methods. To finish:

Task PS-3: Implement a function that evaluates the right-hand-side of Eq. (7) as
follows:
(1) transform to spectral coefficients c̃k;
(2) compute the spectral coefficients of the first derivative by Eq. (22);
(3) transform back to real space values (via task PS-2).
Test by computing the right-hand-side for sin(2πx), checking that you obtain
−2π cos(2πx). (the minus sign arises because ∂u/∂t = −∂u/∂x).

Now we’ve got all pieces to apply method-of-lines using a pseudo-spectral expansion:

Task PS-4: Perform simulations using the pseudo-spectral right-hand-side from
Task PS-4. After initial tests, evolve up to Tfinal = 1.02 with Runge-Kutta 4. (do not
use Tfinal = 1!). Compute the difference of u(x, Tfinal) with the analytical solution;
plot its L2-norm vs. time-step for different choices of N . Confirm that the time-
stepping error decays ∝ ∆t4. Confirm that the spatial discretization error decays
exponentially. You will need quite small N to make spatial discretization errors
large enough to be noticable. You will need very small Courant factors to push the
time-discretization error small enough to compete with the spatial discretization
errors. Use N in the 10’s, use CF down to 2−8.

Optional Task PS-5: Why emphasizes Task PS-4 to avoid Tfinal = 1?

	Floating Point Operations
	Numerically solving the Advection Equation
	Finite Differences
	Forward Euler
	Better time-steppers
	Pseudo-spectral collocation methods

