
LECTURE II: Solving linear Equations

LU-Decomposition

We start with the linear system:
Ax = b (1)

Possibly the first method that one learns for solving such a linear system of equations is
the Gaussian elimination. In computer algebra a slightly modified version of this method
is the LU-decomposion, in which one tries to decompose the matrix A according to A =
L ·U. Knowing the LU decomposition for a matrix A allows us to solve the linear system
very easily:

Ax = b

LUx = b

Ux = L−1b

x = U−1(L−1b),

where L−1b uses forward substitution and U−1(L−1b) backward substitution. Note that
sometimes an additional step ‘Pivoting’, is needed in which either only rows (partial piv-
oting) or rows and columns (full pivoting) is required, e.g., if you would get zeros on the
diagonal.

The question arises of how to obtain the LU decomposition? One way uses the recursive
leading-row column LU algorithm.(

a11 a12

a21 A22

)
=

(
1 0
l21 L22

)(
u11 u12

0 U22

)
Here it is worth pointing out, if A is an n×n-matrix, then A22 is a (n−1)×(n−1)-matrix
and a12, ... are vectors of length (n− 1). The matrix equation can also be rewritten as:

a11 = u11

u12 = a12

l21 =
1

u11
a21

L22U22 = A22 − a21/(a11)
−1a12

The (n− 1)× (n− 1) matrix A22 − a21/(a11)
−1a12 is the Schur complement and defines

a new system of size (n− 1)× (n− 1) to solve.

Overall, the LU-decomposition has costs proportional to n3. Therefore, this method can
only be used for ‘small’ matrices.

Iterative Solvers

This subsection is based on the book ‘Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods’ by Berrett et al.
Iterative methods use successive approximations to obtain more accurate solutions to a

linear system
x(k) = Bx(k−1) + c

at each step. Overall, one can distinguish ‘Stationary methods’ (e.g., Jacobi method,
Gauss-Seidel method or Successive Overrelaxation) in which neither B nor c depend on
the iteration k and ‘Nonstationary methods’ (e.g.,Conjugate Gradient, Minimal Residual,
Generalized Minimal Residual, Biconjugate Gradient Stabilized).
The rate at which an iterative method converges depends greatly on the spectrum of the
coefficient matrix. Therefore, ‘preconditioner’ are employed to transforms the coeffi-
cient matrix into one with a more favorable spectrum. A good preconditioner improves
the convergence of the iterative method, but sometimes is even required to ensure that
the iterative method does not fail to converge. Example:

AP−1(Px) = b (2)

so that you solve AP−1y = b and Px = y (right preconditioned system or alternatively:

P−1(Ax− b) = 0. (3)

One could even use:
P1AP

−1
2 (P2x) = P1b. (4)

The Jacobi Method

Considering a linear system consisting of n equations

Ax = b,

with the i-th equation given by

xi = (bi −
∑
j 6=i

ai,jxj)/ai,i

Then the simplest way to solve for xi and keeping all other equations fixed, i.e., we
consider all equations as being independent from each other:

x
(k)
i = (bi −

∑
j 6=i

ai,jx
(k−1)
j /ai,i.

In matrix terms this can be rewritten as:

x(k) = D−1(−L− U)x(k−1) +D−1b

with D being the diagonal, U the strictly upper, L the strictly lower part of A.

1 #include<s t d i o . h>
2 #include<math . h>
3

4 /* We are s o l v i ng
5 3x + 20y − z = −18
6 2x − 3y + 20z = 25
7 20x + y − 2z = 17
8 */
9 /* Bring system in d iagona l l y dominant form :

10 20x + y − 2z = 17

11 3x + 20y −z = −18
12 2x − 3y + 20z = 25
13 */
14 /* Equat ions :
15 x = (17.−y+2z) /20.
16 y = (−18.−3x+z) /20.
17 z = (25.−2x+3y) /20.
18 */
19 /* Def in ing func t ion */
20 #def ine f1 (x , y , z) (17.−y+2.*z) /20.
21 #def ine f2 (x , y , z) (−18.−3.*x+z) /20.
22 #def ine f3 (x , y , z) (25.−2.*x+3.*y) /20.
23

24 /* Main func t ion */
25 i n t main ()
26 {
27 f l o a t x0=0, y0=0, z0=0, x1 , y1 , z1 , e1 , e2 , e3 ;
28 i n t count=1;
29 f l o a t e = 1e−6;
30

31 p r i n t f (”\nCount\ tx \ ty \ t z \n”) ;
32 do
33 {
34 /* Ca l cu l a t i on */
35 x1 = f1 (x0 , y0 , z0) ;
36 y1 = f2 (x0 , y0 , z0) ;
37 z1 = f3 (x0 , y0 , z0) ;
38 p r i n t f (”%d\ t %0.7 f \ t %0.7 f \ t %0.7 f \n” , count , x1 , y1 , z1) ;
39

40 /* Error */
41 e1 = fabs (x0−x1) ;
42 e2 = fabs (y0−y1) ;
43 e3 = fabs (z0−z1) ;
44

45 count++;
46

47 /* Set value fo r next i t e r a t i o n */
48 x0 = x1 ;
49 y0 = y1 ;
50 z0 = z1 ;
51 }while (e1>e && e2>e && e3>e) ;
52

53 p r i n t f (”\nSolut ion : x=%7.6f , y=%7.6 f and z = %7.6 f \n” , x1 , y1 , z1) ;
54

55

56 re turn 0;
57 }

Gauss-Seidel Method

A simple extension of the Jacobi method is the Gauss-Seidel method. Now we assume
that the equations are examined one at a time in sequence and we will use previously
computed results. This results into

x
(k)
i = (bi −

∑
j<i

ai,jx
(k)
j −

∑
j>i

ai,jx
(k−1)
j)/ai,i.

or in matrix form:
x(k) = (D + L)−1(−Ux(k−1) + b)

Successive Overrelaxation (SOR)

The Successive Overrelaxation Method, or SOR, is devised by applying extrapolation
to the Gauss-Seidel method. This extrapolation takes the form of a weighted average
between the previous iterate and the computed Gauss-Seidel iterate successively for each
component:

x
(k)
i = ωx̄

(k)
i + (1− ω)x

(k−1)
i

or
x(k) = (D + ωL)−1(−ωU + (1− ω)D)x(k−1) + ω(D + ωL)−1b

Usually, we have to pick ω ∈ (0, 2), for ω = 1 we obtain the normal Gauss-Seidel method,
for ω < 1 we are using an underrelaxation and for ω > 1 this method revers to overre-
laxation.

Conjugate Gradient Method (CG)

Nonstationary methods differ from stationary methods in that the computations involve
information that changes at each iteration.
The Conjugate Gradient method can be used for symmetric positive definite systems.
(Note: positive definite: An n×n symmetric real matrixM is positive-definite if xT ·M ·x >
0 for all non-zero x in Rn.)
CG generates vector sequences of iterates (i.e., successive approximations to the solu-
tion), residuals corresponding to the iterates, and searches for directions used in updat-
ing the iterates and residuals.
The fundamental idea is to rewrite our system of equations as a minimization problem,
i.e., A · x = b is rewritten as

E(x) :=
1

2
(A · x) · xT − b · xT

The gradient of E(x)|xk
at position xk is then given by A · xk − b = −rk. Instead of

minimizing along the residuum rk (which would be the gradient method), one computes
another direction pk along which one minimizes E(x), i.e.,

x(k) = x(k−1) + αkp
(k).

The corresponding residuals r(k) = b− Ax(k) are updated following

r(k) = r(k−1) − αkAp
(k).

The parameter αk is given by:

αk =
r(k−1)

T
r(k−1)

p(k)
T
Ap(k)

and minimizes r(k)TA(−1)r(k). The search direction is then updated along

p(k) = r(k) + β(k)p
(k−1)

with

β(k) =
r(k)

T
r(k)

r(k−1)
T
r(k−1)

.

This choice of β ensures that r(k) and r(k−1) are orthogonal (and also orthogonal to all
previous choices).

In summary, the iteration procedure can be summarized by:

1. Compute x
2. Compute r
3. Compute β
4. Compute p
5. Compute α
6. Go back to (1)

In the following, we want to consider one example, to get a better understanding of the
method. Consider

Ax =

(
4 1
1 3

)(
x1
x2

)
=

(
1
2

)
We start with the initial guess

x0 =

(
2
1

)
.

We start by computing the residual vector:

r0 =

(
1
2

)
−
(

4 1
1 3

)(
2
1

)
=

(
−8
−3

)
= p0

Now, we have to compute α:

α0 =
r(0)

T
r(0)

p(0)
T
Ap(0)

=

(−8, 3) ·
(
−8
−3

)
(−8, 3)

(
4 1
1 3

)(
−8
−3

) =
73

331

This gives us our next solution:

x1 = x0 + α0p0 =

(
2
1

)
+

73

331

(
−8
−3

)
=

(
0.2356
0.3384

)
.

We now need to move to the second iteration:

r1 = r0 − α0Ap0 =

(
−8
−3

)
− 73

331

(
4 1
1 3

)(
−8
−3

)
=

(
−0.2810
0.7492

)
Then, we get for β:

β(1) =
r(1)

T
r(1)

r(0)
T
r(0)

=
(−0.2810, 0.7492) · (−0.2810, 0.7492)T

(−8,−3) · (−8,−3)T
= 0.0088.

With β we can compute

p1 = r1 + β1p0 =

(
−0.3511
0.7229

)
,

plugging this into the equation for α leads to

α1 =
r(1)

T
r(1)

p(1)
T
Ap(1)

= 0.4122

This leads to the final solution:

x2 = x1 + α1p1 =

(
0.0909
0.6346

)
This solution is up to round up errors exact. In fact, it is possible to show that for
exact arithmetic, the method converges to the correct solution within m steps where m
determines the size of the m×m matrix A.

Figure 1: Sketch of the conjugate gradient method (plot taken from ‘A gradient-based
algorithm competitive with variational Bayesian EM for mixture of Gaussians’ by Kuusela
et al.)

Below you also find a python code, that actually uses the CG and also Gradient method
to solve our problem from above:

1 import numpy as np
2 import ma tp lo t l i b . pyp lo t as p l t
3

4 ##setup p lo t
5 f i g , ax=p l t . subp lo t s (1 ,1 , f i g s i z e =(12 ,12))
6

7 ##def ine the problem
8 A = np . array ([[4 . , 1 .] , [1 . , 3 .]])
9 b = np . array ([1 . , 2 .])

10

11 #crea te gr id f o r contour p lo t
12 xp = np . arange (−2.5 , 2 .5 , 0.01)
13 yp = np . arange (−2.5 , 2 .5 , 0.01)
14 X , Y = np . meshgrid (xp , yp)
15 ##Setup quadra t i c E f o r minimizat ion
16 R = 0.5*(A[0][0]*X+A[0][1]*Y) *X+ 0.5*(A[1][0]*X+A[1][1]*Y) *Y − b[0]*X − b

[1]*Y
17 p l t . contour f (X , Y , R,50)

18

19

20 #i n i t i a l guess
21 x = np . array ([2 . , 1 .])
22 beta = 0
23 p = np . array ([0 , 0])
24 r = np . ar ray ([1 , 1])
25

26 #plo t i n i t i a l guess
27 p l t . s c a t t e r (x [0] , x [1] , co lo r= ’ red ’)
28

29

30 ### CG
31 #perform 2 steps , s i n ce we know tha t we are then at the f i n a l l o c a t i o n
32 f o r i in range (1 ,3) :
33 r0 = r
34 r = b − np . dot (A , x)
35 i f i >1:
36 beta = np . dot (r . T , r) /np . dot (r0 . T , r0)
37 p = r + beta *p
38 a = np . dot (r . T , r) /np . dot (np . dot (p . T , A) ,p)
39 #s t o r i n g i t s h o r t l y in xnew f o r p l o t t i n g
40 xnew = x + a*p
41 p l t . s c a t t e r (xnew[0] , xnew[1] , co lo r= ’ red ’)
42 p l t . arrow (x [0] , x [1] , xnew[0]−x [0] , xnew[1]−x [1] , co lo r= ’ red ’)
43 x = xnew
44

45 ### Gradient method
46 #r e s e t i n i t i a l guess
47 x = np . array ([2 . , 1 .])
48

49 f o r i in range (1 ,10) :
50 r = b − np . dot (A , x)
51 a = np . dot (r . T , r) /np . dot (np . dot (r . T , A) , r)
52 xnew = x + a* r
53 p l t . s c a t t e r (xnew[0] , xnew[1] , co lo r= ’ blue ’ , alpha =0.5)
54 p l t . arrow (x [0] , x [1] , xnew[0]−x [0] , xnew[1]−x [1] , co lo r= ’ blue ’ , alpha =0.5)
55 x = xnew
56

57 p l t . show ()

Generalized Minimal Residuals

In the following, we will only sketch the idea of the Generalized Minimal Residual (GM-
RES) method. This method is important since it allows to solve nonsymmetric linear
systems. The method is used to generate a sequence of orthogonal vectors. As in the
Conjugate Gradient method, the residuals form an orthogonal basis for the space

r(0), Ar(0), A2r(0), ...

This basis might be linearly dependent, so that a new set of orthonormal vectors q1, q2, ...
are constructed. The basis construction is based on the Arnoldi method (a modified
Gram-Schmidt orthogonalization procedure). The vectors qi are stored in an m × n ma-
trix, Qn.

The final GMRES iterates are then constructed as

x(i) = x(0) + y1q
(1) + ...yiq

(i) = x0 + Qn · y.

The coefficients yk are chosen to minimize the residual norm ||b − Ax(i)||. It is worth
pointing out that for the computation of the residual it is not necessary to compute x at
every iteration step:

||rn|| = ||b− Axn|| = ||b− A(x0 +Qnyn)|| = ||r0 − AQnyn|| =
||βq1 −Qn+1H̃nyn|| = ||Qn+1(βe1 − H̃yn)|| = ||βe1 − H̃nyn||,

with e1 being the first vector in the standard basis of Rn+1 and β = ||r0||. In the equation
above, we have also introduced the upper Hessenberg matrix H̃n (which is an (n+ 1)×n
matrix) given by AQn = Qn+1H̃n.
The can be summarized according to:

• calculate qn using the Arnoldi method

• find qn that minimizes ||rn||

• repeat until residual is small enough

• compute xn

